习题课 正弦定理和余弦定理

合集下载

正弦定理和余弦定理专题训练

正弦定理和余弦定理专题训练

正弦定理和余弦定理专题训练一、选择题1. 在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30°B.45°C.60°D.75° 2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3B.5π6C.π6或5π6D.π63. 在△ABC 中,cos 2B 2=a +c 2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,则“a >b ”是“cos 2A < cos 2B ”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.3π4B.π3C.π4D.π6二、填空题6. 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.7. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =________. 8. 在△ABC 中,A =2π3,a =3c ,则bc =________. 三、解答题9. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值; (2)求cos ⎝ ⎛⎭⎪⎫2A +π6的值.10.在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin B sin C;(2)若∠BAC =60°,求∠B .11.已知锐角三角形的边长分别为1,3,x ,则x 的取值范围是( ) A.(8,10) B.(22,10) C.(22,10)D.(10,8)12.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac=2cos C ,则c =( )A.27B.4C.2 3D.3 313.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB的取值范围是________.14.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.正弦定理和余弦定理专题训练答案一、选择题1. 在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30°B.45°C.60°D.75°解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32,∴sin A =1,由A ∈(0°,180°),∴A =90°,∴C =60°.故选C.法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°, S △ABC =32,符合条件,故C =60°.故选C.答案 C2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( ) A.π3B.5π6C.π6或5π6D.π6解析 ∵A =2π3,a =2,b =233,∴由正弦定理a sin A =bsin B可得,sin B =b a sin A =2332×32=12.∵A =2π3,∴B =π6.答案 D4. 在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC的形状为( )A.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形 解析 因为cos 2B 2=a +c2c,所以2cos 2B 2-1=a +c c -1,所以cos B =ac ,所以a 2+c 2-b 22ac =a c ,所以c 2=a 2+b 2.所以△ABC 为直角三角形. 答案 B4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,则“a >b ”是“cos 2A < cos 2B ”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 因为在△ABC 中,a >b ⇔sin A >sin B ⇔sin 2A >sin 2B ⇔2sin 2A >2sin 2B ⇔1-2sin 2A <1-2sin 2B ⇔cos 2A <cos 2B .所以“a >b ”是“cos 2A <cos 2B ”的充分必要条件. 答案 C5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( )A.3π4B.π3C.π4D.π6 解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4,故选C. 答案 C 二、填空题6. 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析 由3sin A =2sin B 及正弦定理,得3a =2b ,又a =2,所以b =3,故c 2=a 2+b 2-2ab cos C =4+9-2×2×3×⎝ ⎛⎭⎪⎫-14=16,所以c =4.答案 49. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =________.解析 因为角A ,B ,C 依次成等差数列,所以B =60°.由正弦定理,得1sin A=3sin 60°,解得sin A =12,因为0°<A <180°,所以A =30°或150°(舍去),此时C =90°,所以S △ABC =12ab =32.答案 3210. 在△ABC 中,A =2π3,a =3c ,则bc =________.解析 在△ABC 中,a 2=b 2+c 2-2bc ·cos A , 将A =2π3,a =3c 代入,可得(3c )2=b 2+c 2-2bc ·⎝ ⎛⎭⎪⎫-12,整理得2c 2=b 2+bc .∵c ≠0,∴等式两边同时除以c 2,得2=⎝ ⎛⎭⎪⎫b c 2+bc ,可解得b c =1.答案 1 三、解答题9. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值; (2)求cos ⎝ ⎛⎭⎪⎫2A +π6的值. 解 (1)在△ABC 中,由cos A =-14,可得sin A =154.由S △ABC =12bc sin A =315,得bc =24,又由b -c =2,解得b =6,c =4. 由a 2=b 2+c 2-2bc cos A ,可得a =8. 由a sin A =c sin C ,得sin C =158. (2)cos ⎝ ⎛⎭⎪⎫2A +π6=cos 2A ·cos π6-sin 2A ·sin π6 =32(2cos 2A -1)-12×2sin A ·cos A =15-7316.10.在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin Bsin C; (2)若∠BAC =60°,求∠B . 解 (1)由正弦定理得AD sin B =BD sin ∠BAD ,AD sin C =DCsin ∠CAD . 因为AD 平分∠BAC ,BD =2DC ,所以sin B sin C =DC BD =12. (2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°, 所以sin C =sin(∠BAC +∠B )=32cos B +12sin B . 由(1)知2sin B =sin C ,所以tan B =33,即∠B =30°.11. 已知锐角三角形的边长分别为1,3,x ,则x 的取值范围是( ) A.(8,10) B.(22,10) C.(22,10)D.(10,8)解析 因为3>1,所以只需使边长为3及x 的对角都为锐角即可,故⎩⎨⎧12+x 2>32,12+32>x 2,即8<x 2<10.又因为x >0,所以22<x <10. 答案 B12.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac =2cos C ,则c =( )A.27B.4C.2 3D.3 3解析 ∵a cos B +b cos Ac=2cos C ,由正弦定理,得sin A cos B +cos A sin B =2sin C cos C , ∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π3.∵S △ABC =23=12ab sin C =34ab ,∴ab =8,又a +b =6,⎩⎨⎧a =2,b =4或⎩⎨⎧a =4,b =2,c 2=a 2+b 2-2ab cos C =4+16-8=12, ∴c =23,故选C. 答案 C13.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.解析 如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE .在等腰三角形CBF 中,∠FCB =30°,CF =BC =2, ∴BF =22+22-2×2×2cos 30°=6- 2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°, BE =CE ,BC =2,BE sin 75°=2sin 30°, ∴BE = 212×6+24=6+ 2.∴6-2<AB <6+ 2. 答案 (6-2,6+2) 14.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12.由-π2+2k π≤2x ≤π2+2k π,k ∈Z,可得-π4+k π≤x ≤π4+k π,k ∈Z ;由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z.所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z);单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32.由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+3bc =b 2+c 2≥2bc , 即bc ≤2+3,且当b =c 时等号成立.因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。

