圆锥曲线光学性质几何证明法

圆锥曲线光学性质几何证明法
圆锥曲线光学性质几何证明法

利用反证法证明圆锥曲线的

光学性质

迤山中学 数学组

贾浩

利用反证法证明圆锥曲线的光学性质

反证法又称归谬法,是高中数学证明中常用的一种方法。利用反证法证明问题的思路为:首先在原命题的条件下,假设结论的反面成立,然后推理出明显的结果,从而说明不成立,则原命题得证。

在光的折射定律中,从点P 发出的光经过直线l 折射后,反射光线的反向延长线经过点P 关于直线l 的对称点。

下面结合光的折射定律,利用反证法证明圆锥曲线的光学性质。

一、椭圆的光学性质

从椭圆的一个焦点出发的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点上。

该命题证明如下:

已知椭圆的两个焦点分别为1F 、2F ,P 为椭圆上的一个点,过点P 作椭圆的切线l ,2F 关于切线l 的对称点为'2F ,证明:1F 、P 、'2F 三点共线。 证明 假设'2F 不在1F 、P 所在的直

线上,连接1F 、'2F ,交椭圆于M 。 则''1212F F MF MF =+,

''1212F F PF PF <+ 由122PF PF a +=,'22PF PF =得'122PF PF a +=,则'122F F a <

又由122MF MF a +=,'22MF MF < 得 '122MF MF a +>,则'122F F a <。这与上式矛盾。因此,1F 、P 、'2F 三点共线。

二、双曲线的光学性质

从双曲线的一个焦点出发的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点。

该命题证明如下:

已知双曲线的两个焦点分别为1F 、2F ,P 为双曲线右支上的一个点,过点P 作双曲线的切线l ,2F 关于切线l 的对称点为'2F ,证明:1F 、P 、'2F 三点共线。

证明 假设'2F 不在1F 、P 所在的

直线上,连接1F 、'2F ,交椭圆于M 。

则''1212F F MF MF =-,

''1212F F PF PF >-

由'122PF PF a -=得

'122F F a >。

又由122MF MF a -=,'22MF MF < 得 '122MF MF a -<,则'122F F a <。这与上式矛盾。因此,1F 、P 、'2F 三点共线。

三、抛物线的光学性质

从抛物线的焦点出发的光线,经过抛物线反射后,反射光线平行于抛物线的轴。

该命题证明如下:

已知抛物线焦点分别为F ,直线m 为抛物线的准线,P 为抛物线上的一个点,过点P 作直线m 的垂线,垂足为'P 。过点P 作抛物线的切线l ,F 关于切线l 的

对称点为'F ,证明:'F 、P 、'P 三点共线。

证明 假设'F 、P 、'P 三点不共线,由'PF PF =,'PF PP =得''PF PP =。又因为直线'PP m ⊥,故'F 在直线m 右侧。

过'F 作直线m 的垂线,交抛物线于点

M ,交直线m 于N ,则'MN MF >,由抛物

线的定义得MN MF =,则'MF MF >

由M 在切线l 右侧得'MF MF <,这与

上式矛盾。因此,'F 、P 、'P 三点共线。

在上述的证明过程中,没有利用圆锥曲线的方程,只利用了教材中圆锥曲线的定义,这样就避免了大量的代数计算。借助于反证法,大大的简化了证明的过程。

圆锥曲线的几何性质及其解题应用

圆锥曲线的几何性质及其解题应用 一、正确掌握圆锥曲线的几何性质,提高解题效率 1、椭圆中一些线段的长度及其关系如: ①椭圆上的点到焦点最近的距离为AF a c =-,最近的距离为BF a c =+; ②Rt OFC ?中,2 2 2 a b c =+; ④△F PQ '的周长与菱形F CFD '的周长相等,为4a . 例题1、如下图,椭圆中心为O ,F 是焦点,A 、C ,P Q 在椭圆上且PD l ⊥于D ,QF OA ⊥于F ① PF PD ② QF BF ③ AO BO ④ AF BA ⑤ FO AO ⑥ OF FC 能作为椭圆的离心率的是 (填正确的序号)2① 12OB OB b ==;12OA OA a ==. ② 焦点F 向渐近线引垂线,垂足为P ,则 bc PF b c = = =, 又因为OF c =,故有OP a = ③ 由②可知2Rt OA Q Rt OPF ???. ⑥ A A B B ③当PQ x ⊥轴时,2 2b PQ a =?,叫椭圆的通径.

