7.平面向量试题的特色

合集下载

平面向量经典试题(含答案)

平面向量经典试题(含答案)

平面向量1如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC ⋅= .〖解析〗在ABC ∆中,有余弦定理得2222cos1207BC AB AC AB AC ︒=+-⋅⋅=,7BC =,由正弦定理得3sin 7C ∠=,则2cos 7C ∠=,在ADC ∆中,由余弦定理求得222132cos 9AD DC AC DC AC C =+-⋅⋅∠=,则133AD =,由余弦定理得891coc ADC ∠=,1388||||cos ,7()3391AD BC AD BC AD BC ⋅=⋅=⨯⨯-=-. 〖答案〗83-.2.)已知AOB ∆,点P 在直线AB 上,且满足2()OP tPA tOB t R =+∈,则PA PB=( )A 、13B 、12C 、2D 、3〖解析〗如图所示,不妨设,OA a OB b ==;找共线,对于点P 在直线AB 上,有AP AB λ=;列方程,因此有AP AO OP =+2a tPA tb =-++,即12a tbAP t-+=+;而AB AO OB a b =+=-+,即有11212tt tλλ⎧=⎪⎪+⎨⎪=⎪+⎩,因此1t =时13λ=.即有PA PB =12.〖答案〗B .3.在△ABC 中,π6A ∠=,D 是BC 边上任意一点(D 与B 、C 不重合),且22||||AB AD BD DC =+⋅,则B ∠等于 ▲ .〖解析〗当点D 无限逼近点C 时,由条件知BD DC ⋅趋向于零,||||AB AC =,即△ABC 是等边三角形.〖答案〗5π12. 4.如右图,在ABC ∆中,04,30AB BC ABC ==∠=,AD 是边BC上的高,则AD AC ⋅的值等于( )ABDCAB O Pab (第2题图)A .0B .4C .8D .-4【答案】B【解析】因为04,30AB BC ABC ==∠=,AD 是边BC 上的高, AD=2BD =1()2442AD AC AD AB BC AD AB AD BC ⋅=⋅+=⋅+⋅=⨯⨯=,选择B 5 在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是( ) A .2AC AC AB =⋅ B . 2BC BA BC =⋅C .2AB AC CD =⋅ D . 22()()AC AB BA BC CD AB⋅⨯⋅=〖解析〗由于 ||||AC AB AC AB ⋅=⋅cso ∠CAB=|AC |2, 可排除A.||||BA BC BA BC ⋅=⋅cos ∠ABC=||AC 2, 可排除B , 而||||AC CD AC CD ⋅=⋅cos(π-∠ACD)=-||||AC CD ⋅cos ∠ACD<0 , |2|AB >0 , ∴|2|AB ≠AC CD ⋅,可知选C . 〖答案〗C . 6)函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于( ).(,2)6A π-- .(,2)6B π-.(,2)6C π-.(,2)6D π解析 直接用代入法检验比较简单.或者设(,)a x y ''=根据定义cos[2()]26y y x x π''-=-+-,根据y 是奇函数,对应求出x ',y '答案 B7.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,且AC AE AF λμ=+,其中,R λμ∈,则+λμ= _________. 答案: 4/3 解析:设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+= 8在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 答案 B9.在△ABC 中,=++===n m AC n AB m AP PR CP RB AR 则若,,2,2 ( ) A .32 B .97 C .98 D .1答案:B10.设两个向量22(2cos )λλα=+-,a 和sin 2mm α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是 ( )A.[-6,1] B.[48], C.(-6,1] D.[-1,6]答案:A11.如图,已知正六边形123456PP P P P P ,下列向量的 数量积中最大的是( )A.1213,PP PPB. 1214,PP PPC. 1215,PP PPD. 1216,PP PP答案 A12.)已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则()A.a ⊥eB.e ⊥(a -e )C.a ⊥(a -e )D.(a +e )⊥(a -e ) 答案:B※※13.