第三章 氨基酸、多肽与蛋白质

合集下载

第三章 蛋白质的结构【生物化学】

第三章 蛋白质的结构【生物化学】

-转角
(1)一种非重复性结构; (2)4个连续的氨基酸残基组 成; (3)主链骨架以180返回折叠; (4)C1 羰基氧与C4亚氨基形 成氢键; (5)Gly、Pro频率高 (6)2型转角常以Gly 作为第 3个残基
无规卷曲
没有明显规律的多肽主 链骨架的构象 在ɑ螺旋构象、ß-转角、
ß-折叠以及三股螺旋中 无规卷曲是用来阐述没 有确定规律性的那部分肽 链结构。酶和蛋白质的活 性中心通常由无规卷曲充 当,与生物活性有关,对 外界理化性质敏感
第三章 蛋白质的三维结构
The Three-dimensional Structure of Proteins
一种球状蛋白质-胰凝乳蛋白酶的结构,图中 蓝色的小分子是一个甘氨酸的结构
多肽主链折叠的空间限制
刚性的肽键平面-肽单元
参与肽键的6个原子C1、C、O、N、H、C2位于同一平 面,肽平面中羰基氧与亚氨基氢几乎总是处于相反的位置, 此 同一平面上的6个原子构成了所谓的肽单元 (peptide unit),也 就是肽平面 。
持结构的稳定性 毛发结构
非典型的α-螺旋有3.010,4.416(π螺旋)等
α-螺旋的偶极矩和帽化
•偶极矩的存在加速 α螺旋的形成
•所谓帽化就是给裸 露的N-H或者C=O提 供配偶体,或折叠蛋 白其他部分以促成 与末端暴露的非极 性残基的疏水作用, 稳定和保护α螺旋。
α螺旋的两亲性质
疏水和亲水侧链的 非对称性分布,与 进一步高级结构的 形成或功能有关
⑵侧链基团的大小 多聚异亮氨酸有大的侧链基团, 造成空间位阻,不能形成螺旋 多聚脯氨酸具亚氨基不能形成 氢键,脯氨酸存在即在多肽链形 成一个结节,螺旋中断。
-折叠
定义 几乎完全伸展的肽段侧向聚集在一起,相邻

第三章 蛋白质-B(2013)

第三章  蛋白质-B(2013)
蛋白质中相邻的二级结构单位(即单个α -螺旋或β
-折叠或β -转角)组合在一起,形成有规则的、在空间
上能辩认的二级结构组合体称为蛋白质的超二级结构 基本组合方式:α α ;β ×β ;β β β
超二级结构类型
αα
β ×β
β αβ
β -迂回
βββ
回形拓扑结构
(四)蛋白质的结构域
结构域 domain,motif(模块) 在二级结构及超二级结构的基础上,多肽 链进一步卷曲折叠,组装成几个相对独立的、 近似球形的三维实体。
Steps in protein identification by mass spectrometry
In-gel digestion With trypsin
MS analysis of Peptide fingerprinting
Database Search
m/z Acquired MS spectrum
第三节 蛋白质的结构
蛋白质分子的构象与结构层次
蛋白质都有自己特有的天然空间结构,称为构象。 一级结构: 氨基酸顺序 二级结构: α螺旋、β折叠、β转角,无规卷曲 三级结构: α螺旋、β折叠、β转角、松散肽段 四级结构: 多亚基聚集
一级结构
primary structure
蛋 白 质 结 构 的 主 要 层 次
MALDI-TOF analysis
Protein Peptides 678.8 679.3
Selected Parent Ion
MS/MS
Specific protein identified
Database Search
(三)多肽与蛋白质的人工合成
氨基保护:叔丁氧甲酰氯(BOC-Cl)、苄氧酰氯(CBZ-Cl)、 对甲苯磺酰氯Tosyl-Cl)。 羧基保护:苄酯、叔丁酯(成盐、成酯) 羧基活化:酰氯法(PCL5)、叠氮法、混合酸酐法、

蛋白质和多肽的氨基酸序列分析

蛋白质和多肽的氨基酸序列分析
第十章
蛋白质和多肽的氨 基酸序列分析
引言
• 氨基酸是一种小分子的两性化合物,分子量 在75~200Da之间,其化学通式为:
• 在生物体内出现的氨基酸都是L型,仅在少 数微生物来源的多肽中出现D型氨基酸。
引言
• 蛋白质和多肽是由20种氨基酸按照一定的顺序通过肽 键连接成一长链,然后通过链内、链间的离子键、疏 水作用等多种作用力进行折叠卷曲形成一定的构象并 发挥其独特作用。氨基酸的排列顺序即蛋白质的一级 结构决定了蛋白质的高级结构及功能。
• 因此,分析蛋白质的氨基酸序列是进行蛋白质结构功 能研究中不可缺少的部分。
蛋白质测序的研究历史
1940年前 1947 1955 1958 1967
采用部分水解的方法试图测定蛋白质的氨 基酸序列
Consden等利用色谱技术成功测定了短杆菌 肽S6的氨基酸序列
Sanger首次测定了牛胰岛素的一级结构(由51 个氨基酸残基组成)
一、蛋白质或多肽的水解方法 二、特殊氨基酸的保护 三、衍生方法及原理 四、氨基酸定性和定量分析 五、测定氨基酸组成的实验步骤
氨基酸组成分析的目的
现代分离提纯技术的发展使蛋白质操 作微量化,但也给定量带来了困难,一般 很难通过常规的称量或测蛋白溶液在 280nm的光吸收值来准确定量蛋白质,所 以如果在蛋白质酶解或测序前,取蛋白质 样品的一部分进行氨基酸组成分析,根据 结果便可以推算出蛋白量的可靠值。
另外,在蛋白质测序中有时遇到测不出结 果的情况,一种可能是蛋白质的N端封闭,另 一种可能则是样品本身不是蛋白质或绝大部分 是非蛋白质物质,解决这个问题的很好途径便 是做一个氨基酸组成分析以确定样品的成分。
除了蛋白质研究和重组蛋白需要测定氨基酸 组成外,医学上也需要测定血液或各种体液中 的游离氨基酸。

