应用统计spss分析报告(1)
统计学原理SPSS实验报告

实验一:用SPSS绘制统计图实验目的:掌握基本的统计学理论,使用SPSS实现基本统计功能(绘制统计图)对SPSS的理解:它是一款社会科学统计软件包,同时也广泛应用于经济,金融,商业等各个领域,基本功能包括数据管理,统计分析,图表分析,输出管理等。
实验算法:掌握SPSS的基本输入输出方法,并用SPSS绘制相应的统计图(例如:直方图,曲线图,散点图,饼形图等)操作过程:步骤1:启动SPSS。
单击Windows 的[开始]按钮(如图1-1所示),在[程序]菜单项[SPSS for Windows]中找到[SPSS 13.0 for Windows]并单击,得到如图1-2所示选择数据源界面。
图1-1 启动SPSS图1-2 选择数据源界面步骤2 :打开一个空白的SPSS数据文件,如图1-3。
启动SPSS 后,出现SPSS 主界面(数据编辑器)。
同大多数Windows 程序一样,SPSS 是以菜单驱动的。
多数功能通过从菜单中选择完成。
图1-3 空白的SPSS数据文件步骤3:数据的输入。
打开SPSS以后,直接进入变量视图窗口。
SPSS的变量视图窗口分为data view和variable view两个。
先在variable view中定义变量,然后在data view里面直接输入自定义数据。
命名为mydata并保存在桌面。
如图1-4所示。
图1-4 数据的输入步骤4:调用Graphs菜单的Bar过程,绘制直条图。
直条图用直条的长短来表示非连续性资料(该资料可以是绝对数,也可以是相对数)的数量大小。
选择的数据源见表1。
步骤5:数据准备。
激活数据管理窗口,定义变量名:年龄标化发生率为RATE,冠心病临床型为DISEASE,血压状态为BP。
RATE按原数据输入,DISEASE按冠状动脉机能不全=1、猝死=2、心绞痛=3、心肌梗塞=4输入,BP按正常=1、临界=2、异常=3输入。
步骤6:选Graphs菜单的Bar...过程,弹出Bar Chart定义选项框(图1-5)。
SPSS实验报告

SPSS实验报告spss实验报告一、spss的概述spss即社会科学统计数据软件包,又称统计数据产品与服务解决方案,就是世界上最早使用图形菜单驱动界面的统计数据软件,它最注重的特点就是操作界面极为亲善,输入结果美观可爱。
它将几乎所有的功能都以统一、规范的界面展现出出,采用windows的窗口方式展现各种管理和分析数据方法的功能,对话框展示出各种功能选择项。
spss采用类似excel表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。
其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要。
输出结果十分美观,存储时则是专用的spo格式,可以转存为html格式和文本格式。
二、spss的特点操作简便、编程方便、、功能强大、数据接口、模块组合、针对性强。
三、课程建议spss统计分析软件的概述、spss数据文件的简历和管理、spss数据的预处理、spss的基本统计方法、spss的参数检验、spss的相关分析、spss的线性回归分析。
四、问题与化解方法第三章:案例部分的操作根据书本内容可以做出,但是练习题部分遇到问题较多。
①练1:建议使用spss数据甄选功能将数据分为两份文件。
化解方法:问题中的建议主要目的就是甄选数据然后分为z代莱文件。
第一份文件的操作方式:首先挑选出数据,挑选菜单数据―挑选个案―如果条件满足用户―输出存款>=1000&存款<5000&居住地地=沿海或中心繁盛城市―在输入挑选将选取个案导入到代莱数据集然后按确认可以甄选出来数据。
第二份文件的操作方式:首先挑选出数据,数据―挑选个案―随机个案样本―输出70―在输入挑选将选取个案导入到代莱数据集然后按确认可以甄选出来数据。
甄选出后来,在查看器中可以表明个案依据值fitter_$。
②练习4要求计算每个学生课程的平均分以及标准差。
同时,计算男生和女生各科成绩的平均分。
解决方法:选择菜单数据―转置,将学号放在名称变量,全部课程放在变量框中,确定后,完成转置。
《统计分析与SPSS的应用(第6版)》课件第一章

SPSS 统计分析软件概述
主要内容
SPSS使用基础 SPSS的基本运行方式
SPSS的英文缩写: Statistical Package for Social Science Statistical Product and Service Solutions
行
SPSS 基本运行方式
菜单程序混合运行方式: 先通过菜单选择分析过程和参数,不立即提交 (确定)执行,而是按粘贴按钮. 计算机自动将用户刚定义的分析过程和参数转 换成SPSS的命令,并显示到语法窗口中. 用户可对其进行必要的修改后再提交给计算机 执行. 一般适用于熟练的SPSS程序员.
