第3章氨基酸的简介

合集下载

生物化学第3章 氨基酸

生物化学第3章 氨基酸
生物化学 第三章 氨基酸 (amino acid)
一、氨基酸——蛋白质的构件分子
氨基酸(amino acid) :α-氨基酸是一切蛋白质的组成单位。氨基酸是与羧酸 相邻α-碳原子上连有一个氨基,故称α-氨基酸。 利用酸水解、碱水解、酶解可把蛋白质分子水解释放氨基酸。
不变部分(除脯氨酸) 可变部分 L型 α -氨基酸
氨基酸
芳香族氨基酸 Phe、Tyr、Trp 杂环氨基酸 His、Pro
脂肪族氨基酸:一氨基一羧基(中性氨基酸)
甘氨酸
丙氨酸
缬氨酸
亮氨酸
异亮氨酸
脂肪族氨基酸:一氨基一羧基(中性氨基酸):含有羟基
丝氨酸Ser的-OH在生理条件下不解离,但是个极性基团,能与其 他基团形成氢键,常出现在酶的活性中心; 苏氨酸Thr的-OH是仲醇,具有亲水性;
水中心)
极性氨基酸侧链能与水形成氢键,易溶于水 带电荷和极性氨基酸一般位于蛋白表面 蛋白的活性中心:His,Ser,Cys
2.3氨基酸的分类——不常见蛋白质氨基酸
2.4氨基酸的分类——非蛋白质氨基酸
150 多种,不是蛋白质组成,但是有特定生理功能
(1)大多是L型α氨基酸衍生物
(2)有D型氨基酸 (3)还有β-、γ-、δ-氨基酸
/view/e845c4c8a1c7aa00b52acb47.html
用强酸型阳离子交换树脂分离氨基酸
氨基酸与树脂的亲和力取决于:
气液层析
高效液相层析
蛋白质的水解条件及优缺点
第一章糖课后题 第6题
高碘酸及其盐可以定量的氧 化断裂邻二羟基、α-羟基醛等 的碳碳键,产生相应的羰基 化合物。该反应可以用来区 分糖苷是呋喃还是吡喃型的。 侧翼测定直连多糖的相对分 子量和支链淀粉的非还原末 端残基数,即分支数目。

氨基酸种类结构

氨基酸种类结构

氨基酸种类结构
氨基酸是构成蛋白质的基本单位,临床上种类比较多,主要包括赖氨酸、色氨酸、蛋氨酸等。

1、赖氨酸:为碱性必需氨基酸,由于谷物食品中的赖氨酸含量甚低,且在加工过程中易被破坏而缺乏,故称为第一限制性氨基酸。

赖氨酸主要存在于动物性食物和豆类中,谷类食物中赖氨酸含量很低,在促进人体生长发育、增强机体免疫力、抗病毒、促进脂肪氧化、缓解焦虑情绪等方面具有积极的营养学意义。

2、色氨酸:是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在,也是人体中重要的神经递质-5-羟色胺的前体,可用于妊娠期妇女营养补充剂和乳幼儿的特殊奶粉,用于烟酸缺乏症,可作为安神药,可调节精神节律,改善睡眠。

