核酸降解与核苷酸代谢

合集下载

生物化学第十一章

生物化学第十一章

氨甲酰磷酸
嘧啶核苷酸合成途径
2.胞苷酸的合成:
3.脱氧胸腺嘧啶核苷酸的合成:
嘧啶核苷酸的补救合成途径:
补救合成途径: 由分解代谢产生的嘧啶/ 嘧啶核苷转变为嘧啶核苷酸的过程称为补 救合成途径(salvage pathway)。以 嘧啶核苷的补救合成途径较重要。
嘧啶核苷酸补救合成途径
尿嘧啶+PRPP UMP+PPi
二、嘌呤类似物和嘧啶类似物
1、嘌呤类似物主要有6-巯基嘌呤(6-MP)、2, 6-二氨基嘌呤、8-氮鸟嘌呤等。 2、嘧啶类似物主要有5-氟尿嘧啶(5-FU)和6氮尿嘧啶(6-AU)等。
6-巯基嘌呤(6-MP)的作用机理是什么?
6-MP其结构与次黄嘌呤类似(C6上巯基取代了羟 基),它可进入体内竞争性地抑制次黄嘌呤-鸟 嘌呤磷酸核糖转移酶,抑制了IMP 和GMP 的补 救合成。 6-MP还可经磷酸核糖化而转变为6-巯基嘌呤核苷 酸,从而抑制IMP 转变成AMP 和GMP。 6-巯基嘌呤核苷酸还可反馈抑制嘌呤核苷酸从头 合成的调节酶(磷酸核糖酰胺转移酶),使 PRA合成受阻,从而干扰IMP、AMP 和GMP 的合成。
限制性核酸内切酶:分为3种类型
(1)Ⅰ类:由3种不同亚基构成,兼具修饰酶活 性和依赖于ATP 的限制性内切酶活性,需要 Mg2+、S-腺苷甲硫氨酸及ATP的参与。复杂的 多功能酶,在基因工程上的应用价值不大。 (2)Ⅱ类:相对分子量较小,能识别双链DNA 上特异的核苷酸序列,底物作用的专一性强, 且识别序列与切断序列相一致,在分子生物学 中应用最广。 (3)Ⅲ类:只由一条肽链构成,仅需Mg2+,切 割DNA 特异性最强。
Recognize site
1-1.5kb

核酸的降解名词解释

核酸的降解名词解释

核酸的降解名词解释1. 引言自20世纪的中叶以来,核酸的降解研究已经成为生物科学和医学领域中的重要研究方向之一。

核酸是细胞中的基本生物大分子,其重要性在于其携带和传递遗传信息的作用。

本文将对核酸的降解相关名词进行解释,以帮助读者对该领域的知识有更深入的理解。

2. 核酸核酸是由核苷酸单体通过磷酸二酯键连接而成的生物大分子。

核苷酸分为两类:脱氧核苷酸(DNA)和核苷酸(RNA)。

DNA是遗传物质的主要组成部分,由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶)组成,携带着生物体的遗传信息。