SPSS主要窗口:数据查看器窗口
窗口标题:查看器 功能:SPSS统计分析报表及图形的输出的窗口。 组成:窗口主菜单、工具栏、结果显示区、状态区 特点:
输出窗口可以关闭,窗口内容以.SPV存于磁盘上 两个部分:目录视图和内容视图
SPSS基本运行方式
完全窗口菜单方式: 所有分析操作过程都是通过菜单和按钮及对话框方 式进行的.
SPSS主要窗口:数据编辑器窗口
窗口标题:数据编辑器(数据集) 功能:对SPSS的数据文件进行录入、 修改、管理等
基本操作的窗口。 组成:窗口主菜单、工具栏、数据编辑区、状态区 特点:
SPSS运行过程中自动打开 SPSS中各统计分析功能都是针对该窗口中的数据进
行的 窗口中的数据文件以.sav存于磁盘上 两个视图:数据视图和变量视图
SPSS软件概述
SPSS的发展: 60年代:美国斯坦福大学三位研究生研制 70年代:SPSS总部成立于芝加哥,推出 SPSSX中小型机版 80年代:SPSS公司(SPSS/PC+微机版1~3) 90年代:SPSS公司(SPSS WINDOWS版5~16) 2009:IBM收购,命名为:IBM SPSS Statistics(多国语言版25版)
使用SPSS进行统计数据分析

使用SPSS进行统计数据分析第一章:介绍统计数据分析的重要性统计数据分析在各个领域中扮演着重要的角色。
它帮助研究者从大量数据中找出规律、验证假设,并作出科学决策。
为了有效地进行统计数据分析,SPSS(Statistical Package for the Social Sciences)是一个常用的统计分析软件。
本文将重点介绍使用SPSS进行统计数据分析的方法和步骤。
第二章:数据清理和准备在进行统计数据分析之前,首先需要进行数据清理和准备。
这包括检查数据的完整性、解决缺失数据和异常值等问题。
SPSS提供了一系列功能,如数据筛选、数据变换和替代值等,可以帮助我们进行数据清理和准备。
第三章:描述性统计分析描述性统计分析是对数据进行总结和描述的过程,目的是了解数据的基本情况。
SPSS提供了一系列描述性统计方法,如频数、平均值、标准差和百分位数等。
通过这些统计指标,我们可以获取数据的分布情况、中心位置和变异程度等重要信息。
第四章:推断性统计分析推断性统计分析是通过样本数据对总体进行推断的过程。
在SPSS中,我们可以使用各种假设检验方法进行推断性统计分析,如t检验、方差分析和回归分析等。
这些方法可以帮助我们验证研究假设,比较群体差异和预测未来趋势。
第五章:相关性分析相关性分析是研究变量之间关系的一种方法。
在SPSS中,我们可以使用相关矩阵和散点图等工具来分析变量之间的相关性。
此外,SPSS还提供了Pearson相关系数和Spearman等非参数相关系数的计算,用以衡量变量之间的线性关系和排序关系。
第六章:多变量分析多变量分析是一种用于处理多个自变量和因变量的方法。
SPSS 提供了多个多变量分析方法,如因子分析、聚类分析和多元方差分析等。
这些方法可以帮助我们探索多个变量之间的关系,并进行变量的降维和分类。
第七章:时间序列分析时间序列分析是研究随时间变化的数据的一种方法。
在SPSS 中,我们可以使用时间序列图、自相关图和平稳性检验等工具来分析时间序列数据的特征和趋势。
spss描述性统计分析实验总结(3篇)

spss描述性统计分析实验总结(3篇)为期半个学期的统计学试验就要完毕了,这段以来我们主要通过excl软件对一些数据进展处理,比方抽样分析,方差分析等,经过这段时间的学习我学到了许多,把握了许多应用软件方面的学问,真正地学与实践相结合,加深学问把握的同时也熬炼了操作力量,回忆整个学习过程我也有许多体会。
统计学是比拟难的一个学科,作为工商专业的一名学生,统计学对于我们又是相当的重要。
因此,每次试验课我都坚持按时到试验室,试验期间仔细听教师讲解,看教师操作,然后自己独立操作数遍,不懂的问题会请教教师和同学,有时也跟同学商议找到更好的解决方法。
几次试验课下来,我感觉我的力量的确提高了不少。