刘老师 第三章蛋白质化学(1-3节)

刘老师   第三章蛋白质化学(1-3节)

•旋光性:除甘氨酸外的氨基酸均有旋光性。
在近紫外区含苯环氨基酸大π键有光的吸 收。蛋白质故也具有紫外吸光性,实验室利用
紫外分光光度仪在280nm处测定蛋白质含量;
•光吸收:氨基酸在可见光范围内无光吸收,
以 丙 氨 酸 为 例 :
二、氨基酸的解离和两性性质
氨基酸既含有氨基,可接受H+,又含 有羧基,可电离出H+,所以氨基酸具有 酸碱两性性质。通常情况下,氨基酸以 两性离子的形式存在,如下图所示:
1. 化学结构 R-CH(NH2)-COOH COOH R 代 表 氨 基 酸 之 间 相 异 的 H2N—Cα—H 基 (R group), 又 部 分 , 叫 R 称 为 侧 链 (sidechain) 。 R 无色晶体、溶于水
不带电形式
2. 结构通式 酪氨酸分子

地 球 上 天 然 形 成 的 氨 基 酸 有 300 种 以 上 , 但 是 构 成 蛋 白 质 的 氨 基 酸 只 有 22 种 , 且都是α-氨基酸(可能还存在更多 的)。
黄色、 橘色
Tyr
Tyr、 Phe
浓 HNO3 及 NH3 乙醛酸试剂 及浓H2SO4
紫色
N
Try 胍基
酚基、吲 哚基
α- 萘 酚 、 NaClO
碱 性 CuSO4 及磷钨酸钼酸
红色
Arg
蓝色
Tyr
第三节氨基酸的分离与测定
层析法 电泳法 氨基酸的显色反应

一、层析法
层析法是利用被分离样品混合物中各 组分的化学性质的差异,使各组分以不 同程度分布在两个相中,这两个相一个 为固定相,另一个为流动相。当流动相 流进固定相时,由于各组分在两相中的 分配情况不同或电荷分布不同或离子亲 和力不同等,而以不同的速度前进,从 而达到分离的目的。(常见:滤纸层析、 薄层层析、离子交换层析、亲和层析)

氨基酸和多肽的关系

氨基酸和多肽的关系

氨基酸和多肽的关系
氨基酸和多肽之间有密切的关系。氨基酸是构成多肽和蛋白质的
基本单元。多肽是由少量个数的氨基酸按特定的顺序连接而成,而蛋
白质则是由很多个氨基酸连接而成的大分子。多肽的链长一般在几个
到几十个氨基酸之间,而蛋白质的链长则在数百个到数千个氨基酸之
间。多肽和蛋白质的结构和功能也与其氨基酸序列有着密切的关系。
因此,氨基酸和多肽是不可分割的整体,它们之间的关系对于生物学
和化学领域有着非常重要的意义。

第三章 蛋白质化学

第三章  蛋白质化学
水解不彻底。
应用:用于蛋白质的部分水解。一级结构分析。
二、氨基酸的结构和分类
(一)常见氨基酸
1、结构通式
R
R
2、20种氨基酸在结构上的共同特点 (1)除脯氨酸以外都是α-氨基酸;脯是 α-亚氨基酸。 (2)除了甘氨酸均有手性碳,具有旋光性。 (3)除甘氨酸外,蛋白质分子中的氨基酸都是L-氨基酸。 (4)不同的α-氨基酸其R基侧链不同,其余部分都相同。
[质子受体] pH=pK’+lg
[质子供体]
应用:
(1)已知各离子浓度,求溶液的pH值。
(2)根据氨基酸解离基团的pK值,可计算出任何pH 条件下,各离子浓度的比例。
例题1:计算赖氨酸的ε -NH3+20%被解离时 的溶液pH值。
解:首先写出解离方程
根据: 所以:
pK3=10.53 pH=pK’+lg
等电点时,氨基酸的溶解度最小
小结
引入等电点概念之后,AA的解离情况与环境PH的关 系可以描述为:
A、当环境PH=PI时氨基酸以两性离子形式存在。 B、当环境PH<PI时(相当于加入了H+)氨基酸带正
电荷,环境PH偏离等电点越远,氨基酸带正电荷越 多;电泳时移向负极。 C、当环境PH>PI时(相当于加入了OH-)氨基酸带 负电荷,环境PH偏离等电点越远,氨基酸带负电荷 越多;电泳时移向正极。
①解离方程:略 ②Glu-和Glu=各50%时pH为9.67 ③pH<3.22时 Glu总带正电荷 ④Glu±和Glu-缓冲范围pH4.25左右
(三)氨基酸的重要化学性质
1、α -NH2参与的重要的反应 (1)与亚硝酸的反应
NH2 R-CH-COOH + HNO2