已知A ,B ,C 是平面上不共线上三点,动点P 满足⎥⎦⎤⎢⎣⎡++-+-=→→→→OC OB OA OP )21()1()1(31λλλ)0(≠∈λλ且R ,则P 的轨迹一定通过ABC ∆的A .内心 B. 垂心 C.重心 D.AB 边的中点 答案 C14. 如图所示,在△ABO 中,OC =41OA ,OD =21OB ,AD 与BC 相交于点M ,设OA =a ,OB =b .试用a 和b 表示向量______OM a b =+. 解 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m-1)a +n b .AD =OD -OA =21OB -OA =-a +21b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线. ∴存在实数t,使得AM =t AD , 即(m-1)a +n b =t(-a +21b ). ∴(m-1)a +n b =-t a +21t b .⎪⎩⎪⎨⎧=-=-21t n t m ,消去t 得:m-1=-2n ,即m+2n=1. ①又∵CM =OM -OC =m a +n b -41a =(m-41)a +n b .CB =OB -OC =b -41a =-41a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线. 8分∴存在实数t 1,使得CM =t 1CB ,∴(m-41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m , 消去t 1得,4m+n=1 ② 由①②得m=71,n=73, ∴OM =71a +73b .15.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN=2NC ,AM 与BN 相交于点P ,AP ∶PM 的值为______. 解 方法一 设e 1=BM ,e 2=CN , 则AM =AC +CM =-3e 2-e 1, BN =BC +CN =2e 1+e 2.因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使AP =λAM =-3λe 2-λe 1,BP =μBN =2μe 1+μe 2,∴BA =BP -AP =(λ+2μ)e 1+(3λ+μ)e 2,另外BA =BC +CA =2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴AP =54AM ,BP =53BN ,∴AP ∶PM=4∶1. 方法二 设AP =λAM , ∵AM =21(AB +AC )=21AB +43AN , ∴AP =2λAB +43λAN . ∵B 、P 、N 三点共线,∴AP -AB =t(AB -AN ),∴AP =(1+t)AB -t ANa b ∴∴⎪⎪⎩⎪⎪⎨⎧-=+=tt λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM=4∶1.16.设0≤θ<2π,已知两个向量1OP =(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . A.2B.3C.23 D.32答案 C17.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •的最小值为(A) 42- (B)32- (C) 422-+ (D)322-+答案:D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,22221tan 1cos 21tan 1x x ααα--==++.PA PB•22221cos 21x x x x α-=⋅=⋅+,令21t x =+,……使用基本不等式得min ()322PA PB •=-+.18.若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A.)323,⎡-+∞⎣B. )323,⎡++∞⎣C. 7,4⎡⎫-+∞⎪⎢⎣⎭D. 7[,)4+∞ 【答案】B【解析】因为(2,0)F -是已知双曲线的左焦点,所以214a +=,即23a =,所以双曲线方程为2213x y -=,设点P 00(,)x y ,则有220001(3)3x y x -=≥,解得PABO220001(3)3x y x =-≥,因为00(2,)FP x y =+,00(,)OP x y =,所以2000(2)OP FP x x y ⋅=++=00(2)x x ++2013x -=2004213x x +-,此二次函数对应的抛物线的对称轴为034x =-,因为03x ≥,所以当03x =时,OP FP ⋅取得最小值432313⨯+-=323+,故OP FP ⋅的取值范围是[323,)++∞,选B 。