统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观看系统的数据,进展量化的分析、总结,并进而进展推断和猜测,为相关决策供应依据和参考。
它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。
可见统计学的重要性,仔细学习显得相当必要,为以后进入社会有更好的竞争力,也为多把握一门学科,对自己对社会都有好处。
几次的试验课,我每次都有不一样的体会。
个人是理科出来的,对这种数理类的课程原来就很感兴趣,经过书本学问的学习和试验的实践操作更加加深了我的兴趣。
每次做试验后回来,我还会不定时再独立操作几次为了不遗忘操作方法,这样做可以加深我的记忆。
依据记忆曲线的理论,学而时习之才能保证对学问和技能的真正以及把握更久的把握。
就拿最近一次试验来说吧,我们做的是“平均进展速度”的问题,这是个比拟简单的问题,但是放到软件上进展操作就会变得麻烦,书本上只是直接给我们列出了公式,但是对于其中的原理和意义我了解的还不够多,在做试验的时候难免会有许多问题。
不惊奇的是这次试验好多人也都是不明白,操作不好,不像以前几次试验教师讲完我们就差不多把握了,但是这次好像遇到了大麻烦,由于内容比拟多又是一些没接触过的东西。
SPSS回归分析实验报告

中国计量学院现代科技学院实验报告实验课程:应用统计学实验名称:回归分析班级:学号:姓名:实验日期: 2012.05.23 实验成绩:指导教师签名:一.实验目的一元线性回归简单地说是涉及一个自变量的回归分析,主要功能是处理两个变量之间的线性关系,建立线性数学模型并进行评价预测。
本实验要求掌握一元线性回归的求解和多元线性回归理论与方法。
二.实验环境中国计量学院现代科技学院机房310三.实验步骤与内容1打开应用统计学实验指导书,新建excel表地区供水管道长度(公里)全年供水总量(万平方米)北京15896 128823 天津6822 64537 河北10771.2 160132 山西5669.3 77525 内蒙古5635.5 59276 辽宁21999 280510 吉林6384.9 159570 黑龙江9065.9 153387 上海22098.8 308309 江苏36632.4 380395 浙江24126.9 235535 安徽7389.4 204128 福建6270.4 118512 江西5094.7 143240 山东26073.9 259782 河南11405.6 185092 湖北15668.6 257787 湖南9341.8 262691 广东35728.8 568949 广西6923.1 134412 海南1726.7 20241 重庆6082.7 71077 四川12251.3 165632 贵州3275.3 45198 云南5208.5 52742 西藏364.9 5363陕西4270 73580甘肃5010 62127青海893 14390宁夏1538.2 22921新疆3670.2 766852.打开SPSS,将数据导入3.打开分析,选择回归分析再选择线性因变量选全年供水总量,自变量选供水管道长度统计里回归系数选估计,再选择模型拟合按继续再按确定会出来分析的结果对以上结果进行分析:(1)回归方程为:y=28484.712+11.610X(X是自变量供水管道长度,Y是因变量全年供水总量)(2)检验1)拟合效果检验根据表2可知,R2=0.819,即拟合效果好,线性成立。
Spss数据分析报告

Spss 数据分析报告实验材料和原始数据引入本文主要利用SPSS 通过对3 个除汗剂品牌:妮维娅、AXE 、多芬在两个超市(沃尔玛和家乐福)的价格、促销,和AXE 的周销售量数据,分析这两个因素对AXE 周销售量的影响,为AXE 这个除汗剂品牌设定一个恰当的模型形式。
进一步检验模型中是否存在自相关、异方差、共线性等问题,练习如何在SPSS 中处理自相关、异方差,进一步完善模型,检验模型的表面效度,残差图,并最终计算模型的预测效度。
