雷达目标模拟器(1)
雷达与雷达模拟器

Pr min——接收机门限功率
0——物标有效散射面积(雷达截面积)
2、雷达最大探测范围:标准大气压下,雷达波正常折射 雷达可以探测到的最大距离。
计算公式
R max = 2.23( h1 + h2 ) (n mile)
h1
Antenna radar horizon Target radar horizon
显示器要求。
V 几十V
6、显示器:平面位置显示器(PPI)。显示与测量目标,目标 回波按目标的实际距离和方位显示在荧光屏上; 且配有测量系统供随时测量。
7、雷达电源:把船电变成雷达所需的中频交流电。 400 ~ 2000 Hz
二、船用雷达单元构成:
1、三单元雷达: 收发机(触发电路、发射机、接收机、收发开关) 显示器、天线、中频电源
六、测方位精度
1、影响因素
水平波束宽度 方位同步系统误差 船首标志线的宽度和精度 方位测量设备的误差 船舶摇摆倾斜导致的误差 光点尺寸;视差;罗经航向误差
2、性能标准要求
测量位于屏边缘的目标回波,误差不能超过1; 船首线误差不能超过1;船首线宽度不大于0.5
第五节 雷达假回波
一、间接反射假回波
船上或陆地上的强反射体做为二次辐射源, 在荧屏上形成的假回波
周期T (=1/F)> 根据量程需要选择时间基准 随量程改变:近量程,高F;远量程,低F
4、发射功率:指峰值功率,一般3~75 kW
1)峰值功率 Pt: 在脉冲持续时间内的平均功率
2)平均功率 Pm: 一个脉冲重复周期内输出功率的平均值
3)二者关系 p =p t m tT
R max
p↑→
杂波
A
B
雷达基本工作原理雷达与雷达模拟器

达波且只接收此方向上目标反射的回波,天线的方 向即是目标的方位;
2)天线旋转依次向四周发射雷达波,则可探 知周围目标的方位。
触发器
天线
方位与 船首线
收发机 回波
显示器
ARPA
(1)
微波传输线 发射脉冲
发射机
T/R 触发器
海图平
270
面
雷达不能“感知”目标的背面, 245 因此目标的后沿是不可见的.
距离与方位测量
量程: 12 nm
雷达平面
EBL 180
回波 (在 10 nm) 90
方位标志
固定距标圈 荧光屏边缘
(1)测距原理: 1)物理基础:超高频无线电波在空间等速
直线传播;遇物标良好反射。
2)测距公式:R=C·t/2 (t = t2t1
Байду номын сангаас
天线 回波
接收机
电源
船电
显示器
(2)
回波 船首线 方位
T/R
Receiver
Transmitte r
§1.3 雷达的基本组成部分及作用
• (1)定时器(亦称触发电路、触发脉冲产生器、定时
电路、同步电路)(Trigger):是雷达的指挥中心; 产生周期性的窄脉冲即触发脉冲(定时脉冲、同步脉 冲)。送:
电磁波特性
• 直线传播 • 二次辐射(反射)
目标
雷达目标
• 雷达所能发现的所有目标。
• 船舶 • 岛屿(陆地) • 浮标 • 海浪杂波 • 雨雪杂波
目标信息
• 相对位置(距离和方位) • 真速度 • 真航向 • CPA(Closest Point of Approach) • DCPA(Distance to CPA) • TCPA(TIME to CPA)
数字阵列雷达目标模拟器设计

强大的逻辑资源 、 乘法器资源 、 存储器资源、 高速串行 接 资源 ( R o c k e t I O、 P C I E) 、 I O接 口资 源 , 在F P G A 中
实现 了阵列 雷达 多路 中频 回波数 据 的模 拟 ; 充 分 利用 MP C 8 6 4 0 D多核 、 低功耗 、 实 时计 算 能 力 强 、 与 F P G A