RNA则在遗传信息的转录和翻译中发挥重要作用。

3. 核酸降解核酸的降解是指核酸大分子在生物体内或外受到一系列物理化学条件的作用而发生分解的过程。

核酸降解可分为内源性和外源性两种。

内源性核酸降解是生物体内部产生的降解过程,它在维持细胞正常的代谢和功能调控中起到重要作用。

外源性核酸降解则是指核酸大分子在体外受到物理、化学、酶等条件的作用而发生降解。

4. 核酸酶核酸酶是催化核酸降解的酶类,可将核酸大分子降解为较小的核苷酸、核苷和碱基。

核酸酶分为内切酶和外切酶两类。

内切酶能够在核酸链的内部切割磷酸二酯键,将核酸分解为多个较小的片段。

外切酶则能够从核酸的末端开始切割,逐渐将核酸分解为单个核苷酸或碱基。

5. 碱基酶碱基酶是一类特殊的核酸酶,其作用是催化核酸分子中的碱基的去除。

碱基酶能够将核酸分子中的碱基切除,并使剩余的磷酸二酯键断裂。

6. 核酸降解产物核酸降解的产物可以是较小的核苷酸、碱基和核苷分子。

这些降解产物可被细胞进一步利用,例如用于合成新的核酸、合成蛋白质或供能。

7. 环境因素对核酸降解的影响核酸降解受到许多环境因素的影响,包括温度、pH值、金属离子和酶等。

温度对核酸降解速率有显著影响,通常降解速率随温度的升高而增加。

同时,酸性或碱性条件下,核酸降解速率也会有所不同。

金属离子能够促进或抑制核酸降解的过程,因为它们可以与酶或核酸分子中的功能基团发生配位作用。

核苷酸代谢

核苷酸代谢

(三)嘧啶核苷酸合成的调控
三个酶受终产物的反馈抑制:氨甲酰磷酸合成酶Ⅱ
1)氨甲酰磷酸合成酶Ⅱ受 UMP抑制,影响UMP、CTP 合成。
ATCase
2)ATCase受CTP抑制;影响 UMP、CTP合成。
3)CTP合成酶受CTP抑制,只 影响CTP合成。
CTP合成酶
不同生物关键酶不同
都受终产物反馈抑制,但具体机制不同: 动物:氨甲酰磷酸合成酶Ⅱ
HGPRT缺陷的男性儿童表现为一种自毁容貌综合症 (Lesch-Nyhan Syndrome ) ,为先天性遗传疾病(缺 乏HGPRT),行为对立,侵略性强,自咬手指、脚趾、 嘴唇等,智力低下。
3、生理意义:
节省能量和氨基酸的消耗; 某些器官(脑、骨髓等)因酶的缺乏,
只能进行补救途径合成。
①核糖核苷酸还原酶(RR)含R1和R2蛋白; ②硫氧还蛋白(T)含巯基; ③硫氧还蛋白还原酶(TR)催化氧化型T的还
原,FAD为辅基。
酶体系催化反应由NADPH提供氢: NADPH →TR→T→RR→核糖核苷酸还原→ 脱氧核糖核苷酸。
孤电子转移
3’-自由基核苷酸形成
脱氧核苷酸形成
孤电子转移
2’-脱氧3’-自由基核苷酸形成
三、嘧啶的分解:
在肝中进行,分解产物均易溶于水。
§12 -2 核苷酸的生物合成
基本途径: 1、“从无到有”途径(de novo synthesis)
利用简单化合物,主要在肝中进行 2、补救途径(salvage)
替补途径,利用核苷酸分解产物,在 脑、骨髓中进行
2. 从头合成途径的三个特征:
1)参与从头合成途径的酶在细胞中以庞大 的多酶融合体出现;
1、经碱基(嘧啶或嘌呤)核苷磷酸化酶催化

生物化学之核苷酸代谢

生物化学之核苷酸代谢

生尿酸,同时补救途径不通会引起嘌呤核苷
酸从头合成速度增加,更加大量累积尿酸, 从而导致肾结石和痛风
3、脱氧核苷酸的生成
O P -P O N 核糖核苷酸还原酶 OH
硫 化 原 白 氧 还 蛋
CH2
O P -P CH2 O
N
OH NDP
SH
硫 化 原 白 氧 还 蛋
OH S S
H dNDP
SH 硫氧化还原蛋白还原酶 NADP NADP H
次黄嘌呤核苷酸 IMP
ATP和GTP的生成
HOOCCH CHCOOH 2 O C C N O OH OH C N N CH GTP Asp H N P O CH2 HC NH C C N O OH OH OH 腺苷酸代琥珀酸 OH C N N CH 延胡索酸 HC P O CH2 N O C N CH
Glu
P O CH2 OH
OH
OH
XMP
GMP
(Xanthosine monophosphate)
嘌呤核苷酸从头合成的调节
原则之一:满足需求,防止供过于求。
(-) (+) R-5-P
PRPP合 成 酶
(-) (+) PRPP (-) PAR (-) IMP XMP (-) GMP GDP GTP
次黄嘌呤
6-巯 基 嘌 呤 6MP (6-mercaptopurine)
SH
OH H N HC P O CH2 OH C C N O OH C N N CH H N HC P O CH2 OH
C C N O OH C N N CH
次 黄 嘌 呤 核 苷 酸 (IMP)
6-巯 基 嘌 呤 核 苷 酸
嘌呤核苷酸的抗代谢物-2