正弦定理和余弦定理专题试题及答案

正弦定理和余弦定理专题试题及答案

正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12 B .1 C.3 D .24.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π25.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19B .13C .1D .726.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1B . 2C . 3D .37.在△ABC 中,若A=,B=,BC=3,则AC=( )A. B. C.2D.48.在△ABC 中,若a 2+b 2<c 2,则△ABC 的形状是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.已知△ABC 的内角A,B,C 的对边分别为a,b,c,且=,则B= ( ) A.B. C. D.10.在△ABC 中,角A,B,C 所对的边长分别为a,b,c.若C=120°,c=a,则 ( )A.a>bB.a<bC.a=bD.a 与b 的大小关系不能确定11.在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC =的面积为________.12.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.13.△ABC 中,点D 是BC 上的点,AD 平分∠BAC,BD=2DC. (1)求.(2)若∠BAC=60°,求B.14.在△ABC 中,角A,B,C 的对边分别为a,b,c,且bcosC=3acosB-ccosB. (1)求cosB 的值. (2)若·=2,且b=2,求a 和c 的值.15.如图,在△ABC 中,点P 在BC 边上,∠PAC =60°,PC =2,AP +AC =4.(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .16.在△ABC 中,角A ,B ,C 的对边分别是ɑ,b ,c ,且b 2=ɑc =ɑ2-c 2+bc. (1)求bsin Bc的值; (2)试判断△ABC 的形状,并说明理由.正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案:C2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定 解析:由正弦定理得b sin B =csin C,∴sin B =bsin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在. 答案:C3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12B .1 C. 3 D .2 解析:∵ɑ2=b 2+c 2-bc ,∴cos A =12,∴A =π3,又bc =4,∴△ABC 的面积为12bcsin A =3,故选C.答案:C4.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π2解析:根据题意结合正弦定理, 得sin Bsin A =3sin Acos B. 因为sin A ≠0,所以sin B =3cos B , 即sin B cos B =tan B =3,所以B =π3. 答案:C5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2A sin 2A的值为( )A .-19B .13C .1D .72解析:由正弦定理可得2sin 2B -sin 2A sin 2A =2⎝ ⎛⎭⎪⎫sinB sin A 2-1=2⎝ ⎛⎭⎪⎫b a 2-1,因为3a =2b ,所以b a =32,所以2sin 2B -sin 2A sin 2A =2×⎝ ⎛⎭⎪⎫322-1=72。