AXE 案例三个品牌除汗剂的数据妮维娅AXE多芬变量销售量(Sales)价格(Price)只有摆台(Display-only)只有促销(Feature-only)摆台和促销都有(Feature and Display)分析操作数据线性拟合对家乐福的AXE数据进行线性拟合,所得到的结果如下:对沃尔玛的数据进行线性拟合,所得到的结果如下:Pooli ng Test由于有两个超市Carrefour和Walmart的AXE的数据,因此在分析之前要先用SPSS进行Pooling Test。
Pooling Test所用到的公式是通过这个公式计算出F大小,然后通过在线网站计算出P值大小,从而判定能否混合计算。
........... F DFn DFtlP bom F |_ Compute P | OLS Pooling所得到的P值结果:结论是:PV0.0001,两个超市的AXE销售数据不能混合。
OLSDV Pooling结论是:PV0.0001,两个超市的AXE销售数据不能混合。
通过OLS Pooling和OLSDV Pooling都说明了两个超市的AXE销售数据不能混合。
所以接下来的分析和模型设立都会按照两个超市进行。
描述性统计和模型设立描述性统计沃尔玛AXE的销售情况接下来分析Display-only 、Feature-only 以及Display 和Feature 这三个变量对价格的影响。
spss数据分析报告案例

SPSS数据分析报告案例1. 研究背景本研究旨在调查大学生是否存在晚睡现象,并探究晚睡与健康问题之间的关系。
通过采集大学生的睡眠时间、就寝时间以及健康状况等数据,利用SPSS软件进行数据分析,进一步了解大学生的睡眠状况与健康问题的关联。
2. 数据概况本研究共收集了200名大学生的数据,其中包括性别、年级、每晚睡眠时间、平均就寝时间、是否存在健康问题等变量。
下面是对数据的描述统计分析结果:•性别分布:男性占50%,女性占50%。
•年级分布:大一占25%,大二占30%,大三占25%,大四占20%。
•每晚睡眠时间:平均睡眠时间为7.8小时,标准差为1.2小时。
最小值为5小时,最大值为10小时。
•平均就寝时间:平均就寝时间为23:30,标准差为0.5小时。
最早就寝时间为22:00,最晚就寝时间为01:00。
•健康问题:共有45%的大学生存在健康问题。
3. 数据分析结果3.1 性别与睡眠时间的关系首先,我们探究性别与睡眠时间之间的关系。
利用独立样本T检验,得出以下的结果:•假设检验:男性和女性的睡眠时间是否存在显著差异?•结果:独立样本T检验显示,男性平均睡眠时间为7.6小时,女性平均睡眠时间为8.0小时。
T值为-2.14,P值为0.034,意味着男性和女性的睡眠时间存在显著差异。
3.2 年级与睡眠时间的关系我们进一步探究年级与睡眠时间的关系。
使用单因素方差分析(ANOVA),得出以下结果:•假设检验:各年级的睡眠时间是否存在显著差异?•结果:单因素方差分析显示,大一、大二、大三和大四的平均睡眠时间分别为7.7小时、7.9小时、8.1小时和7.6小时。
F值为2.75,P值为0.043,说明各年级之间的睡眠时间存在显著差异。
3.3 睡眠时间与健康问题的关系最后,我们分析睡眠时间与健康问题之间的关系。
利用相关分析,得出以下结果:•假设检验:睡眠时间与健康问题之间是否存在相关性?•结果:相关分析结果显示,睡眠时间和健康问题之间存在显著负相关(r = -0.25,P值 = 0.001),即睡眠时间越少,存在健康问题的可能性越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 14 学生姓名: 肖浩鑫 学号:31407371 一、实验项目名称:实验报告(三) 二、实验目的和要求 (一)变量间关系的度量:包括绘制散点图,相关系数计算及显着性检验; (二)一元线性回归:包括一元线性回归模型及参数的最小二乘估计,回归方程的评价及显着性检验,利用回归方程进行估计和预测; (三)多元线性回归:包括多元线性回归模型及参数的最小二乘估计,回归方程的评价及显着性检验等,多重共线性问题与自变量选择,哑变量回归; 三、实验内容 1. 