生物化学第十章核酸的酶促降解和核苷酸代谢

生物化学第十章核酸的酶促降解和核苷酸代谢

①腺苷酸代琥珀酸合成酶 ③IMP脱氢酶
②腺苷酸代琥珀酸裂医解学p酶pt ④GMP合成酶
19
• 嘌呤核苷酸从头合成特点
• 嘌呤核苷酸是在磷酸核糖分子上逐步合成的。 • IMP的合成需5个ATP,6个高能磷酸键。
AMP或GMP的合成又需1个ATP。
医学ppt
20
(3)嘌呤核苷酸合成补救途径
参与补救合成的酶:
医学ppt
27
(4). dTMP或TMP的生成
脱氧核苷酸还原酶
UDP
dUDP
CTP CDP dCDP dCMP
TMP合酶
dUMP
N5, N10-甲烯FH4
FH2
FH4 FH2还原酶 NADP+ NADPH+H+
脱氧胸苷一磷酸
dTMP
医学ppt
28
(5) 嘧啶核苷酸的补救合成
嘧啶 + PRPP 嘧啶磷酸核糖转移酶 磷酸嘧啶核苷 + PPi
六核苷酸,粘端切口 六核苷酸,粘端切口
Sal I
‥ ‥G T C G A C ‥‥ ‥ ‥C A G C T G ‥‥
六核苷酸,粘端切口
Sma I
‥ ‥
‥C ‥G
C G
CG GC
G C
G C
‥‥ ‥‥医学ppt
六核苷酸,平端切口 9
限制性内切酶的命名和意义
例:Eco R I,这是从大肠杆菌(Ecoli)R菌珠中分离出的一种限
AMP
AT医P学ppt ADP
21
•补救合成的生理意义
补救合成节省从头合成时的能量和一些氨 基酸的消耗。
体内某些组织器官,如脑、骨髓等只能进 行补救合成。
医学ppt

生物化学核苷酸代谢

生物化学核苷酸代谢

生物化学核苷酸代谢核苷酸代谢是生物体内重要的生化过程,涉及到核酸合成、降解、修复、信号传递等多个方面。

核苷酸由碱基、糖和磷酸组成,其代谢在细胞中是高度调控和平衡的。

核苷酸合成主要通过转氨基树酸循环和核苷酸分子的合成反应进行。

在转氨基树酸循环中,核苷酸前体物质首先被转化为碱基,然后与多磷酸核糖(PRPP)反应生成核苷酸。

在核苷酸分子的合成过程中,磷酸化反应是关键步骤。

首先,核苷酸前体物质通过化学反应与其他辅助分子发生磷酸化,生成亲核试剂;然后亲核试剂与其他原子或分子发生进一步反应,最终形成核苷酸分子。

核苷酸降解是核酸的代谢终点。

核苷酸降解主要通过核苷酸酶和核酸酶的作用进行。

核苷酸首先被分解为核苷和糖酸,然后再被分解为碱基、磷酸和其他代谢产物。

核苷酸的降解产物在细胞中可以被重新利用,参与核酸合成或其他代谢途径。

核苷酸修复是为了纠正核苷酸中的损伤或错误。

核酸在细胞中会受到化学、物理和生物性的损伤。

这些损伤可能导致突变和疾病的发生。

核苷酸修复过程中的多个酶参与到检测和修复核酸中的损伤。

例如,碱基切割酶可以识别含有损伤碱基的DNA链,然后切割并去除这些损伤碱基。

然后,DNA聚合酶、连接酶和重排序酶等修复酶可以填补被切割的DNA链,并确保修复后的DNA链的完整性。

核苷酸在细胞中还扮演着重要的信号传递和调控作用。

一些核苷酸可以作为二级信使,传递细胞内外的信号,调控细胞的生理和代谢过程。

例如,环磷酸腺苷(cAMP)和磷腺苷酸(cGMP)是细胞内常见的二级信使,它们通过激活蛋白激酶A、蛋白激酶G等酶的信号通路,参与细胞的增殖、分化、凋亡等生理过程。