习题课:正弦定理和余弦定理(A3)

习题课:正弦定理和余弦定理(A3)

鸡西市第十九中学学案
(2)数列:1,12,13,14,1
5
,…
n
1
2 3 4 a n 1 12
13
14
①用公式法表示:a n = . ②用列表法表示:
③用图象法表示为(在下面坐标系中绘出):
探究点三 数列的通项公式
问题 什么叫做数列的通项公式?谈谈你对数列通项公式的理解?答 如果数列{a n }的第n 项a n 与序号数列{a n }的通项公式.和函数不一定有解析式一样,并不是所有的数列都有通项公式.一个数列
的通项公式不唯一,可以有不同的表现形式,=⎩
⎪⎨⎪⎧
1(n 为奇数),-1(n 为偶数). 探究 根据所给数列的前几项求其通项公式时,需仔细观察数列的特征,并进行联想、转化、归纳,同时要熟悉一些常见数列的通项公式.下表中的一些基本数列,你能准确快速地写出它们的通项公式吗?。

正弦定理和余弦定理专题讲练

正弦定理和余弦定理专题讲练

解析
由两直线平行可得 bcosB-acosA=0,由正弦定
1 1 理可知 sinBcosB-sinAcosA=0,即2sin2A=2sin2B,又 A、 B∈(0,π),且 A+B∈(0,π),所以 2A=2B 或 2A+2B=π, π 即 A=B 或 A+B=2.若 A=B,则 a=b,cosA=cosB,此时 π 两直线重合,不符合题意,舍去,故 A+B=2,则△ABC 是直角三角形,故选 C.
3 1 2 3 2 sinBcosB+2sin B=4, 3 1 3 4 sin2B+4(1-cos2B)=4,
π 3 1 2 B - sin2 B - cos2 B = 1 ,∴ sin =1. 6 2 2
π π 7π 又∵-6<2B-6< 6 , π π π ∴2B-6=2,即 B=3. π ∴C=3,也就是△ABC 为等边三角形.故选 A.

5.在△ABC 中,A,B,C 是三角形的三个内角,a,b, c 是三个内角对应的三边,已知 b2+c2=a2+bc.若 sinBsinC 3 =4,△ABC 的形状( A.等边三角形 C.钝角三角形 ) B.不含 60° 的等腰三角形 D.直角三角形
解析
在 △ ABC 中 , 由 余 弦 定 理 , 可 得 cosA =
全国名校高考数学复习优质专题汇编(附详解)
正弦定理和余弦定理专题讲练
[重点保分 两级优选练] A级 一、选择题 1.(2017· 长沙模拟)在△ABC 中,角 A,B,C 所对的边 分别为 a,b,c.若 a= 13,b=3,A=60° ,则边 c=( A.1 B.2 C.4 D.6 解析 a2=c2+b2-2cbcosA⇒13=c2+9-6ccos60° ,即

3-6第六节 正弦定理和余弦定理练习题(2015年高考总复习)

3-6第六节 正弦定理和余弦定理练习题(2015年高考总复习)