3、蛋氨酸:是含硫必需氨基酸,与生物体内各种含硫化合物的代谢密切相关。

蛋氨酸可利用其所带的甲基,对有毒物或药物进行甲基化起到解毒的作用,可用于防治慢性或急性肝炎、肝硬化等肝脏疾病。

此外常见的氨基酸还包括组氨酸、亮氨酸、异亮氨酸、丙氨酸、谷氨酸等,均具有重要的临床意义。

高三生物氨基酸的知识点

高三生物氨基酸的知识点

高三生物氨基酸的知识点在高三生物学的学习中,氨基酸是一个非常重要的知识点。

氨基酸是构成蛋白质的基本单元,对于理解生命的本质和生物体的各种功能有着重要的作用。

本文将介绍氨基酸的基本结构、分类、功能以及在生物体中的意义。

氨基酸是由一个氨基和一个羧基组成的有机分子。

在自然界中已经发现了20种氨基酸,它们都有着相似的结构特点但又各具特色。

氨基酸的结构包括一个α碳原子、一个氨基基团、一个羧基基团以及一个侧链。

侧链的不同决定了氨基酸的种类和特性。

根据侧链的性质,氨基酸可以分为两类:极性氨基酸和非极性氨基酸。

极性氨基酸的侧链含有官能团,使其具有亲水性,可以溶于水。

而非极性氨基酸的侧链则不含官能团,不具有亲水性,无法溶于水。

氨基酸在生物体内有着多种重要的功能。

首先,氨基酸是蛋白质的构成单位,在生物体内通过连接成链的方式形成多肽或聚合成多肽链,从而构成各种功能蛋白质。

蛋白质是生物体内最重要的大分子之一,承担着酶催化、结构支持、运输、通讯和抵抗病原体等多种功能。

此外,氨基酸还参与能量代谢过程。

在饥饿或长时间运动等情况下,生物体会利用氨基酸进行氨基酸新陈代谢,将其分解为α酮酸和氨基部分。

氨基部分就能转化为尿素进一步排出体外,而α酮酸则可以通过某些转化途径进一步供能。

此外,氨基酸还是多种生理活性物质的前体。

例如,组氨酸是合成组胺的前体;色氨酸是合成5-羟色胺的前体;苏氨酸是合成生物碱的前体等等。

这些生理活性物质对于调节生物体的神经传递、免疫调控、情绪调节等至关重要。

最后,氨基酸还参与着维持生物体内稳态的调节。

生物体内的氨基酸浓度水平是通过氨基酸运输体在细胞膜上的工作来调控的。

当细胞内氨基酸浓度过高时,氨基酸运输体会将其转运到细胞外;而当细胞内氨基酸浓度过低时,氨基酸运输体则将细胞外的氨基酸转运到细胞内,从而维持氨基酸浓度的平衡。

总之,氨基酸在生物学中具有极其重要的地位和功能。

通过构成蛋白质、参与能量代谢、作为生理活性物质的前体以及调节生物体内的稳态,氨基酸发挥着不可替代的作用。

生物化学第三章蛋白质化学名词解释

生物化学第三章蛋白质化学名词解释

第三章蛋白质化学1蛋白质:就是一类生物大分子,由一条或多条肽链构成,每条肽链都有一定数量得氨基酸按一定序列以肽键连接形成。

蛋白质就是生命得物质基础,就是一切细胞与组织得重要组成成分。

2标准氨基酸:就是可以用于合成蛋白质得20种氨基酸.3、茚三酮反应:就是指氨基酸、肽与蛋白质等与水合茚三酮发生反应,生成蓝紫色化合物,该化合物在570mm波长处存在吸收峰。

4、两性电解质:在溶液中既可以给出H+而表现出酸性,又可以结合H+而表现碱性得电解质。

5、兼性离子:即带正电与、又带负电荷得离子。

6、氨基酸得等电点:氨基酸在溶液中得解离程度受PH值影响,在某一PH值条件下,氨基酸解离成阳离子与阴离子得程度相等,溶液中得氨基酸以兼性离子形式存在,且净电荷为零,此时溶液得PH值成为氨基酸得等电点。