从某一行业中随机抽取12家企业,所得产量与生产费用的数据如下: 企业编号 产量(台) 生产费用(万元) 企业编号 产量(台) 生产费用(万元) 1 40 130 7 84 165 2 42 150 8 100 170 3 50 155 9 116 167 4 55 140 10 125 180 5 65 150 11 130 175 6 78 154 12 140 185 (1)绘制产量与生产费用的散点图,判断二者之间的关系形态。 (2)计算产量与生产费用之间的线性相关系数,并对相关系数的显着性进行检验(),并说明二者之间的关系强度。 2. 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:
地区 人均GDP(元) 人均消费水平(元) 北京 22460 7326 辽宁 11226 4490 上海 34547 11546 江西 4851 2396 河南 5444 2208 贵州 2662 1608 陕西 4549 2035 (1)绘制散点图,并计算相关系数,说明二者之间的关系。 2 / 14
(2)人均GDP作自变量,人均消费水平作因变量,利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。 (3)计算判定系数和估计标准误差,并解释其意义。 (4)检验回归方程线性关系的显着性() (5)如果某地区的人均GDP为5000元,预测其人均消费水平。 (6)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。 3. 随机抽取10家航空公司,对其最近一年的航班正点率和顾客投诉次数进行调查,数据如下:
航空公司编号 航班正点率(%) 投诉次数(次) 1 81.8 21 2 76.6 58 3 76.6 85 4 75.7 68 5 73.8 74 6 72.2 93 7 71.2 72 8 70.8 122 9 91.4 18 10 68.5 125 (1)用航班正点率作自变量,顾客投诉次数作因变量,估计回归方程,并解释回归系数的意义。 (2)检验回归系数的显着性()。 (3)如果航班正点率为80%,估计顾客的投诉次数。 4. 某汽车生产商欲了解广告费用(x)对销售量(y)的影响,收集了过去12年的有关数据。通过计算得到下面的有关结果: 方差分析表 变差来源 df SS MS F Significance F 回归 2.17E-09 残差 40158.07 — — 总计 11 1642866.67 — — — 参数估计表 Coefficients 标准误差 t Stat P-value Intercept 363.6891 62.45529 5.823191 0.000168 X Variable 1 1.420211 0.071091 19.97749 2.17E-09 (1)完成上面的方差分析表。 (2)汽车销售量的变差中有多少是由于广告费用的变动引起的? (3)销售量与广告费用之间的相关系数是多少? (4)写出估计的回归方程并解释回归系数的实际意义。 (5)检验线性关系的显着性(a=0.05)。 3 / 14
5. 随机抽取7家超市,得到其广告费支出和销售额数据如下 超市 广告费支出/万元 销售额/万元 A 1 19 B 2 32 C 4 44 D 6 40 E 10 52 F 14 53 G 20 54
(1) 用广告费支出作自变量,销售额为因变量,求出估计的回归方程。 (2) 检验广告费支出与销售额之间的线性关系是否显着(a=0.05)。 (3) 绘制关于的残差图,你觉得关于误差项的假定被满足了吗? (4) 你是选用这个模型,还是另寻找一个该更好的模型? 6. 一家电气销售公司的管理人员认为,每月的销售额是广告费用的函数,并想通过广告费用对月销售额作出估计。下面是近8个月的销售额与广告费用数据
月销售收入y(万元) 电视广告费用(万元) 报纸广告费用(万元)