例题2.已知双曲线22 214x y b -=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的 焦点到其渐近线的距离等于 . 【解析】双曲线的焦点到其渐近线的距离等于b ,由抛物线方程x y 122 =易知其焦点坐标 为)0,3(,又根据双曲线的几何性质可知2234=+b ,所以5= b . 【点评】平时如果能理解并记住一些有用的结论,可以在考试中节省许多宝贵的时间. 3、抛物线中一些线段的长度及其关系如: ① 通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段AB 叫做抛物线的通径,且2AB p =. ② 2DF p =,几何意义知道吗? ③ 由①②易知Rt ADF ? ④ 题目中涉及到焦点F 虑定义PF PQ =这个性质.

圆锥曲线综合应用及光学性质

圆锥曲线综合应用及光学性质(通用) 一、选择题(本大题共12小题,每小题5分,共60分) 1.二次曲线142 2=+m y x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是 ( ) A .]2 3,22[ B .]2 5,23[ C .]2 6,25[ D .]2 6,23[ 2.我国发射的“神舟3号”宇宙飞船的运行轨道是以地球的中心2F 为一个焦点的椭圆,近地点A 距地面为m 千米,远地点B 距地面为n 千米,地球半径为R 千米,则飞船运行轨道的短轴长为 ( ) A .))((2R n R m ++ B .))((R n R m ++ C .mn D .2mn 3.已知椭圆1252 22=+y a x )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB 过点1F ,则△2ABF 的周长为 ( ) A .10 B .20 C .241 D . 414 4.已知椭圆的中心在原点,离心率2 1 =e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为 ( ) A .1342 2=+y x B .1682 2=+y x C .12 22 =+y x D .14 22 =+y x 5.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围 ( ) A .[- 21,2 1 ] B .[-2,2] C .[-1,1] D .[-4,4] 6.以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是 ( ) A .22 2 =-y x B .22 2 =-x y C .42 2 =-y x 或42 2 =-x y D .22 2 =-y x 或22 2 =-x y 7.椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 ( ) A .4a B .2()a c - C .2()a c + D .以上答案均有可能

第五讲 圆锥曲线及其几何性质

回顾复习五:圆锥曲线及其几何性质 ☆考点梳理 1.圆锥曲线的轨迹定义与统一定义. 2.圆锥曲线的标准方程及其推导. 3.圆锥曲线的几何性质:范围、对称性、焦点、离心率、准线、渐近线.☆基础演练 1.如图,椭圆中心为O,A、B为左右顶点,F为左焦点, 左准线l交x轴于C,点P、Q在椭圆上,PD⊥l于D, QF⊥OA于F.给出下列比值: 其中为离心率的有_________________. 2.若 12 ,F F为椭圆 22 1 25 x y m +=的焦点,且 12 8 F F=,则m的 值为. 3.过抛物线的焦点F作直线交其于A、B两点,A、B在抛物线准线上的射影分别为A1、 B1,则 11 A FB ∠=____________. 4.经过两点() 143 ,, ?? - ? ? ?? 的圆锥曲线的标准方程是________________. 5.过双曲线 22 22 1 x y a b -=的右焦点F作一条渐近线的垂线分别交于A、B两点,O为坐标 原点,若OA、AB、OB成等差数列,且BF,FA u u u r u u u r 同向,则离心率e=_________. 6.椭圆 22 1 2516 x y +=的两个焦点为F1、F2,弦AB过F1,若 2 ABF ?的内切圆周长为π, ()() 1122 A x,y, B x,y,则 12 y y -=____________. ☆典型例题 1.椭圆的定义 例1.如图,已知E,F为平面上的两个定点,G为动点, 610 EF,FG, ==点P为线段EG的中垂线与GF的交点. ⑴建立适当的平面直角坐标系求出点P的轨迹方程; ⑵若点P的轨迹上存在两个不同的点A、B,且线段AB 的中垂线与EF(或EF的延长线)相交于一点C,线段EF 的中点为O,证明: 9 5 OC<. 2.中点弦问题 例3.直线l交椭圆 22 1 2016 x y +=于M,N两点,点() 04 B,,若⊿BMN的重心恰为椭圆 右焦点,则直线l的方程是_________________. 3.椭圆的几何性质 例2.已知 1 F、 2 F分别是椭圆() 22 22 10 x y a b a b +=>>的左右焦点,右准线l,离心率e. ⑴若P为椭圆上的一点,且 12 F PF ∠=θ,则 12 PF F S ? =_____________. ⑵若椭圆上存在一点P,使得 12 PF PF ⊥,则e的范围是_____________. ⑶若椭圆上存在一点P,使得 12 PF ePF =,则e的范围是_____________. ⑷若在l上存在一点P,使得线段 1 PF的中垂线经过 2 F,则e的范围是___________. ⑸若P为椭圆上的一点,线段 2 PF与圆222 x y b +=相切于中点Q,则e=________. ⑹过F且斜率为k的直线交椭圆于A、B两点,且3 AF FB = u u u r u u u r ,若 2 e=,则k=___. 4.最值问题 例4.已知动点P在椭圆 22 1 1612 x y +=上,(,(2,0) A B. ⑴若2 PA PB +取最小值,则点P的坐标为____________; ⑵若动点M满足||1 BM= u u u u r ,且0 PM BM= u u u u r u u u u r g,则| |的最小值是; ⑶PA PB +的取值范围是________________________. 例5.椭圆W的中心在原点,焦点在x轴上,离心率为 3 两条准线间的距离为6.椭 圆W的左焦点为F,过左准线与x轴的交点M任作一条斜率不为零的直线l与椭圆W 交于不同的两点A、B,点A关于x轴的对称点为C. ⑴求椭圆W的方程;⑵求证:CF FB λ = u u u r u u u r ;⑶求MBC ?面积S的最大值. ☆方法提炼 1.椭圆的标准方程有两种形式,有时需要就焦点位置进行讨论. 2.椭圆有两种定义方式,解题时要学会“回到定义去”. 3.椭圆有两个焦点、两条准线,解题时建议联系起来考虑. 4.解解析几何问题,“画个图”是个好建议;中点弦问题利用“点差法”可简化运算. 5.在处理直线与椭圆相结合的问题时,要学会利用韦达定理整体处理. P H E F G 第 1 页