高三数学平面向量坐标运算试题答案及解析

高三数学平面向量坐标运算试题答案及解析

高三数学平面向量坐标运算试题答案及解析1.已知,向量与垂直,则实数的值为()A.B.3C.D.【答案】A【解析】因为所以又向量与垂直,所以,,即,解得:故选A.【考点】向量的数量积的应用.2.已知向量=(5,-3),=(-6,4),则=( )A.(1,1)B.(-1,-1)C.(1,-1)D.(-1,1)【答案】D【解析】根据向量坐标运算法则,=(5,-3)+(-6,4)=(-1,1),选D【考点】平面向量坐标运算.3.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为 .【答案】【解析】由知是的中点,设,则,由题意,,解得.【考点】向量的坐标运算.4.已知,,如果∥,则实数的值等于()A.B.C.D.【答案】D【解析】由题意,即.【考点】向量平行的充要条件.5.若平面向量满足,垂直于轴,,则____【答案】或【解析】设,所以,因为垂直于轴;所以,解得,或.故答案为或【考点】向量的坐标表示;向量垂直.6.向量a=(-1,1)在向量b=(3,4)方向上的投影为________.【答案】【解析】设向量a=(-1,1)与b=(3,4)的夹角为θ,则向量a在向量b方向上的投影为|a|·cos θ===.7.已知=(3,4),=(2,3),=(5,0),则||•()=()A.(12,3)B.(7,3)C.(35,15)D.(6,2)【答案】C【解析】∵=(3,4),=(2,3),=(5,0),∴||=5,+=(7,3),∴||•()=5(7,3)=(35,15)故选C.8.已知向量=(2,1),=10,|+|=,则||=()A.B.C.5D.25【答案】C【解析】∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.9.若向量,则( )A.(1,1)B.(-1,-1)C.(3,7)D.(-3,-7)【答案】B【解析】解:所以选B.【考点】向量的运算.10.已知平面向量,,那么等于()A.B.C.D.【答案】B【解析】,所以,故选B.【考点】平面向量的坐标运算11.已知外接圆的半径为1,圆心为O.若,且,则等于()A.B.C.D.3【答案】D.【解析】因为,所以,所以,为的中点,故是直角三角形,角为直角.又,故有为正三角形,,,与的夹角为,由数量积公式可得选D.【考点】平面向量的线性运算,平面向量的数量积、模及夹角.12.在复平面内为坐标原点,复数与分别对应向量和,则()A.B.C.D.【答案】B【解析】由复数的几何意义知,,,则,所以,故选B.【考点】1.复数的几何意义;2.平面向量的坐标运算;3.平面向量的模13.已知平面向量,,则向量()A.B.C.D.【答案】B【解析】,故选B.【考点】平面向量的坐标运算14.在平面直角坐标平面上,,且与在直线上的射影长度相等,直线的倾斜角为锐角,则的斜率为 ( )A.B.C.D.【答案】C【解析】设直线l的斜率为k,得直线l的方向向量为,再设与的夹角分别为θ1、θ2,则,因为与在直线上的射影长度相等,所以·=·,即|1+4k|=|-3+k|解之得,k=,故选C.【考点】1.向量在几何中的应用;2.平面向量的坐标运算;3.直线的斜率.15.已知向量a=(1,1),b=(2,x).若a+b与4b-2a平行,则实数x的值是( )A.-2B.0C.1D.2【答案】D【解析】由已知得,,因为与平行,则有,解得.【考点】向量共线的坐标表示16.在中,,,,则的大小为()A.B.C.D.【答案】B【解析】,,即,而,,解得,,,,,,故选B.【考点】1.平面向量的坐标运算;2.平面向量的数量积17.设平面向量,,则 ( )A.B.C.D.【答案】D【解析】因为,所以.【考点】1.平面向量的坐标运算;2.平面向量的模18.已知正边长等于,点在其外接圆上运动,则的最大值是 .【答案】【解析】可以考虑建立如图所示的平面直角坐标系,则,所以,显然,所以的最大值是.【考点】平面向量综合运算.19.已知向量,,且//,则等于 ( )A.B.2C.D.【答案】A【解析】因为,向量,,且//,所以,,解得,,即,故选A.【考点】平面向量的坐标运算,共线向量,向量的模.20.已知,且与共线,则y= .【答案】【解析】因为与共线,所以,解得.【考点】平面向量共线的坐标运算21.已知A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量在方向上的投影为__________.【答案】【解析】,,向量在方向上的投影为==.【考点】1、向量的坐标表示;2、向量的投影.22.设平面向量,,则 .【答案】.【解析】,,,.【考点】1.平面向量的坐标运算;2.平面向量的模的计算23.已知向量a=(1,2),b=(x,1),u=a+2b,v=2a-b,且 u//v,则实数x的值是______.【答案】【解析】由,,又,所以,即.【考点】向量的坐标运算.24.已知平面向量,,且,则向量( )A.B.C.D.【答案】A【解析】先用向量的乘积展开,再代入求的坐标,即.【考点】向量的乘积运算.25.已知向量,下列结论中不正确的是()A.B.C.D.【答案】A【解析】根据题意,由于,那么可知,故选项B 正确,对于C,由于成立,根据向量的几何意义可知,垂直向量的和向量与差向量长度相等,故D成立,因此选A.【考点】向量的概念和垂直的运用点评:解决的关键是利用向量的数量积以及向量的共线来得到结论,属于基础题。