7、单纯蛋白质:完全由氨基酸构成得蛋白质。

8、缀合蛋白质:含有氨基酸成分得蛋白质。

9、蛋白质得辅基:缀合蛋白质所含有得非氨基酸成分。

10、肽键:存在于蛋白质与肽分子中,就是由一个氨基酸得α—羧基与另一个氨基酸得α—氨基缩合时形成得化学键。

11、肽平面:在肽单元中,羧基得π键电子对与氮原子得孤电子对存在部分共享,C-N键具有一定程度得双键性质,不能自由旋转。

因此,肽单元得六个原子处在同一个平面上,称为肽平面。

12、肽:就是指由两个或者多个氨基酸通过肽键连接而成得分子。

13、氨基酸得残基:肽与蛋白质分子中得氨基酸就是不完整得,氨基失去了氢,羧基失去了羟基,因而称为氨基酸得残基。

14、多肽:由10个以上氨基酸通过肽键连接而成得肽.15、多肽链:多肽得化学结构呈链状,所以又称多肽链。

16、生物活性肽:就是指具有特殊生理功能得肽类物质。

它们多为蛋白质多肽链得一个片段,当被降解释放之后就会表现出活性,例如参与代谢调节、神经传导。

食物蛋白质得消化产物中也有生物活性肽,她们可以被直接吸收。

17、谷胱甘肽:由谷氨酸、半胱氨酸与甘氨酸通过肽键连接构成得酸性三肽,就是一种生物活性肽,就是机体内重要得抗氧化剂。

高二生物氨基酸知识点

高二生物氨基酸知识点

高二生物氨基酸知识点氨基酸是构建蛋白质的基本单位,对于高中生物学习而言,了解氨基酸的结构、分类和功能十分重要。

本文将详细介绍高二生物学课程中关于氨基酸的知识点。

一、氨基酸的结构氨基酸是由氨基基团(NH₂)、羧基基团(COOH)和一侧链基团(R)组成。

其中氨基基团和羧基基团位于同一碳原子上,这个碳原子被称为α碳原子。

氨基酸的侧链基团决定了其特性和功能。

二、氨基酸的分类根据侧链基团的性质,氨基酸可以被分为以下几类:1. 构成蛋白质的氨基酸:这类氨基酸由20种常见氨基酸组成,包括有丝氨酸、丙氨酸、赖氨酸等。

它们是蛋白质合成的基本单位,通过肽键将它们连接起来形成多肽链或蛋白链。

2. 非构成蛋白质的氨基酸:这类氨基酸包括大部分其他的氨基酸,如甘氨酸、谷氨酸、天冬氨酸等。

它们虽然无法构成蛋白质,但在细胞中起着重要的生理功能。

3. 稀有氨基酸:这类氨基酸存在于某些特定蛋白质中,比如硫氨酸、脯氨酸、腺氨酸等。

它们的出现使得某些蛋白质具有特殊的性质和功能。

三、氨基酸的功能氨基酸在生物体内具有多种功能,主要包括以下几点:1. 构建蛋白质:氨基酸通过肽键连接形成蛋白质,蛋白质是生物体内最基本的功能性分子之一,参与到细胞的结构和代谢过程中。

2. 提供能量:在饥饿或运动时,机体会分解氨基酸来产生能量,其中特别是非构成蛋白质的氨基酸在这个过程中发挥重要作用。

3. 参与代谢过程:氨基酸参与到许多重要的代谢过程中,比如葡萄糖合成、脂肪酸合成等。

此外,某些特定的氨基酸还能合成重要的生物活性物质,如甲硫氨酸可以合成辅酶A。

4. 调节生理功能:某些氨基酸具有调节生理功能的特性,比如谷氨酸可以调节中枢神经系统的兴奋性,生育酮氨酸可以调节心脏的收缩力和心率等。

四、氨基酸的重要性氨基酸在生物体内起着至关重要的作用,它们不仅是构建蛋白质的基本单位,还参与到多种生物活动中。

对于高二生物学习而言,了解氨基酸的结构、分类和功能,对深入理解蛋白质合成、饮食营养以及相关疾病的研究都具有重要意义。

《生物化学》氨基酸

《生物化学》氨基酸

氨基酸的两性解离:
阳离子
两性离子
阴离子
以甘氨酸为例: pK1= 2.34 pK2 = 9.60
+
H3N-CH2-COOH
[Gly+]
K’1
+H3N-CH2-COO- +[ H+] [ Gly±]
pI = 5.97
[Gly±][H+]
K1’=
[Gly+]
+H3N-CH2-COO- K’2 [Gly±]
苯丙氨酸
Phenylalanine Phe F
— CH 2— CH— COO-
NHN3H+ 3+
酪氨酸
Tyrosine Tyr Y
HO —
— CH 2— CH— COO-
NH3+ NH3+
组氨酸
Histidine His H
HC C — CH 2— CH— COO-
+HN
NH
C H
咪唑基
NH3+
如图所示
H3N+
COOH CH2
(Gly+)
COO-
H3N+ CH (G2 ly±)
COO-
H2N
CH2
(Gly-)
pH 14 12 10 8
[Gly+ ] = [Gly±]
6 4 2 0
0.1
pK1=2.34
0.05
加入的H+ mol数甘Βιβλιοθήκη 氨pK2=9.60


pI=5.97

[Gly ±] = [Gly-]
[Gly±][H+] K1’
= K2’ [Gly±]