高二数学 圆锥曲线的几何性质练习

圆锥曲线的几何性质 一、选择题(' ' 6636?=) 1. .设22221(0)x y a b a b +=>>为 黄金椭圆,F 、A 分别是它的左焦点和右端点,B 是它的短轴的一个端点,则ABF ∠=( ) A ,60 B ,75 C ,90 D ,120 2.已知双曲线22 221(0,0)x y a b a b -=>>右焦点为F ,右准线为l ,一直线交双曲线于P ,Q 两点,交l 于R 点,则( ) A ,PFR QFR ∠>∠ B ,PFR QFR ∠=∠ C ,PFR QFR ∠<∠ D ,PFR ∠与QFR ∠的大小不确定 3.已知点A(0,2)和抛物线24y x =+上两点B 、C ,使得AB BC ⊥,当点B 在抛物线上移动时,点C 的纵坐标的取值范围是 ( ) A ,(,0][4,)-∞+∞ B ,(,0]-∞ C ,[4,)+∞ D ,[0,4,] 4.设椭圆方程2 213 x y +=,(0,1)A -为短轴的一个端点,M ,N 为椭圆上相异两点。若总存在以MN 为底边的等腰AMN ?,则直线MN 的斜率k 的取值范围是 ( ) A ,(1,1)- B ,[1,1]- C ,(1,0]- D ,[0,1] 5.已知12,F F 分别为双曲线22 221(0,0)x y a b a b -=>>的左、右焦点,P 为双曲线右支上的任 意一点,若 2 12 PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是 ( ) A ,(1,)+∞ B ,(1,2] C , D ,(1,3] 6.已知P 为抛物线2 4y x =上一点,记P 到此抛物线的准线的距离为1d ,P 到直线 2120x y +-=的距离为2d ,则12d d +的最小值为 ( )

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:122 2 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. > ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 》 ii.设),(00y x P 为椭圆)0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆: 12 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