摘 要 : 基 于数 字 阵列 雷达 目标 回 波的特 点 , 构建 了在 线 目标模 拟 器。通 过 实 时计 算 , 实现 对
不 同运动 轨迹 的 多批 目标 以及 目标 环境 的模拟 , 可加 快 系统调 试 以及 系统功 能验 证 。
关键 词 : 雷达 ; 数 字 阵列 ; 多 目标 模拟 器
1所 示
项重要 研 究 方 向¨ 。本 文基 于数 字 阵 列 雷 达 的实
际应用 背景 , 利用 大 规模 集 成 电路技 术 、 计算机技术 、 数 字信 号处 理技术 构建 了在 线多 目标模 拟器 。
1 多 目标 模 拟器 实现 架 构
该模拟 器 的设 计 以 大 规 模 可 编 程 器 件 F P G A ( X C 6 V S X 3 1 5 T ) 和嵌 入式 信号 处理 器 MP C 8 6 4 0 D为核 心处理 器 。在 系统 规 划 时 , 充分利用 F P G A 芯 片 内部
一
及操 控 计算 机 互 联 方便 的特 点 , 在P o w e r P C中实 现 对 多批 模 拟 目标 的距 离 、 方位 、 多普勒 、 相位 、 幅度等参 数 的计 算 , 并将 这些参 数通 过 P C I E传 给 F P G A。 该架 构 的设计 , 使 得 真 实 回波 数 据 与模 拟 目标 数 据 之间 无缝链 接 , 共 享波 控 、 定 时信 息 、 时钟 资源 , 模 拟 回波与 真实 回波数 据 可 叠加 , 共 同参 与 信 号 处理 与 数 据 处理 运算 。多 目标数 字 中频模 拟器 的系统 框 图如 图
新型雷达动态目标模拟器的研究

1 引 言
雷 达 目标模 拟器在 国防、 航空 、 达等 领域有 着广泛 的应用 需求 。高 精度 的雷达 目标 模 拟 雷
器 是 检 验 雷 达 性 能 和 精 度 不 可 或 缺 的 设 备 之 一 , 促 进 我 国 雷 达 研 制 和 制 造 技 术 的 发 展 的 有 是 力 保 障 。 为 检 验 机 载 雷 达 的 性 能 , 们 推 出 了 一 款 新 型 雷 达 动 态 目标 模 拟 器 . 模 拟 器 无 论 在 我 该
维普资讯
雷 达与对抗
20 0 2年
第1 期
5 3
新 型 雷达 动 态 目标模 拟 器 的研究
薛 明华 , 刘 超
( 京 航 空 航 天 大学 电磁 工 程 实 验 室 . 京 10 8 ) 北 北 0 0 3
摘
要 : 论 了 一 款 新 型 的 雷达 动 态 目标 模 拟 器 。 该 模 拟 器 可 对 飞 行 目标 的 距 离 讨
Ab ta t A t ̄ t p a a n m i a g tsm ua o a e n EPLD s ds u s d i hs p p r s r c : F - y eofr d rdy a c tr e i lt rb s d o e i ic s e n t i a e
Re e r h o h w p fRa a n m i r e i u a o s a c n t e Ne Ty e o d rDy a c Ta g tS m lt r
LI Cha U o.XU E i g h a M n —u
( E& M Do yBe i g Un v ri , r n u isa dAeop c ,Be ig 1 0 8 . ia) O n iest y。 Ae o a tc n rs a e i n 0 0 3 Chn j
雷达目标模拟器关键技术

常见于搭配 P CI 总线。这主要是结合其 自身在 扩 展 性 的优 势 上 进 行 的 描述 , 这 种 价 格 不 仅 契
合 了现 代 模 拟 器 的通 用 性 要 求 , 还 能 将 雷 达 目 标 模 拟 器 的性 能 得 到 更 合 理 地 兼 容 处 理 。这 也