第六节 正弦定理和余弦定理时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.(2013·北京卷)在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15B.59C.53D .1解析 利用a sin A =bsin B 代入计算即可. 答案 B2.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定解析 ∵sin 2A +sin 2B <sin 2C ,∴a 2+b 2<c 2. cos C =a 2+b 2-c 22ab <0,∴C 为钝角. 答案 C3.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1D.23解析 由(a +b )2-c 2=4,得a 2+b 2-c 2+2ab =4.① 由余弦定理得a 2+b 2-c 2=2ab cos C =2ab cos60°=ab ,②将②代入①得ab +2ab =4,即ab =43. 答案 A4.(2013·新课标全国卷Ⅰ)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5解析 23cos 2A +cos2A =23cos 2A +2cos 2A -1=0,所以cos 2A =125,因为A 是锐角,所以cos A =15,由余弦定理得49=36+b 2-2×6b ×cos A ,解得b =5或b =-135(舍去),故选D.答案 D5.(2013·新课标全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为( )A .23+2 B.3+1 C .23-2D.3-1解析 由正弦定理得c sin C =bsin B ⇒c =2×2212=22,又sin A =sin(B +C )=sin(π6+π4)=6+24,所以三角形面积为S =12bc sin A =12×2×22×6+24=3+1,故选B.答案 B6.(2014·湖南五市十校联考)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对边的边长,若cos A +sin A -2cos B +sin B =0,则a +b c 的值是( )A .1 B. 2 C. 3D .2解析 (cos A +sin A )(cos B +sin B )=2,cos A cos B +cos A sin B +sin A cos B +sin A sin B =cos(A -B )+sin(A +B )=2,cos(A -B )+sin C =2.所以cos(A -B )=1,sin C =1,所以A -B =0且C =90°,所以A =B =45°,该三角形为等腰直角三角形,所以a +bc = 2.答案 B二、填空题(本大题共3小题,每小题5分,共15分)7.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________. 解析 由余弦定理可得cos B =22+c 2-b 22×2c =-14,又b +c =7,从而cos B =22+(7-b )2-b 22×2×(7-b ),化简得15b =60,解得b =4.答案 48.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.解析 由(a +b -c )(a +b +c )=ab ,得a 2+b 2+2ab -c 2=ab ,则a 2+b 2-c 2=-ab ,故cos C =a 2+b 2-c 22ab =-ab 2ab =-12,又C 是三角形的内角,所以C =2π3.答案 2π39.(2013·福建卷)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.解析 ∵sin ∠BAC =sin(90°+∠BAD ) =cos ∠BAD =223,∴BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD =18+9-2×92×223=3.∴BD = 3. 答案3三、解答题(本大题共3小题,每小题10分,共30分) 10.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2+c 2=a 2+bc .(1)求角A 的大小;(2)若sin B ·sin C =sin 2A ,试判断△ABC 的形状. 解 (1)由已知得cos A =b 2+c 2-a 22bc =bc 2bc =12. 又角A 是△ABC 的内角,∴A =π3. (2)由正弦定理,得bc =a 2, 又b 2+c 2=a 2+bc ,∴b 2+c 2=2bc . ∴(b -c )2=0,即b =c .又A =π3,∴△ABC 是等边三角形.11.(2013·北京卷)在△ABC 中,a =3,b =26,∠B =2∠A . (Ⅰ)求cos A 的值; (Ⅱ)求c 的值.解 (Ⅰ)因为a =3,b =26,∠B =2∠A ,所以在△ABC 中,由正弦定理得3sin A =26sin2A . 所以2sin A cos A sin A =263.故cos A =63.(Ⅱ)由(Ⅰ)知cos A =63,所以sin A =1-cos 2A =33. 又∠B =2∠A ,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =223.在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =539.所以c =a sin C sin A =5.12.(2014·南昌模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知sin C +cos C =1-sin C 2.(1)求sin C 的值;(2)若a 2+b 2=4(a +b )-8,求边c 的值. 解 (1)由已知得sin C +sin C2=1-cos C , ∴sin C 2(2cos C 2+1)=2sin 2C 2.由sin C 2≠0,得2cos C 2+1=2sin C 2, ∴sin C 2-cos C 2=12.两边平方,得1-sin C =14,∴sin C =34. (2)由sin C 2-cos C 2=12>0,得π4<C 2<π2, 即π2<C <π,则由sin C =34得cos C =-74. 由a 2+b 2=4(a +b )-8得(a -2)2+(b -2)2=0, 得a =2,b =2.由余弦定理得c 2=a 2+b 2-2ab cos C =8+27, 所以c =7+1.。