圆锥曲线的光学性质

圆锥曲线光学性质的证明及应用初探 一、 圆锥曲线的光学性质 1.1 椭圆的光学性质: 从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另 一个焦点上; (见图1.1) 椭圆的这种光学特性,常被用来设计一些照明设备或聚热装置.例如在1F 处放置一个热源,那么红外线也能聚焦于2F 处,对2F 处的物体加热。电影放映机的反光镜也是这个原理。 证明:由导数可得切线l 的斜率0 20 20x x b x k y a y =-' ==, 而1PF 的斜率010 y k x c =+,2PF 的斜率020y k x c =- ∴l 到1PF 所成的角α'满足()()200 2 2222 2000001222 2 001000 2 00 tan 11y b x x c a y a y b x b cx k k b x y kk a b x y a cy x c a y α++++-'===+-+-+, ()00,P x y 在椭圆上,∴20tan b cy α'=,同理,2PF 到l 所成的角β'满足2 220 tan 1k k b kk cy β-'==+, ∴tan tan αβ''=,而,0, 2παβ?? ''∈ ?? ? ,∴αβ''= 1.2双曲线的光学性质 :从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上;(见图1.2). 双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用. 1.3 抛物线的光学性质 : 从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴(如图1.3) 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的. 图1.3 图1.2 图1.1

圆锥曲线的概念与几何性质

第十六单元圆锥曲线的概念与几何性质 考点一椭圆的标准方程和几何性质 1.(2017年全国Ⅰ卷)设A,B是椭圆C:+=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是(). A.(0,1]∪[9,+∞) B.(0,]∪[9,+∞) C.(0,1]∪[4,+∞) D.(0,∪[4,+∞) 【解析】当03时,焦点在y轴上, 要使C上存在点M满足∠AMB=120°, 则≥tan 60°=,即≥,解得m≥9. 故m的取值范围为(0,1]∪[9,+∞). 故选A. 【答案】A 2.(2014年大纲卷)已知椭圆C:+=1(a>b>0)的左,右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点.若△AF1B的周长为4,则C的方程为(). A.+=1 B.+y2=1 C.+=1 D.+=1 【解析】因为△AF1B的周长为4,所以|AF1|+|AB|+|BF1|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4,所以a=.又因为椭圆的离心率e==,所以c=1,所以b2=a2-c2=3-1=2,所以椭圆C的方程为+=1,故选A. 【答案】A 3.(2013年全国Ⅱ卷)设椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为(). A. B. C. D.

【解析】(法一)由题意可设|PF2|=m,结合条件可知|PF1|=2m,|F1F2|=m,故离心率e=====. (法二)由PF2⊥F1F2可知点P的横坐标为c,将x=c代入椭圆方程可解得y=±,所以|PF2|=.又由∠PF1F2=30°可得 |F1F2|=|PF2|,故2c=·,变形可得(a2-c2)=2ac,等式两边同除以a2,得(1-e2)=2e,解得e=或e=-(舍去). 【答案】D 4.(2017年全国Ⅲ卷)已知椭圆C:+=1(a>b>0)的左,右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为(). A.B.C.D. 【解析】由题意知以A1A2为直径的圆的圆心坐标为(0,0),半径为a. ∵直线bx-ay+2ab=0与圆相切, ∴圆心到直线的距离d==a,解得a=b, ∴=, ∴e==- =-= -=.故选A. 【答案】A 考点二双曲线的标准方程和几何性质 5.(2016年全国Ⅰ卷)已知方程- - =1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(). A.(-1,3) B.(-1,) C.(0,3) D.(0,) 【解析】若已知方程表示双曲线,则(m2+n)(3m2-n)>0,解得-m20,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为(). A.-=1 B.-=1 C.-=1 D.-=1 【解析】因为双曲线C的渐近线方程为y=±x,所以=.又因为椭圆与双曲线的焦点为(±3,0),即c=3,且c2=a2+b2,所以a2=4,b2=5,故双曲线C的方程为-=1. 【答案】B 7.(2017年全国Ⅱ卷)若双曲线C:-=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为().