多数 的关注 。在多通道的 目标实现上 ,阵 列雷
优异 的散热 性能与可 靠性 的 C P C I 总线基础 的 搭 配 使 得 也 成 为 在 雷 达 目标 模 拟 器 的领 域 拥 有
一
通过对 已有外界 的测试 型号来进 行通道之间的 幅度调频差异来获取通道 的补偿 ,从而确保特 定环境 下的校 正精度 得到修正。这种并不依赖 于外部测试信 号的数据方法获得 了理论上的认 可 ,而算法实现上,则表现 出更为 困难 的劣势 。 因此 ,要 注 定 算 法 实 现 的 过 程 中 ,来 弥 补 误 差 ,
达 通 过 时钟 设 计 来 关 联 同 步 控 制 ,并 保 证 现 有 的板 卡 控 制 与 同 步 影 响 的 时 钟 芯 片 匹配 , 时钟
先 进 的 雷 达 是 衡 量 一 个 国 家 国 防 实 力 的
重要指标 。 雷 达 的 研 制 不 同于 通 信 技 术 的探 索 。
是 其 广 泛 处理 的 结 果 。 2 . 2 D S P 与C P C I 的 雷 达 目标模 拟 器
及 高 性 能 的发 展 过 渡 到 的 中频 雷达 目标模 拟 器 上 ,其 关 键 技 术 也 应 该 围绕 在 这样 的 基础 要 求 上进行展开 。
声呐 的表现上 ,对空域铝箔 的控制 和波束形成 更为精准 的探测 目标 ,以此 获得更多的探测信
息 。这 在 当 时 是 被用 于 军 事 领 域 的 。但 是 区别 于 此 的 同 时 ,在 调整 阵 元 型 号 的 相 位 叠 加 过 程 中 , 能够 降低 副 瓣 而 达 到 其 军 事 目标 。 当然 也 会 对 现 有 的方 向进 行 调 整 。
雷达模拟器工作原理

雷达模拟器工作原理雷达模拟器是一种用于模拟雷达工作原理的设备,它能够在不需要实际雷达设备的情况下,通过软件模拟雷达信号的发射和接收过程。
在航空航天、军事、气象等领域,雷达模拟器被广泛应用于系统设计、性能评估和培训等方面。
雷达模拟器的工作原理可以简单地描述为以下几个步骤:发射信号、接收反射信号、处理信号和显示结果。
首先,雷达模拟器会发射一束电磁波信号,这个信号可以是射频信号、微波信号或者其他频段的信号。
发射信号的方式可以是脉冲式、连续波式或者其他方式。
发射的信号会遇到目标物体,并被目标物体反射回来,形成反射信号。
这个反射信号会被雷达模拟器的接收系统接收到。
接收系统通常由天线、前端接收器和信号处理器组成。
天线用于接收反射信号并将其转换成电信号,前端接收器负责放大接收到的信号,信号处理器用于对接收到的信号进行处理。
在信号处理阶段,雷达模拟器会对接收到的信号进行滤波、放大、去噪等处理,以提取出目标物体的信息。
处理后的信号可以包括目标物体的位置、速度、距离等信息。
这些信息可以用来评估雷达系统的性能,比如探测距离、分辨率、抗干扰性能等。
雷达模拟器会将处理后的结果显示出来。
显示方式可以是数字显示、图形显示或者其他方式。
显示结果可以反映目标物体的位置、运动轨迹、散射截面等信息。
通过对显示结果的观察和分析,可以评估雷达系统的性能,并进行改进和优化。
除了上述的基本工作原理,雷达模拟器还可以具备一些高级功能,比如多目标模拟、多波束模拟、干扰模拟等。
多目标模拟可以模拟多个目标物体出现在雷达覆盖区域内的情况,以评估雷达系统的多目标跟踪能力。
多波束模拟可以模拟雷达系统具备多个波束,以评估雷达系统的覆盖范围和分辨率。
干扰模拟可以模拟雷达系统受到干扰的情况,以评估雷达系统的抗干扰能力。
雷达模拟器是一种用于模拟雷达工作原理的设备,它能够通过软件模拟雷达信号的发射和接收过程。
通过对模拟结果的观察和分析,可以评估雷达系统的性能,并进行改进和优化。
福建船政职院雷达操作与模拟器课件02自动雷达标绘仪(ARPA)-1绪论