96 5.0 1.5 90 2.0 2.0 95 4.0 1.5 92 2.5 2.5 95 3.0 3.3 94 3.5 2.3 94 2.5 4.2 94 3.0 2.5 (1)用电视广告费用作自变量,月销售额作因变量,建立估计的回归方程。 (2)用电视广告费用和报纸广告费用作自变量,月销售额作因变量,建立估计的回归方程,并说明回归系数的意义。 (3)上述(1)和(2)所建立的估计方程,电视广告费用的系数是否相同?对回归系数分别解释。 (4)根据(1)和(2)所建立的估计方程,说明它们的R2的意义。 7. 某农场通过试验取得早稻收获量与春季降雨量和春季温度的数据如下
收获量y (kg) 降雨量x1 (mm) 温度x2 () 2250 25 6 3450 33 8 4 / 14
4500 45 10 6750 105 13 7200 110 14 7500 115 16 8250 120 17 建立早稻收获量对春季降雨量和春季温度的二元线性回归方程,并对回归模型的线性关系和回归系数进行检验(a=0.05),你认为模型中是否存在多重共线性? 8. 一家房地产评估公司想对某城市的房地产销售价格(y)与地产的评估价值(x1)、房产的评估价值(x2)和使用面积(x3)建立一个模型,以便对销售价格作出合理预测。为此,收集了20栋住宅的房地产评估数据如下:
房地产编号 销售价格y(元/㎡) 地产估价(万元) 房产估价(万元) 使用面积(㎡)
1 6890 596 4497 18730 2 4850 900 2780 9280 3 5550 950 3144 11260 4 6200 1000 3959 12650 5 11650 1800 7283 22140 6 4500 850 2732 9120 7 3800 800 2986 8990 8 8300 2300 4775 18030 9 5900 810 3912 12040 10 4750 900 2935 17250 11 4050 730 4012 10800 12 4000 800 3168 15290 13 9700 2000 5851 24550 14 4550 800 2345 11510 15 4090 800 2089 11730 16 8000 1050 5625 19600 17 5600 400 2086 13440 18 3700 450 2261 9880 19 5000 340 3595 10760 20 2240 150 578 9620 用SPSS进行逐步回归,确定估计方程,并给出销售价格的预测值及95%的置信区间和预测区间。 5 / 14
9. 为分析某行业中的薪水有无性别歧视,从该行业中随机抽取15名员工,有关的数据如下 月薪y(元) 工龄 性别(1=男,0=女)
1548 3.2 1 1629 3.8 1 1011 2.7 0 1229 3.4 0 1746 3.6 1 1528 4.1 1 1018 3.8 0 1190 3.4 0 1551 3.3 1 985 3.2 0 1610 3.5 1 1432 2.9 1 1215 3.3 0 990 2.8 0 1585 3.5 1 进行回归并对结果进行分析。 四、实验数据记录与分析
(基本要求:1.根据题号顺序记录软件输出结果并分析;2.结果可来自对SPSS或Excel进行操作的输出,二选一即可。) 6 / 14
1、(1) 由图可知,产量与生产费用呈正线性相关 (2) 相关性 产量 生产费用 产量 Pearson 相关性 1 .920** 显着性(双侧) .000 N 12 12 生产费用 Pearson 相关性 .920** 1 显着性(双侧) .000 N 12 12 **. 在 .01 水平(双侧)上显着相关。 产量与生产费用之间的线性相关系数为0.0920,显着相关 7 / 14
2、(1) 相关性 人均GDP 人均消费水平 人均GDP Pearson 相关性 1 .998** 显着性(双侧) .000 N 7 7 人均消费水平 Pearson 相关性 .998** 1 显着性(双侧) .000 N 7 7 **. 在 .01 水平(双侧)上显着相关。 人均GDP与人均消费水平呈正线性相关,相关系数为0.998
(2)