氨基酸(amino acid)的结构与性质

氨基酸(amino acid)的结构与性质

第一章氨基酸(amino acid)的结构与性质•蛋白质(protein)是一类重要的生物大分子,是生命的物质基础。

分子中主要的元素组成是:C、H、O、N、S等。

其中N元素的含量相对稳定,约为16%,故每克氮相当于6.25克蛋白质。

•蛋白质的基本组成单位---氨基酸第一节氨基酸的结构与分类一、氨基酸的结构组成蛋白质的基本单位是氨基酸。

如将天然的蛋白质完全水解,最后都可得到约二十种不同的氨基酸。

从氨基酸的结构通式可以看出:◆构成蛋白质的氨基酸均为L—α—氨基酸。

◆除R为H(甘氨酸)外,其余氨基酸均具有旋光性。

L-α-氨基酸的结构通式COOH│H2N —C —H│R*在空间各原子有两种排列方式:L——构型与D——构型,它们的关系就像左右手的关系,互为镜像关系,下图以丙氨酸为例:二、氨基酸的分类:1.按氨基酸分子中羧基与氨基的数目分:酸性氨基酸:一氨基二羧基氨基酸,有天冬氨酸、谷氨酸;碱性氨基酸:二氨基一羧基氨基酸,有赖氨酸、精氨酸、组氨酸;中性氨基酸:一氨基一羧基氨基酸,有甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸、半胱氨酸、苯丙氨酸、色氨酸、酪氨酸、脯氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸。

2.按侧基R基的结构特点分:脂肪族氨基酸芳香族氨基酸:苯丙氨酸、色氨酸、酪氨酸 杂环氨基酸:脯氨酸、组氨酸3.按侧基R基与水的关系分:非极性氨基酸:有甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸、半胱氨酸、苯丙氨酸、色氨酸、酪氨酸、脯氨酸;极性不带电氨基酸:天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸;极性带电氨基酸:天冬氨酸、谷氨酸、赖氨酸、精氨酸、组氨酸。

4. 按氨基酸是否能在人体内合成分: 必需氨基酸:指人体内不能合成的氨基酸,必须从食物中摄取,有八种:赖氨酸、色氨酸、甲硫氨酸、苯丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苏氨酸。