SHM
两船保速保向时预计的视运动
VR
B
VT
A(目标)
V0
D
CPA C
DCPA O (本船) 图2-1-1人工标绘图
SHM 两船保速保向时预计的视运动
VR
B
VT
A(目标)
V0
D
CPA C
DCPA O (本船) 图2-1-1人工标绘图
人工标绘进行避碰的步骤
1、选择要进行标绘的相遇船回波(A) 2、监视该目标回波的移动 3、隔一定时间间隔(6min)标出B点 4、作图并求碰撞及航行参数 ① 碰撞参数: DCPA:最接近会遇距离 TCPA:到达最接近点的时间
② 航行参数:
◆目标船相对速度(REL SPD)、相对航向( REL CRS)、真速度(TRUE SPD)和真航向(TRUE CRS) 5、CPA TCPA安全界限值( MINCPA 、 MINTCPA ) ① MINCPA(CPA安全界限值) 允许目标安全通过本船所需要求的最小会遇距 ② MINTCPA(TCPA的安全界限值) 允许目标到达CPA点的最小时间
第一章 绪 论
第一章 绪论
1-1 普通船用雷达用于船舶避碰的局限性 1-2 ARPA系统的组成及各部分作用 1-3 ARPA系统的分类
第一章 教学目的要求
1、掌握普通船用雷达用于船舶避碰的方法 2、充分认识普通船用雷达用于船舶避碰的
局限性 3、了解ARPA的发展概况和基本类型 4、掌握ARPA系统的组成及各部分作用 5、 知道ARPA有哪些输入输出信息
人工标绘的局限性
1)费时(3——7分钟)、麻烦 2)不直观、不准确 3)难以应付复杂局面 2、真运动雷达用于船舶避碰
二、普通船用雷达用于船舶避碰的局限性
雷达多目标模拟器DRFM单元设计

雷达多目标模拟器DRFM单元设计王展;李双勋;刘海涛;楼生强;战永红【期刊名称】《计算机测量与控制》【年(卷),期】2009(017)008【摘要】研究了辐射式雷达多目标模拟测试系统中,数字射频存储(DRFM)单元的设计问题,首先根据辐射式雷达多目标模拟测试系统的设计要求,提出一种基于高性能FPGA和软件无线电(SDR)技术的数字射频存储单元设计方法;然后着重阐述了数字射频存储单元的设计思路,给出了原理样机的设计方案,并对系统中雷达模拟目标的距离误差进行了理论分析,得到距离误差计算公式;最后通过实验给出实际测试结果,结果表明所设计DRFM单元满足设计指标要求.【总页数】4页(P1616-1619)【作者】王展;李双勋;刘海涛;楼生强;战永红【作者单位】长沙国防科技大学电子科学与工程学院信号处理实验室,湖南,长沙,410073;长沙国防科技大学电子科学与工程学院信号处理实验室,湖南,长沙,410073;长沙国防科技大学电子科学与工程学院信号处理实验室,湖南,长沙,410073;长沙国防科技大学电子科学与工程学院信号处理实验室,湖南,长沙,410073;长沙国防科技大学电子科学与工程学院信号处理实验室,湖南,长沙,410073【正文语种】中文【中图分类】TN955【相关文献】1.一种基于DRFM和数字信道化技术的宽带雷达目标干扰模拟器设计 [J], 高山;翟龙军;曲洪东;姜志森2.基于DRFM与DDS的汽车雷达目标模拟器设计 [J], 郭剑鹰;丁德锋;陈晓;朱明年3.基于FPGA雷达多目标模拟器DRFM设计与实现 [J], 刘魁;颜学龙;关世友;赵志强4.基于DRFM技术的雷达模拟器研究设计 [J], 葛尧5.基于DRFM的雷达目标回波信号模拟器设计 [J], 王永青因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人机交互 控制机
I路
计算系统调 制函数 Q路
雷达发射 信号
I路 卷积
Q路
D/A+LPF
视频输出
射频输出
上变频
目录
雷达目标模拟器