圆锥曲线光学性质的证明及应用初探

圆锥曲线光学性质及生活中的应用 杭州高级中学高二(12):汪愈超、汤凯楠、王小川学习完圆锥曲线的方程和性质后,课本上有几条未证明的性质引起了我们的兴趣,在反复查找资料,推理演算下,总算是确定了三条待证命题,大致地完成了其证明,并且找到了一些圆锥曲线在实际中的神奇应用。一、圆锥曲线的光学性质 首先说明一下我们要证明的东西,总共有三样: 1 椭圆的光学性质:从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上; (见图1.1) 椭圆的这种光学特性,常被用来设计一些照明设备或聚热装置.例如在F1处放置一个热源,那么红外线也能聚焦于F2处,对F2处的物体加热. 2双曲线的光学性质:从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上;(见图1.2).双曲线这种性质,在天文望远镜的设计等方面,有重大的贡献 3 抛物线的光学性质:从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴(如图1.3) 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对

称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的. 当然,在证明之前,需要把这个物理问题转化为数学问题才行。 二、问题转化及证明 在证明前,如果不知道这三点,是很麻烦的 因为其光学性质的证明都与圆锥曲线上某一点的切线方程有关,所以这三个公式先提前列出 1若点00(,)P x y 是椭圆22 221x y a b +=上任一点,则椭圆过该点的切线方程为: 00221x x y y a b +=。 2若点00(,)P x y 是双曲线22 221x y a b -=上任一点,则双曲线过该点的切线方 程为:00221x x y y a b -= ? 图1.3 F 2 ? ? F 1 图1.2 ? ? A F 1 F 2 D O 图1.1 B

圆锥曲线几何性质总汇

圆锥曲线的几何性质 一、椭圆的几何性质 (以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义 12121212242AF AF a AF AF BF BF a BF BF a +=?? ?+++=?+=?? 即2 4ABF C a = 2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在 12AF F 中 ∵ 2 2 21212 4cos 2PF PF c PF PF θ+-=? ∴ () 2 1212 122cos 2PF PF PF PF PF PF θ?=+-?∴ 2 1221cos b PF PF θ ?=+ ∴ 12 22112sin cos tan 21cos 2 PF F b S b θθθθ-=??=?+ (2)(S ⊿PF1F2)max = max 1 22 c h bc ??= (3 ()()() 2 2 22 2 2 22 12002 2222 2 212 00 4444cos 12222PF PF c a ex a ex c a c PF PF a e x a e x θ+-++---= = =-?-+ 当0x =0时 cos θ有最小值22 2 2a c a - 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F ,连接OM x x x

圆锥曲线光学性质几何证明法

利用反证法证明圆锥曲线的 光学性质 迤山中学数学组 贾浩 2014.1.1

利用反证法证明圆锥曲线的光学性质 反证法又称归谬法,是高中数学证明中常用的一种方法。利用反证法证明问题的思路为:首先在原命题的条件下,假设结论的反面成立,然后推理出明显矛盾的结果,从而说明假设不成立,则原命题得证。 在光的折射定律中,从点P 发出的光经过直线l 折射后,反射光线的反向延长线经过点P 关于直线l 的对称点。 下面结合光的折射定律,利用反证法证明圆锥曲线的光学性质。 一、椭圆的光学性质 从椭圆的一个焦点出发的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点上。 该命题证明如下: 已知椭圆的两个焦点分别为1F 、2F ,P 为椭圆上的一个点,过点P 作椭圆的切线l ,2F 关于切线l 的对称点为'2F ,证明:1F 、P 、'2F 三点共线。 证明 假设'2F 不在1F 、P 所在的直线上,连接1F 、'2F ,交椭圆于M 。 则'' 1212F F MF MF =+, ''1212F F PF PF <+ 由122PF PF a +=,'22PF PF =得 '122PF PF a +=,则'122F F a < 又由122MF MF a +=, '22MF MF < 得 '122MF MF a +>,则 '122F F a <。这与上式矛盾。因此,1F 、P 、'2F 三点共线。

二、双曲线的光学性质 从双曲线的一个焦点出发的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点。 该命题证明如下: 已知双曲线的两个焦点分别为1F 、2F ,P 为双曲线右支上的一个点,过点P 作双曲线的切线l ,2F 关于切线l 的对称点为'2F ,证明:1F 、P 、'2F 三点共线。 证明 假设' 2F 不在1F 、P 所在的直线上,连接1F 、'2F ,交椭圆于M 。 则''1212F F MF MF =-, ''1212F F PF PF >- 由'122PF PF a -=得 '122F F a >。 又由122MF MF a -=,'22MF MF < 得 '122MF MF a -<,则'122F F a <。这与上式矛盾。因此,1F 、P 、'2F 三点共线。 三、抛物线的光学性质 从抛物线的焦点出发的光线,经过抛物线反射后,反射光线平行于抛物线的轴。 该命题证明如下: 已知抛物线焦点分别为F ,直线m 为抛物线的准线, P 为抛物线上的一个点,过点P 作直线m 的垂线,垂足为'P 。过点P 作抛物线的切线l ,F 关于切线l 的对称点为'F ,证明:'F 、P 、'P 三点共线。