总结起来,核苷酸代谢是生物体内重要的生化过程,它涉及核酸的合成、降解、修复以及信号传递等多个方面。

核苷酸代谢的平衡和调控对细胞活动的正常进行至关重要,异常的核苷酸代谢可能导致疾病的发生。

因此,对核苷酸代谢的深入研究,有助于揭示生命活动的机制和疾病发生的原因,也为药物研发和治疗提供了理论基础。

核苷酸代谢

核苷酸代谢

核苷酸代谢
核苷酸代谢是生物体内一系列生化反应的过程,用于合成和分解核苷酸分子,包括腺嘌呤核苷酸和胞嘌呤核苷酸。

这些核苷酸是DNA 和RNA 的构建单元,同时还在细胞内参与能量转化和信号传递等生物过程。

核苷酸代谢在维持细胞生存和功能中起着重要作用。

核苷酸代谢包括以下主要过程:
1.核苷酸合成:细胞需要合成新的核苷酸来满足DNA 和RNA
的合成需求。

这包括腺嘌呤核苷酸和胞嘌呤核苷酸的合成。

合成的过程需要多个中间产物,如核糖核苷酸、二磷酸核糖核苷酸等。

2.核苷酸降解:细胞需要分解核苷酸来回收核苷酸单体或能量。

核苷酸降解包括核苷酸的酶解和分解成较小的分子,如核苷、碱基、糖和磷酸。

3.核苷酸储存:一些细胞会储存核苷酸以供以后使用,以应对细
胞周期或环境变化。

4.调控:核苷酸代谢受到多种调控机制的调节,包括反馈抑制、
激活、废物排除和信号传递。

这有助于维持核苷酸浓度在细胞内的平衡。

核苷酸代谢与细胞的生长、分裂、DNA 修复、RNA 合成以及能量代谢等过程密切相关。

失调的核苷酸代谢可能会导致遗传疾病,如类风湿性关节炎、DNA损伤修复缺陷疾病、免疫系统疾病等。

因此,核苷酸代谢的研究对于理解生物体内的基本生物学过程和开发相关药
物非常重要。

细胞生物学中的核苷酸代谢途径

细胞生物学中的核苷酸代谢途径

细胞生物学中的核苷酸代谢途径细胞是生物体的基本单位,其中核酸是构成核糖体和DNA序列的关键组成部分。

核酸由核苷酸单元组成,核苷酸代谢是维持细胞正常功能的重要过程。

这一过程涉及到核苷酸的合成、降解和再利用,为了维持细胞正常的功能和稳态,细胞需要控制核苷酸代谢途径的平衡。

本文将探讨细胞生物学中的核苷酸代谢途径,包括核苷酸合成、降解和再利用等方面的内容。

一、核苷酸合成途径核苷酸合成是细胞中核苷酸代谢的重要组成部分,它涉及到细胞中氮代谢途径和葡萄糖代谢途径。

核苷酸的合成途径不同于降解途径,它是通过一系列酶催化的反应来完成的。

首先,核苷酸合成途径需要合成核苷酸的前体物质。

在动物细胞中,核苷酸的合成起始物质包括核碱基、糖和磷酸。

细胞通过葡萄糖、胱氨酸和甲硫氨酸等原料,经过一系列的酶催化反应,合成核苷酸的前体物质。

其次,核苷酸合成途径需要核苷酸的合成酶。

核苷酸的合成酶是完成核苷酸合成的催化剂。

不同类型的核苷酸合成酶以及参与核苷酸合成的酶协同作用,使细胞能够有效地合成各种类型的核苷酸。

最后,核苷酸合成途径需要能量和NADPH供给。

核苷酸的合成需要大量的能量和还原物质NADPH。

细胞通过葡萄糖代谢途径中的糖酵解和线粒体的呼吸链来提供能量和NADPH。

总之,核苷酸合成途径是细胞为了维持正常功能所需的重要过程。

细胞通过合成核苷酸的前体物质、核苷酸的合成酶、能量和还原物质来完成核苷酸的合成过程。

二、核苷酸降解途径核苷酸降解是细胞中的另一个核苷酸代谢途径。

核苷酸的降解途径通常发生在葡萄糖代谢途径的线粒体中。

首先,核苷酸降解途径需要核苷酸酶。

核苷酸酶是完成核苷酸降解的催化剂。

不同类型的核苷酸酶以及参与核苷酸降解的酶协同作用,使细胞能够有效地降解各种类型的核苷酸。

其次,核苷酸降解途径需要核苷酸降解的前体物质。

核苷酸降解会产生一些化合物,如尿素和氨基酸等。

这些化合物可以进一步参与细胞的代谢途径,如氮代谢途径和葡萄糖代谢途径。

最后,核苷酸降解途径还需要能量供给。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档