一轮复习第30讲 正弦定理和余弦定理的应用

一轮复习第30讲 正弦定理和余弦定理的应用
[总结反思](1)先明确题中所给各个角的含义,然后分析题意,分析已知和所求,再根据题意画出正确的示意图,这是最关键和最主要的一步.(2)将实际问题转化为可用数学方法解决的问题后,再确定使用正弦定理还是余弦定理解决问题.
课堂考点探究
变式题 (1)海轮“和谐号”从A处以21海里/时的速度出发,海轮“奋斗号”在A处北偏东45°方向且与A相距10海里的C处沿南偏东75°的方向以9海里/时的速度行驶,则海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为 小时.
【备选理由】例1是测量距离的问题;例2是测量高度的问题;例3是测量角度的问题.作为对前面例题的补充,希望能提高学生的解题能力.
教师备用习题
例1 [配例1使用] 如图,某工程队将从A到D修建一条隧道,测量员测得一些数据如图所示(A,B,C,D在同一水平面内),则A,D间的距离为( ) A. km B. kmC. km D. km
5.某快递公司在某市的三个门店A,B,C分别位于一个三角形的三个顶点处,其中门店A,B与门店C都相距a km,而门店A位于门店C的北偏东50°方向上,门店B位于门店C的北偏西70°方向上,则门店A,B之间的距离为 km.
课前基础巩固
a
[解析]如图所示,依题意知CA=CB=a km,∠ACB=50°+70°=120°,则A=B=30°,由正弦定理得AB==a(km).
课堂考点探究
探究点三 测量角度问题
[思路点拨]设所需时间为t小时,用t表示出AB和CB,在△ABC中应用余弦定理可求出t,再用正弦定理可求出∠CAB.
课堂考点探究
解:如图所示,设所需时间为t小时,则AB=10t海里,CB=10t海里,在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC·cos 120°,即(10t)2=102+(10t)2-2×10× 10tcos 120°,整理得2t2-t-1=0,解得t=1或t=-(舍去),所以舰艇需1小时追上渔船.此时AB=10海里,CB=10海里,在△ABC中,由正弦定理得=,所以sin∠CAB===,所以∠CAB=30°,所以舰艇航行的方位角为75°.

正余弦定理知识点+经典题(有答案)

正余弦定理知识点+经典题(有答案)

正余弦定理1.定理内容:(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即2sin sin sin a b cR A B C=== (2)余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。

即:2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+-(3)面积定理:111sin sin sin 222ABC S ab C bc A ac B ∆=== 2.利用正余弦定理解三角形: (1)已知一边和两角:(2)已知两边和其中一边的对角: (3)已知两边和它们所夹的角: (4)已知三边:正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .262.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 63.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .26.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C =________,c =________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .46 2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( )D .2 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( )A .60°B .45°C .120°D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )或5π6 或2π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( )A .2B .-2C .4D .-4 8.在△ABC 中,b =3,c =3,B =30°,则a 为( )B .2 3 或2 3 D .29.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________. 12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.14.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .26解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6解析:选=45°,由正弦定理得b =a sin Bsin A =4 6.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .2解析:选=180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1.6.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A , sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或32解析:选=AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .2解析:选D.由正弦定理得6sin120°=2sin C ,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =csin C ,所以sin A =a ·sin C c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.解析:由正弦定理得a sin A =bsin B⇒sin B =b sin A a =4×12433=32.答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43,∴a +c =8 3. 答案:8312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得 2R sin A =2·2R ·sin B ·cos C , 所以sin A =2sin B ·cos C , 即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,C=30°则a +b +csin A +sin B +sin C =________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C=a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin Csin A -2sin B +sin C =2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3. 答案:2316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解. 答案:0 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin ∠ABC sin A =20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得 cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C ,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin 2B =31010.又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255, ∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C 得5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°. 又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =bsin B ,∴b =215. 当∠C =150°时,∠B =150°(舍去). 故边b 的长为215.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .26C .3 6D .46 解析:选A.由余弦定理,得 AC =AB 2+BC 2-2AB ·BC cos B= 42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30° =2, ∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150°解析:选∠A =b 2+c 2-a 22bc =-3bc 2bc =-32, ∵0°<∠A <180°,∴∠A =150°. 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( ) 或5π6 或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B .显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b C .c D .以上均不对解析:选·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c =c .6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4解析:选△ABC =3=12|AB →|·|AC →|·sin A =12×4×1×sin A ,∴sin A =32,又∵△ABC 为锐角三角形,∴cos A =12,∴AB →·AC →=4×1×12=2.8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) B .23 或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3. 在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×1×2×12= 3. 答案:310.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0), ∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12, 又C ∈(0°,180°),∴C =120°. 11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,∴c 2=21或61,∴c =21或61. 答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4, 设a =2k (k >0),则b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =2k 2+4k 2-3k 22×2k ×4k=1116, 同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4). 答案:14∶11∶(-4)13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.解析:∵cos C =13,∴sin C =223.又S △ABC =12ab sin C =43,即12·b ·32·223=43,∴b =2 3.答案:2314.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC 22AB ·BC=49+25-362×7×5=1935,∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935)=-19.答案:-1915.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2 =12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°.答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),则⎩⎪⎨⎪⎧ k 2+k -12-k +12<0k +k -1>k +1⇒2<k <4,∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12.又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2. ∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12)=a 2+b 2+ab =(a +b )2-ab=(23)2-2=10,∴AB =10. 18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意及正弦定理得 AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC=AC +BC 2-2AC ·BC -AB 22AC ·BC=12, 所以C =60°.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值; (2)求sin(2A -π4)的值.解:(1)在△ABC 中,由正弦定理AB sin C =BC sin A ,得AB =sin C sin A BC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC=255, 于是sin A =1-cos 2A =55.从而sin 2A =2sin A cos A =45,cos 2A =cos 2 A -sin 2 A =35.所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b .由2cos A sin B =sin C ,有cos A =sin C 2sin B =c 2b .又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc ,即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,所以b =c ,所以a =b =c ,因此△ABC 为等边三角形.。