圆锥曲线的定义及几何性质

圆锥曲线的定义及几何性质 1. 椭圆 222 2 1x y a b + =和 222 2 x y k a b + =(0)k >一定具有( ) A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长轴长 2. 已知1F 、2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2 ABF ?是正三角形,则这个椭圆的离心率是( ) A . 2 B . 3 C 2 D 3 3. 已知1F 、2F 是椭圆的两个焦点,满足120M F M F ?= 的点M 总在椭圆内部,则椭圆离心率的 取值范围是( )A .(01), B .1(0]2 , C .(02 D .1)2 4. 过椭圆 222 2 1(0) x y a b a b + =>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若 1260F PF ∠=°,则椭圆的离心率为( ) A . 2 B . 3 C .12 D .1 3 5. 已知椭圆 2222 1x y a b +=的左、 右焦点分别为1F 、2F ,且12||2F F c =,点A 在椭圆上,1120AF F F ?= ,2 12AF AF c ?= ,则椭圆的离心率e = ( ) A . 3 B . 2 C 2 D 2 6. 已知P 是以12F F ,为焦点的椭圆 222 2 1(0)x y a b a b + =>>上的一点,若 120 PF PF ?= , 121tan 2 PF F ∠= ,则此椭圆的的离心率为( ) A . 12 B . 23 C .1 3 D 3 7. 已知椭圆 2 2 15 x y m + = 的离心率e 5 =m 的值为( ) A .3 B . 253 或3 C . D 8. 椭圆的长轴为12A A ,B 为短轴的一个端点,若∠012120A BA =,则椭圆的离心率为( ) A . 12 B 3 C 3 D 2 9. 椭圆 222 2 1(0)x y a b a b + =>>的四个顶点为A 、B 、C 、D ,若四边形ABC D 的内切圆恰好过椭 圆的焦点,则椭圆的离心率是( ) A . 2 B . 4 C 2 D 4 10. 设12F F ,分别是椭圆 222 2 1x y a b + =(0a b >>)的左、右焦点,若在直线2 :a l x c = 上存在P (其 中c =),使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( ) A .0, 2? ?? B .0, 3? ? ? C .,12????? D .,13? ???? 11. 椭圆上一点A 看两焦点的视角为直角,设1AF 的延长线交椭圆于B ,又2||||AB AF =,则椭圆的 离心率e =( ) A .2-+ B . C 1- D 12. 椭圆() 222 2 10x y a b a b + =>>的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点满足线 段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) 13. A .02? ? ? B .102? ? ?? ?, C .)11 , D .112 ???? ??, 14. 已知椭圆() 222 2 10x y a b a b + =>>,A 是椭圆长轴的一个端点,B 是椭圆短轴的一个端点,F 为 椭圆的一个焦点. 若AB BF ⊥,则该椭圆的离心率为 ( ) 224416. 在ABC △中,A B B C =,7cos 18 B =- .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离 心率e = . 17. 在平面直角坐标系xOy 中,设椭圆 222 2 1(0) x y a b a b +=>>的焦距为2c ,以点O 为圆心,a 为 半径作圆M .若过点20a P c ?? ? ?? ,作圆M 的两条切线互相垂直,则椭圆的离心率为 . 18. 直线:220l x y -+=过椭圆的左焦点1F 和一个顶点B ,该椭圆的离心率为_________. 19. 设12(0)(0)F c F c -,,,是椭圆 222 2 1(0) x y a b a b + =>>的两个焦点,P 是以12F F 为直径的圆与椭 圆的一个交点,若12 21 2PF F PF F ∠=∠,则椭圆的离心率等于________. 20. 椭圆 222 2 1(0)x y a b a b + =>>的半焦距为c ,若直线2y x =与椭圆一个交点的横坐标恰为c ,椭圆 的离心率为_________ 21. 已知1F ,2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A B ,两点,若 2ABF △是正三角形,则这个椭圆的离心率是_________.