非必需氨基酸:指人体内可以合成的氨基酸。

有十种。

半必需氨基酸:指人体内可以合成但合成量不能满足人体需要(特别是婴幼儿时期)的氨基酸,有两种:组氨酸、精氨酸。

(AminoAcidAAAaaa)第3章氨基酸

(AminoAcidAAAaaa)第3章氨基酸

pI = (pK’ + pK’ )/2
(A1minoAcidAAAa2aa)第3章氨基酸
甘 氨 酸 滴 定 曲 线
• 对于侧链含有可解离基团的AA • pI取决于两性离子两边pK’值的算术平均值 • 酸性AA:pI = (pK’1 + pK’R-COO- )/2 • 碱性AA:pI = (pK’2 + pK’R-NH2 )/2
第3章 氨基酸
(Amino Acid, AA, Aa, aa)
(AminoAcidAAAaaa)第3章氨基酸
一、氨基酸 ——蛋白质的构件分子
Protein Architecture
(AminoAcidAAAaaa)第3章氨基酸
(一) 蛋白质水解
蛋白质——月示1*104
(AminoAcidAAAaaa)第3章氨基酸
• 大多数AA在中性pH时呈 兼性离子状态:
COO-
NH3+
• 除甘氨酸外,19种AA都具 有旋光性。
• 除胱氨酸和酪氨酸外,其余 AA都能溶于水。
(AminoAcidAAAaaa)第3章氨基酸
二、氨基酸的分类
(一)常见的蛋白质氨基酸
(AminoAcidAAAaaa)第3章氨基酸
• 当溶液为某一pH值时,AA主要以兼性离 子的形式存在,分子中所含的正负电荷数 目相等,净电荷为0。这一pH值即为AA的
等电点(pI)。 • 在pI时,AA在电场中既不向正极也不向负
极移动,即处于两性离子状态。
(AminoAcidAAAaaa)第3章氨基酸
Ka1*Ka2=……
侧链不含离解基团的中性AA
(AminoAcidAAAaaa)第3章氨基酸
什么是氨基酸?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丙氨酸、缬氨酸、亮氨酸和异亮氨酸的侧链具 有高度疏水性,在维持蛋白质的三维结构中起 重要作用。
一、脂肪族氨基酸(含羟基或硫)
丝氨酸 Serine
O H 2N CH C OH
CH 2 OH
S
( α-氨基-β-羟基丙酸 )
一、脂肪族氨基酸(含羟基或硫)
丝氨酸 Serine 苏氨酸 Threonine
H 3N + C
H
CH 3
L-丙氨酸
O
H
C
H C OH
CH 2 OH
D-甘油醛
O C
HC
O-
NH
+ 3
CH 3
D-丙氨酸
1.2 氨基酸的分类
1.2.1、氨基酸的表示方法:
中文名,如甘氨酸、半胱氨酸等。 三字母简写:如Gly、Cys等。 单字母简写:如G、C等。
记忆技巧 (按字母顺序记忆)
Ala Arg Asp Asn 丙 精 天 天酰
H 3N + C
H
CH 2
CH 2
SH
SH
-
COO
-
COO
H3N+ C H H3N+ C H
CH2 S S CH2
两个半胱氨酸氧化可生成胱氨酸
人头发的电子显微镜照片与模型
烫发过程:
1、加还原剂(巯基乙 醇)打开二硫键。
2、加氧化剂(双氧水) 重新生成错位二硫键。
一、脂肪族氨基酸(含羟基或硫)
丝氨酸 Serine 苏氨酸 Threonine 半胱氨酸 Cysteine 甲硫氨酸 Methionine
例题:
Gly的-NH3+有1/3解离时,溶液的pH值?
pH = pK2 + lg ([Gly-] / [Gly0]) pH = 9.6 + lg (1/2) pH = 9.3
将α-COO-画在顶端,垂直画一个氨基酸,然 后与立体化学参考化合物甘油醛相比较, α氨基位于α-碳左边的为L-异构体,位于右边的 为D-异构体。
绝大多数氨基酸是L-型氨基酸,近年来,D-型 氨基酸在哺乳动物生命活动中的意义引起了越 来越多的关注。
H
O
CHOCH NhomakorabeaCH 2 OH
L-甘油醛
-O
O
C
一、脂肪族氨基酸(中性)
甘氨酸 Glycine
O H2N CH C OH
H G
(α-氨基乙酸)
一、脂肪族氨基酸(中性)
甘氨酸 Glycine 丙氨酸 Alanine
O
H2N CH C OH
CH3
A
(α-氨基丙酸)
一、脂肪族氨基酸(中性)
甘氨酸 Glycine
丙氨酸 Alanine
缬氨酸 Valine
二、芳香族氨基酸
苯丙氨酸 Phenylalanine
O H 2 N CH C OH
CH 2
F
( α-氨基-β-苯基丙酸 )
二、芳香族氨基酸
苯丙氨酸 Phenylalanine 酪氨酸 Tyrosine
O
H 2N
CH C
OH
CH 2
OH
Y
( α-氨基-β-对羟苯基丙酸 )
二、芳香族氨基酸
苯丙氨酸 Phenylalanine 酪氨酸 Tyrosine 色氨酸 Tryptophan
Cys Glu Gln Gly 半 谷 谷酰 甘
His Ile Leu Lys 组 异亮 亮 赖 Met Phe Pro 甲硫 苯丙 脯
Ser Thr Trp Tyr Val 丝苏色酪缬
1.2.2、 20种氨基酸可按其侧链分类
氨基酸的侧链可以按照它们的化学结构 分为三类,即:脂肪族氨基酸;芳香族 氨基酸;杂环氨基酸。