一、雷达原理简述 二、雷达目标模拟器模拟信号形式 三、雷达模拟器的实现技术 四、SAR雷达目标模拟器回波信号举例
四、SAR雷达目标模拟器回波信号举例
早期雷达
现代雷达
“无线电探测与测距” “无线电探测、定位、测轨和识别”
普通测距雷达,目标静止时发射信号和回波的时间间隔
r c
2
实际加入噪声的回波:
实现了雷达测距
二、雷达目标模拟器模拟信号形式:发射信号形式LFM
早期雷达: 脉冲信号
现代雷达: LFM
时宽 带宽
1
tB
发射功率 距离分辨率
r
c 2B
时宽和带宽的矛盾
PRT
s(t) a(t) exp[ j(2fct K rt 2 )]
雷达目标模拟器
高鑫 2010-1-15
目录
雷达目标模拟器
一、雷达原理简述 二、雷达目标模拟器模拟信号形式 三、雷达模拟器的实现技术 四、SAR雷达目标模拟器回波信号举例
一、雷达原理简述
雷达: 利用目标对电磁波的反射(或称为二次散射)现 象来发现目标并测定其位置的装置。 ——发射信号
——散射 ——接收目标散射回波
系统参数
回波数据
回波数据
模拟数据
RF信号
人机交互 计算机软件 硬盘 高速总线 D/A+LPF 上变频
3.微机+模拟器DSP组合 数字信号处理(DSP)芯片由于具有特殊的结构、高效的计算能力 已经在雷达领域得到广泛的应用。绝大部分雷达信号模拟器采 用“微机+模拟器DSP组合”方案,信号模拟过程分为数据库产 生、数据传输、数据实时再处理以及数据输出。
出去。采用此方法的雷达信号模拟器,在主控计算机控制下,
将不同场合下雷达环境数据通过DRFM录取下来,然后在作仿真
试验时将其重放。
RF信号
RF信号
╳
A/D
RAM
D/A
╳
控制
控制 控制器
控制
控制
上变频
本振
下变频
2.微机+D/A插卡 主控计算机计算目标、杂波、干扰强度,形成数据文件,并通 过DMA数据直接输出至D/A插卡,形成视频模拟信号。视频模拟 信号再通过上变频模块输出中频或射频模拟信号。该方案受DMA 数据传输率的限制,当模拟信号路数多时,模拟信号时间量化 变粗,因此不适合模拟目标数目多,雷达环境复杂的场合。由 于其方案实现结构简单、成本低的特点适合单脉冲体制简单类 型的雷达测试和调试。
高频信号(G)
回波的频率特点
发射机
天
目
收发转换
线
标
接收机组成
噪声
接收机 高频信号(G)
高频信号 G
中频信号
500M 混频器
检波器
视频 I 路信号 30M以下 视频 Q 路信号 30M以下
本振
二、PRT雷达目标模拟器模拟信号形式:信号特征
发射信号:
接收回波:
1
2
3
4
1
2
3
...... n
2r c
2r
c
雷达性能和指标的测试
外场测试
耗费大量的人力、物力、财力,且易受天气状况影响,延长研制周期
雷达目标模拟器
经济、灵活、可重复性 目标回波的模拟
目录
雷达目标模拟器
一、雷达原理简述 二、雷达目标模拟器模拟信号形式 三、雷达模拟器的实现技术 四、SAR雷达目标模拟器回波信号举例
二、雷达目标模拟器模拟信号形式:频率特点
Radio Detection and Ranging缩写词 RADAR的音译
目标在哪
目标在哪,是什么样
分辨率较低 视为点目标
分辨率较高 视为体目标
分辨率概念示意图 D
方向分辨率
距离分辨率
z
C
y
SAR雷达回波形式
Va:(方位向取6个脉冲时间点,距离向取1024 个采样点)
tB
B Kr
大“时宽-带宽积”
目录
雷达目标模拟器
一、雷达原理简述 二、雷达目标模拟器模拟信号形式 三、雷达模拟器的实现技术 四、SAR雷达目标模拟器回波信号举例
三、雷达模拟器的实现技术
1.微机+DRFM
数字射频存储(DRFM)将接收到的雷达射频信号的相位(频率)信
息实时存储起来,经过一段时间延迟与变换后,再向雷达发射