正弦定理和余弦定理习题及答案

正弦定理和余弦定理习题及答案

正弦定理和余弦定理测试题一、选择题:1.在△ABC中,a=15,b=10,A=60°,则 cos B=() 22226 A.-3 B.3C.-3D.6 32.在△ABC中,内角A,B,C的对边分别是a,b,c.若 a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°3.E,F是等腰直角△ABC斜边AB上的三平分点,则tan ∠ECF =()16233A. 27B. 3C.3D.4.△中,若-lg c ==-lg 2且∈ 0,π,则△ABC4ABC lg a lgsin B B2的形状是 ()A.等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形5.△ABC中,a、b、c分别为∠A、∠B、∠C的对边,假如a、b、c 成等差数列,∠ B=30°,△ ABC的面积为,那么 b 为()A.1+ 3B.3+ 3 C.3+ 3D.2+ 3 36.已知锐角A是△ABC的一个内角,a、b、c是三角形中各内角的对应边,若 sin2-cos2=1,则 ()A A2A.b+c=2a B .b+c<2a C.b+c≤2a D.b+c≥2a7、若ABC的内角A知足sin 2A 2,则 sin A cos A 3A.153 B.153C.5D.5338、假如A1 B1C1的三个内角的余弦值分别等于A2 B2C2的三个内角的正弦值,则A.A1B1C1和A2B2C2都是锐角三角形B.A1B1C1和A2 B2C2都是钝角三角形C.A1 B1C1是钝角三角形,A2 B2C2是锐角三角形D.A1B1C1是锐角三角形,A2 B2C 2是钝角三角形9、VABC的三内角A,B,C所对边的长分别为 a, b, c 设向量ur r ur rp (a c, b) , q (b a, c a) ,若 p // q ,则角C的大小为(A)(B)(C)(D)233 6210、已知等腰△ABC的腰为底的 2 倍,则顶角A的正切值是()A.3B. 3C.15D.15 28711、ABC的内角 A、B、C的对边分别为a、b、c,若 a、b、c 成等比数列,且 c2a ,则 cosBA .1B.3C .24 44D.2312、在△ABC中,角A、B、C的对边分别为a、b、c, A=, a= 3 , b=1,3则 c=(A)1(B)2(C)3—1(D)3二、填空题:13 、在ABC中,若sin A:sin B :sin C5:7:8 ,则B的大小是___________.14、在 ABC中,已知a 3 3,=,=°,则=.b 4 A30sinB415、在△ ABC中,已知 BC=12,A=60°, B=45°,则 AC=16、已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边 BC上的中线 AD的长为.三、解答题:11 17。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题课 正弦定理和余弦定理 第 2 页 第 3 页 第 4 页 (4)由锐角△ABC可得任意两内角之和大于π2,进而可得sin A>cos B. 知识点二 正弦定理、余弦定理常见形式 1.正弦定理的呈现形式