在各种组织和细胞中发现约150种其它氨基酸,它 们不存在于蛋白质中,而是以游离或结合状态存在于 生物体内,所以称为非蛋白质氨基酸。这些氨基酸大 多数是蛋白质中存在的L-型α-氨基酸的衍生物,如鸟 氨酸(ornithine)、瓜氨酸(citrulline)、高丝氨 酸(homeserine)、高半胱氨酸等,但也有一些是 β-、γ-或δ-氨基酸,如β-丙氨酸、γ-氨基丁酸。另 外,还有些是D型氨基酸。这些氨基酸虽然不参与蛋 白质组成,但在生物体中往往具有一定的生理功能, 如鸟氨酸和瓜氨酸是合成精氨酸的前体,β-丙氨酸是 维生素泛酸的组成成分,γ-氨基丁酸是神经传导的化 学物质。植物中含有很多非蛋白质氨基酸,其中有些 具有特殊的生物功能,但大多数非蛋白质氨基酸的功 能还不清楚。
K
α,ε-二氨基己酸
注意:
精氨酸是碱性最强的氨基酸,侧链上的 胍基是已知碱性最强的有机碱,pKa值 为12.48,生理条件下完全质子化。
赖氨酸的侧链上含有一个氨基,侧链氨 基的pKa为10.53。生理条件下,Lys侧 链带有一个正电荷(—NH3+),同时它 的侧链是4个C的直链,柔性较大,使侧 链的氨基反应活性增大。
根据氨基酸侧链的极性可以分为非极性 氨基酸和极性氨基酸。极性氨基酸又可 分为不带电荷的极性氨酸、酸性氨基酸 和碱性氨基酸。
非 极 性 氨 基 酸 ( 八 种 )
不 带 电 何 的 极 性 氨 基 酸 ( 八 种 )
带负电荷的氨基酸(2种)
带正电荷的氨基酸(2种)
1.2.3 不常见蛋白质氨基酸和非蛋白质氨基酸
第三章 氨基酸
The mirror of Venus (1898) If the Venus in the mirror come out and lives
in our world……
蛋白质是生命的表征,氨基酸是蛋白质的 构件分子。
蛋白质在结构和功能上惊人的多样性归 根结底是由20种常见氨基酸的内在性质 决定的。
O
H 2N CH C OH
CH CH 3
CH 3
V
(α-氨基-β-甲基丁酸 )
一、脂肪族氨基酸(中性)
甘氨酸 Glycine 丙氨酸 Alanine 缬氨酸 Valine 亮氨酸 Leucine
O
H 2 N CH C OH CH 2
CH CH 3
CH 3
L
(α-氨基-γ-甲基戊酸 )
一、脂肪族氨基酸(中性)
1.3、氨基酸的酸碱化学
氨基酸是个两性电解质,既可进行酸解 离也可进行碱解离,用解离方程式表示 就是:
Ka1
Ka2
氨基酸的离子状态完全取决于溶液的pH 值。
如果调节溶液的pH值使得其中的氨基酸 呈电中性,那么,我们就把这个pH值称 为氨基酸的等电点(isoelectric point, pI )。 pI是氨基酸的重要常数之一,它 的意义在于,物质在pI处的溶解度最小, 这是分离纯化蛋白质或氨基酸的重要依 据。
有些蛋白质中还含有少数特殊的氨基酸,称为 蛋白质的稀有氨基酸。这些氨基酸都是正常氨 基酸的衍生物,如弹性蛋白和胶原蛋白中的4羟基脯氨酸和5-羟基赖氨酸;肌球蛋白和组蛋 白中含有6-N-甲基赖氨酸;凝血酶原中存在γ羧基谷氨酸;酪蛋白中存在磷酸丝氨酸;哺乳 动物的肌肉中存在N-甲基甘氨酸等。蛋白质中 的稀有氨基酸在遗传上是特殊的,因为它们没 有三联体密码,所有已知的稀有氨基酸都是在 蛋白质合成后,在常见的氨基酸的基础上经过 化学修饰而形成的。
一、脂肪族氨基酸(碱性aa)
精氨酸 Arginine
O
H 2 N CH C OH CH 2 CH 2 CH 2 NH
C NH
NH 2
R
α-氨基-δ-胍基戊酸
一、脂肪族氨基酸(碱性aa)
精氨酸 Arginine 赖氨酸 Lysine
O
H 2 N CH C OH
CH 2 CH 2
CH 2
CH 2
NH 2
一、脂肪族氨基酸(酸性aa、酰胺)
天冬氨酸 Aspartate
O
H 2 N CH C OH CH 2 CO
OH
D
α-氨基丁二酸
一、脂肪族氨基酸(酸性aa、酰胺)
天冬氨酸 Aspartate 天冬酰氨 Asparagine
O
H 2 N CH C OH CH 2 CO
NH 2
N
一、脂肪族氨基酸(酸性aa、酰胺)
甘氨酸 Glycine 丙氨酸 Alanine 缬氨酸 Valine 亮氨酸 Leucine 异亮氨酸 Ileucine
O
H 2 N CH C OH
CH CH 3
CH 2
CH 3
I
(α-氨基-β-甲基戊酸 )
注意:
甘氨酸是唯一不含手性碳原子的氨基酸,因此 不具旋光性。
异亮氨酸分子中的α碳和β碳都是不对称碳原子, 所以异亮氨酸具有四种可能的异构体:L-异亮 氨酸、D-异亮氨酸、 L-别构异亮氨酸和D-别 构异亮氨酸。通常出现在蛋白质中的为L-异亮 氨酸。
L-allo-
D-allo-
Threonine Threonine
苏氨酸的光学异构体
一、脂肪族氨基酸(含羟基或硫)
丝氨酸 Serine 苏氨酸 Threonine 半胱氨酸 Cysteine
O
H 2N CH C OH
CH 2
SH
C
( α-氨基-β-巯基丙酸 )
-
COO
-
COO
H 3N + C
+ H
O H 2 N CH C OH
CH 2
HN
W
( α-氨基-β-吲哆基丙酸 )
三、杂环族氨基酸
组氨酸 Histidine
O H 2 N CH C OH
CH 2
N
NH
H
α-氨基-β-咪唑基丙酸
三、杂环族氨基酸
组氨酸 Histidine 脯氨酸 Proline
H N
CO
相关文档
最新文档