圆锥曲线几何性质总汇

,. 圆锥曲线的几何性质 一、椭圆的几何性质 (以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义 12121212242AF AF a AF AF BF BF a BF BF a +=?? ?+++=?+=?? 即24ABF C a =< 2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在12AF F <中 ∵ 2 2 2 1212 4cos 2PF PF c PF PF θ+-= ? ∴ () 2 1212 122cos 2PF PF PF PF PF PF θ?=+-?- ∴ 21221cos b PF PF θ ?=+ ∴ 12 22112sin cos tan 21cos 2 PF F b S b θθθθ-=??=?+ (2)(S ⊿PF1F2)max = max 1 22 c h bc ??= ()()2 2 2 2 2222 12004444PF PF c a ex a ex c a c +-++---x x

,. 当0x =0时 cos θ有最小值22 2 2a c a - 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F ,连接OM 由已知有 1PF FP = M 为1 F F 中点 ∴ 212OM FF = =()121 2 PF PF +=a 所以M 的轨迹方程为 2 2 2 x y a += 4、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 证明:取1PF 的中点M ,连接OM 。令圆M 的直径1PF ,半径为∵ OM =()211111 2222 PF a PF a PF a r =-=-=- ∴ 圆M 与圆O 内切 ∴ 以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 5、任一焦点⊿PF 1F 2的内切圆圆心为I ,连结PI 延长交长轴于则 ∣IR ∣:∣IP ∣=e 证明:证明:连接12,F I F I 由三角形内角角平分线性质有 ∵ 1212121222F R F R F R F R IR c e PI PF PF PF PF a +=====+ x x y x

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及 其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线的光学性质及其应用 尹建堂 一、圆锥曲线的光学性质 圆锥曲线的光学性质源于它的切线和法线的性质,因而为正确理解与掌握其光学性质,就要掌握其切线、法线方程的求法及性质。 设P()为圆锥曲线(A、B、C不同时为零)上一定点,则在该点处的切线方程为: 。(该方程与已知曲线方程本身相比,得到的规律就是通常所说的“替换法则”,可直接用此法则写出切线方程)。 该方程的推导,原则上用“△法”求出在点P处的切线斜率,进而用点斜式写出切线方程,则在点P处的法线方程为 。 1、抛物线的切线、法线性质 经过抛物线上一点作一条直线平行于抛物线的轴,那么经过这一点的法线平分这条直线和这一点的焦半径的夹角。如图1中。 事实上,设为抛物线上一点,则切线MT的方程可由替换法则,得,即,斜率为,于是得在点M处的法线方程为 令,得法线与x轴的交点N的坐标为,

所以 又焦半径 所以,从而得即 当点M与顶点O重合时,法线为x轴,结论仍成立。 所以过M的法线平分这条直线和这一点的焦半径的夹角。 也可以利用点M处的切线方程求出,则,又 故,从而得 也可以利用到角公式来证明 抛物线的这个性质的光学意义是:“从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴”。 2、椭圆的切线、法线性质 经过椭圆上一点的法线,平分这一点的两条焦点半径的夹角。如图2中 证明也不难,分别求出,然后用到角公式即可获证。 椭圆的这个性质的光学意义是:“从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上”。 3、双曲线的切线、法线性质 经过双曲线上一点的切线,平分这一点的两条焦点半径的夹角,如图3中。仍可利用到角公式获证。 这个性质的光学意义是:“从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是散开的,它们就好像是从另一个焦点射出的一样”。

圆锥曲线经典性质总结证明

圆锥曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求 导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上 根据第8条,证毕 10. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。(点差法)

公开课:圆锥曲线光学性质及其应用

圆锥曲线光学性质及其应用 2019-11-27 学习完圆锥曲线的方程和性质后,课本上有一则阅读材料《圆锥曲线的光学性质及其应用》,使我们了解了圆锥曲线的光学性质这一常见现象,这一节课我们进一步对它进行证明和探究,并对它在数学解题和生产科技等方面的应用有了更深的认识。 一、圆锥曲线的光学性质 1、椭圆的光学性质:从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上; (见图1.1) 椭圆的这种光学特性,常被用来设计一些照明设备或聚热装置.例如在F1处放置一个热源,那么红外线也能聚焦于F2处,对F2处的物体加热. 2、双曲线的光学性质:从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上;(见图1.2).双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用. 3、抛物线的光学性质:从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴(如图1.3) 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的. 要探究圆锥曲线的光学性质,首先必须将这样一个光学实际问题,转化为数学问题,进行解释论证。 二、问题转化及证明 2.1圆锥曲线的切线与法线的定义 切线:设直线l与曲线c交于P,Q两点,当直线l连续变动时,P,Q两点沿着曲线渐渐靠近,一直到P,Q重合为一点M,此时直线l称为曲线c在点M处的切线。 法线:过M与直线l垂直的直线称为曲线c在点M处的法线。