(1)asin A=bsin B=csin C=2R(其中R是△ABC外接圆的半径); (2)a=bsin Asin B=csin Asin C=2Rsin A; (3)sin A=a2R,sin B=b2R,sin C=c2R. 2.余弦定理的呈现形式 (1)a2=b2+c2-2bccos A, b2=a2+c2-2accos B, c2=a2+b2-2abcos C;

(2)cos A=b2+c2-a22bc, cos B=a2+c2-b22ac, 第 5 页

cos C=a2+b2-c22ab. 特别提醒:解题的关键是根据题目特点,选择恰当的定理及变形,进行边角互化,转化为代数问题或者三角恒等式,再利用三角恒等变形解决问题,中间往往会用到一些三角形的隐含条件,如内角和等. 1.在△ABC中,若sin A=sin B,则A=B.(√) 2.在△ABC中,若sin 2A=sin 2B,则A=B.(×) 3.在△ABC中,若cos A=cos B,则A=B.(√) 类型一 利用正弦、余弦定理转化边角关系 例1 在△ABC中,若c·cos B=b·cos C,cos A

=23,求sin B的值. 考点 正弦、余弦定理与其他知识的综合 题点 正弦、余弦定理与三角变形的综合 第 6 页

解 由c·cos B=b·cos C,结合正弦定理,得 sin Ccos B=sin Bcos C, 故sin(B-C)=0,∵0∴-π∵cos A=23,∴由余弦定理,得3a2=2b2, 再由余弦定理,得cos B=66,

故sin B=306.

引申探究 1.对于本例中的条件,c·cos B=b·cos C,能否使用余弦定理?

解 由余弦定理,得c·a2+c2-b22ac=b·a2+b2-c22ab. 化简得a2+c2-b2=a2+b2-c2, 第 7 页

∴c2=b2,从而c=b. 2.本例中的条件c·cos B=b·cos C的几何意义是什么? 解 如图, 作AD⊥BC,垂足为D. 则c·cos B=BD,b·cos C=CD. ∴ccos B=bcos C的几何意义为边AB,AC在BC边上的射影相等. 反思与感悟 (1)边、角互化是处理三角形边、角混合条件的常用手段. (2)解题时要画出三角形,将题目条件直观化,根据题目条件,灵活选择公式. 跟踪训练1 在△ABC中,已知b2=ac,a2-c2=ac-bc. 第 8 页

(1)求A的大小; (2)求bsin Bc的值. 考点 正弦、余弦定理解三角形综合 题点 正弦、余弦定理解三角形综合 解 (1)由题意知,

cos A=b2+c2-a22bc=ac+bc-ac2bc=12, ∵A∈(0,π),∴A=π3. (2)由b2=ac,得bc=ab, ∴bsin Bc=sin B·ab=sin B·sin Asin B=sin A=32. 类型二 涉及三角形面积的条件转化 例2 在△ABC中,内角A,B,C的对边分别是a,b,c,若sin B=2sin A,且△ABC的面积为a2sin B,则cos B= . 考点 用余弦定理解三角形 第 9 页

题点 逆用面积公式、余弦定理解三角形 答案 14 解析 由sin B=2sin A及正弦定理,得b=2a,由△ABC的面积为a2sin B,得12acsin B=a2sin B,