第三章 蛋白质一级结构及测定

第三章 蛋白质一级结构及测定

③Cleland试剂的还原作用
Cleland′s指出二硫赤苏糖醇(dithioerythriotol)及二 硫苏糖醇(dithiothriotol)在氧化还原能力上是比较强的试 剂,只要0.01摩尔就能使蛋白质的-S-S-还原,反应基本与 疏基乙醇相似,且在许多球蛋白反应中,可以不用变性剂。
还原蛋白不稳定,SH基极易氧化重新生成-S-S-键。稳定 SH基的方法可用烷基化试剂使SH基转变为稳定的硫醚衍生 物。
它能选择性 地切割由甲 硫氨酸的羧 基所形成的 肽键
R1 O + HO -CH-C-N-CH-C=NH-CH-C~ 2 Br O H2C O CH2 + CH2-S-C N ¼»ÁÇË ×ùòèá R H O H 2O +-CH-C-N-CH-C O O H2C-CH2
R
H
R1 O H2N-CH-C~ C¶ ë ¶ NÄ ¶ ËÄÎ ©Ë
R1 R2 Rh H2N-CHCO~NH-CHCO~NH-CHCOOH R1 R2 õë £Â õë £Â £±¼È³Ìõ뻺Σ ¨½×©éá£Â¯Ïï© Î Ë NH2NH2 Þ® o 100 C 5~10h Rh
H2N-CH-CONHNH2+H2N CH CONHNH2+....+H2N-CH COOH
OH- pH9 —
苯异硫氰酸酯 ( PITC ) S
=
②与Edman试剂反应的 产物为:苯乙内酰硫脲氨 基酸(PTH-氨基酸) ③PTH-氨基酸可用乙 酸乙酯抽提,再用纸层析 或薄层层析鉴定
S C
-NH-C-NHCHCO-NHCHCO —
苯氨基硫甲酰多肽 (氨基酸)
S-C C N H - —
R H+ O

氨基酸和多肽的关系

氨基酸和多肽的关系

氨基酸和多肽的关系氨基酸和多肽是生物体内重要的有机分子,它们之间有着密切的关系。

首先,让我们来了解一下氨基酸的基本结构和功能。

氨基酸是构成蛋白质的基本单元,由氨基基团、羧基、氢原子和一个侧链组成。

氨基酸是生命体的必需物质,通过蛋白质的合成和降解参与了生物体内的各种生化过程。

氨基酸的侧链决定了其特定的性质,使得不同氨基酸在生物体内扮演不同的角色,如赖氨酸、苯丙氨酸等。

多肽是由多个氨基酸残基通过肽键连接而成的生物分子。

当氨基酸通过脱水缩合反应形成肽键时,就形成了多肽。

多肽的长度可以从几个氨基酸残基到几十个甚至上百个氨基酸残基不等。

多肽在生物体内具有多种功能,如携带信号、参与免疫反应、调节生长发育等。

氨基酸和多肽之间的关系主要体现在以下几个方面:氨基酸是构成多肽的基本单元。

多肽是由氨基酸通过肽键连接而成,因此氨基酸是构成多肽的必需物质。

没有氨基酸,就无法形成多肽。

而多肽的结构和性质又取决于构成它的氨基酸种类和顺序。

氨基酸的序列决定了多肽的结构和功能。

在多肽分子中,氨基酸残基的排列顺序是非常重要的。

不同的氨基酸序列可以形成不同的结构,从而决定了多肽的功能。

例如,胰岛素是一种由氨基酸残基组成的多肽激素,其特定的氨基酸序列决定了其在调节血糖水平中的作用。

氨基酸和多肽在生物体内具有重要的生理功能。

氨基酸通过构成蛋白质参与了生物体内的各种生化过程,而多肽则在细胞信号传导、免疫调节、激素作用等方面发挥着重要的作用。

例如,多肽激素如生长激素、胰岛素等对生长发育和代谢有着重要的调节作用。

氨基酸和多肽之间存在着密切的关系。

氨基酸是构成多肽的基本单元,多肽的结构和功能取决于氨基酸的序列。

氨基酸和多肽在生物体内发挥着重要的生理功能,参与了各种生化过程和生命活动。

深入研究氨基酸和多肽之间的关系,有助于我们更好地理解生物体内的生化过程和调节机制,为疾病的治疗和预防提供理论依据。

希望本文能够帮助读者更好地理解氨基酸和多肽在生物体内的重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档