高考数学专题 17 圆锥曲线的几何性质专题

高考专题训练 培优点十七 圆锥曲线的几何性质 1.椭圆的几何性质 例1:如图,椭圆()22 22+10x y a b a b =>>的上顶点、左顶点、左焦点分别为B 、A 、F ,中 心为O ,则:ABF BFO S S =△△( ) A .(2:3 B .() 3:3 C .(2:2 D .() 3:2 【答案】B 【解析】由ABF ABO BFO S S S =-△△△,得()():::ABF BFO ABO BFO BFO S S S S S ab bc bc =-=-△△△△△ 而c a = () :3:3ABF BFO S S =△△,故选B . 2.抛物线的几何性质 例2:已知抛物线()2:20C y px p =>的焦点为F ,准线:1l x =-,点M 在抛物线C 上,点M 在直线:1l x =-上的射影为A ,且直线AF 的斜率为MAF △的面积为( ) A B .C .D .【答案】C 【解析】 设准线l 与x 轴交于点N ,所以2FN =,因为直线AF 的斜率为60AFN ∠=?,

所以4AF =, 由抛物线定义知,MA MF =,且60MAF AFN ∠=∠=?,所以MAF △是以4为边长的正三 2 4=.故选C . 3.双曲线的几何性质 例3:已知点P 是双曲线2213664 x y -=的右支上一点,M ,N 分别是圆()2 2104x y ++=和 () 2 2101x y -+=上的点,则PM PN -的最大值为_________. 【答案】15 【解析】在双曲线22 13664x y -=中,6a =,8b =,10c =, ()110,0F ∴-,()210,0F ,12212PF PF a -==, 11MP PF MF ≤+,22PN PF NF ≥-,112215PM PN PF MF PF NF ∴-≤+-+=. 一、单选题 1.抛物线()220y px p =>上的动点Q 到其焦点的距离的最小值为1,则p =( ) A .12 B .1 C .2 D .4 【答案】C 【解析】抛物线()220y px p =>上的动点Q 到其焦点的距离的最小值即到准线的最小值, 很明显满足最小值的点为抛物线的顶点,据此可知: 12 p =,2p ∴=.本题选择C 选项. 2.设点1F ,2F 是双曲线2 2 13y x -=的两个焦点,点P 是双曲线上一点,若1234PF PF =, 则12PF F △的面积等于( ) A . B . C . D .对点增分集训

圆锥曲线的几何性质

. . . . 圆锥曲线的几何性质 一、椭圆的几何性质(以22a x +22 b y =1(a ﹥b ﹥0 1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义 12121212242AF AF a AF AF BF BF a BF BF a +=?? ?+++=?+=?? 即 2 ABF C 2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ ?b (2)(S ⊿PF1F2)max = bc (3)当P 证明:(1)在 12AF F 中 ∵ 22 2 1212 4cos 2PF PF c PF PF θ+-= ? ∴ () 2 2 1212 122cos 24PF PF PF PF PF PF c θ?=+-?- ∴ 2 1221cos b PF PF θ ?=+ ∴ 122 12sin 21cos PF F b S b θθ=??=+(2)(S ⊿PF1F2)max =max 122 c h bc ??= (3 ()()() 22 22 2 2 22 12002 22212 44cos 22PF PF c a ex a ex c PF PF a e x θ+-++--= = =?+当0x =0时 cos θ有最小值22 2 2a c a - 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M , 则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F ,连接OM 由已知有 1PF FP =∴ 212OM FF ==()1212 PF PF +=a 所以M 的轨迹方程为 4、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2 切 证明:取1PF 的中点M ,连接OM 。令圆M 的直径1PF ,半径为r ∵ OM = ()211111 2222 PF a PF a PF a r =-=-=- ∴ 圆M ∴ 以椭圆的任意焦半径为直径的圆,都与圆x 2 +y 2 =a 2 切 5、任一焦点⊿PF 1F 2的切圆圆心为I ,连结PI 延长交长轴于R , x x x x

相关文档
最新文档