即c=2a,

∴cos B=a2+c2-b22ac=a24a2=14. 反思与感悟 表示三角形面积,即使确定用两边及其夹角,还要进一步选择好用哪两边夹角. 跟踪训练2 已知△ABC的内角A,B,C的对边分别为a,b,c,面积S=14(a2+b2-c2),则角C为( ) A.135° B.45° C.60° D.120° 考点 用余弦定理解三角形 题点 逆用面积公式、余弦定理解三角形 第 10 页

答案 B 解析 ∵S=14(a2+b2-c2)=12absin C,∴a2+b2-c2=2absin C,∴c2=a2+b2-2absin C.由余弦定理c2=a2+b2-2abcos C,得sin C=cos C. 又C∈(0°,180°), ∴C=45°. 类型三 正弦、余弦定理与三角变形的综合应用 例3 在△ABC中,a,b,c分别为角A,B,C

的对边,4sin2 B+C2-cos 2A=72. (1)求A的度数; (2)若a=3,b+c=3,求b和c的值. 考点 正弦、余弦定理与其他知识的综合 题点 正弦、余弦定理与三角变形的综合

解 (1)由4sin2 B+C2-cos 2A=72及A+B+C= 第 11 页

180°, 得2[1-cos(B+C)]-2cos2A+1=72,

4(1+cos A)-4cos2A=5, 即4cos2A-4cos A+1=0,

∴(2cos A-1)2=0,解得cos A=12. ∵0°

(2)由余弦定理,得cos A=b2+c2-a22bc. ∵cos A=12,∴b2+c2-a22bc=12, 化简并整理,得(b+c)2-a2=3bc, 将a=3,b+c=3代入上式,得bc=2.

则由 b+c=3,bc=2,解得 b=1,c=2或

 b=2,

c=1. 第 12 页

反思与感悟 (1)解三角形的实质是解方程,利用正弦、余弦定理,通过边、角互化,建立未知量的代数方程或三角方程. (2)三角形内角和定理在判断角的范围、转化三角函数、检验所求角是否符合题意等问题中有着重要的作用. (3)三角恒等变形公式是否熟练,对顺利化简非常重要. 跟踪训练3 在△ABC中,角A,B,C所对的边分别是a,b,c,a2+c2-b2=65ac.求2sin2A+C2

+sin 2B的值. 考点 正弦、余弦定理与其他知识的综合 题点 正弦、余弦定理与三角变形的综合

解 由已知得a2+c2-b22ac=35, 第 13 页

所以cos B=35,

sin B=1-cos2B=45, 所以2sin2A+C2+sin 2B=2cos2B2+sin 2B =1+cos B+2sin Bcos B =1+35+2×45×35=6425.

1.在锐角△ABC中,角A,B所对的边分别为a,b,若2asin B=3b,则角A等于( )

A.π12 B.π6 C.π4 D.π3 考点 用正弦定理解三角形 题点 利用正弦定理进行边角互化解三角形 答案 D 解析 在△ABC中,利用正弦定理,得

2sin Asin B=3sin B,∵B∈0,π2,sin B≠0, 第 14 页

∴sin A=32.又∵A为锐角,∴A=π3. 2.在△ABC中,若c=2acos B,则△ABC的形状一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形 考点 判断三角形形状 题点 利用正弦、余弦定理、三角变形判断三角形形状 答案 C 解析 ∵c=2acos B,由正弦定理得, 2cos Bsin A=sin C=sin(A+B), ∴sin Acos B-cos Asin B=0,即sin(A-B)=0, 又∵-π∴△ABC是等腰三角形. 3.在△ABC中,若满足sin2A=sin2B+3sin 第 15 页

B·sin C+sin2C,则A等于( ) A.30° B.60° C.120° D.150° 考点 正弦、余弦定理解三角形综合 题点 正弦、余弦定理解三角形综合 答案 D 解析 设内角A,B,C的对边分别为a,b,c, ∵sin2A=sin2B+3sin B·sin C+sin2C, ∴由正弦定理得a2=b2+c2+3bc,

∴cos A=b2+c2-a22bc=-32, 又∵0°4.在△ABC中,AB=3,AC=2,BC=10,则BA→·AC→= . 考点 余弦定理及其变形应用 题点 余弦定理的变形应用

答案 -32

相关文档
最新文档