《平面向量》热点题型探究

《平面向量》热点题型探究

《平面向量》热点题型探究题型一 向量的概念及线性运算 1.向量的有关概念(1)向量:既有大小又有方向的量.两个向量不能比较大小,但它的模可以比较大小. (2)零向量:模为0的向量,记作0,其方向为任意的,所以0与任意向量平行,其性质有0·a =0,0+a =a .(3)单位向量:模为1个长度单位的向量,与a 方向相同的单位向量为a|a |.2.共线向量(1)概念:若两个非零向量a ,b 的方向相同或相反,则称a 与b 共线,也叫a 与b 平行,规定零向量与任意向量共线.两个向量共线,其所在的直线可能重合也可能平行.(2)共线向量定理:a ∥b (b ≠0)⇔存在唯一实数λ,使得a =λb . (3)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. (4)若A ,B ,C 三点共线且OA →=λOB →+μOC →,则λ+μ=1. 3.平面向量线性运算的两种技巧(1)对于平面向量的线性运算问题,要尽可能转化到三角形或平行四边形中,灵活运用三角形法则、平行四边形法则,紧密结合图形的几何性质进行运算.(2)在证明两向量平行时,若已知两向量的坐标形式,常利用坐标运算来判断;若两向量不是以坐标形式呈现的,常利用共线向量定理来判断.1.有下列命题: ①若|a|=|b|,则a =b ;②若|AB →|=|DC →|,则四边形ABCD 是平行四边形; ③若m =n ,n =k ,则m =k ; ④若a ∥b ,b ∥c ,则a ∥c . 其中假命题的个数是( ) A .1 B .2 C .3D .4C 解析 对于①,|a|=|b|,a ,b 的方向不确定,则a ,b 不一定相等,所以①错误;对于②,若|AB →|=|DC →|,则AB →,DC →的方向不一定相同,所以四边形ABCD 不一定是平行四边形,所以②错误;对于③,若m =n ,n =k ,则m =k ,③正确;对于④,若a ∥b ,b ∥c ,则b =0时,a ∥c 不一定成立,所以④错误.综上,假命题是①②④,共3个.故选C 项.2.如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF →=( )A .34AB →+14AD →B .14AB →+34AD →C .12AB →+AD →D .34AB →+12AD →D 解析 根据题意得AF →=12(AC →+AE →),又AC →=AB →+AD →,AE →=12AB →,所以AF →=12⎝⎛⎭⎫AB→+AD →+12AB →=34AB →+12AD →.故选D 项.3.设e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,若A ,B ,D 三点共线,则k 的值为________.解析 由题意,A ,B ,D 三点共线,故必存在一个实数λ,使得AB →=λBD →.又AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,所以BD →=CD →-CB →=3e 1-2k e 2-(k e 1+e 2)=(3-k )e 1-(2k+1)e 2,所以3e 1+2e 2=λ(3-k )e 1-λ(2k +1)e 2,又e 1与e 2不共线,所以⎩⎪⎨⎪⎧3=λ(3-k ),2=-λ(2k +1),解得k =-94.答案 -944.已知点P 在△ABC 所在的平面内,若2P A →+3PB →+4PC →=3AB →,则△P AB 与△PBC 的面积的比值为________.解析 由2P A →+3PB →+4PC →=3AB →,得2P A →+4PC →=3AB →+3BP →,所以2P A →+4PC →=3AP →,即4PC →=5AP →.所以A ,C ,P 三点共线,且|AP →||PC →|=45,所以S △P AB S △PBC =|AP →||PC →|=45.答案 45题型二 平面向量基本定理平面向量基本定理:若a ,b 是平面内不共线的向量,向量c 是平面内任意一个向量,则存在唯一实数对x ,y ,使c =x a +y b .平面向量基本定理是定义向量坐标的基础,是将平面内任意向量用不共线的平面向量即基底表示出来的基础.5.已知平面直角坐标系内的两个向量a =(m,3m -4),b =(1,2),且平面内的任意向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,4)B .(4,+∞)C .(-∞,4)∪(4,+∞)D .(-∞,+∞)C 解析 平面内的任意向量c 都可以唯一地表示成c =λa +μb ,由平面向量基本定理可知,向量a ,b 可作为该平面所有向量的一组基底,即向量a ,b 是不共线向量.又因为a =(m,3m -4),b =(1,2),则m ×2-(3m -4)×1≠0,即m ≠4,所以m 的取值范围为(-∞,4)∪(4,+∞).故选C 项.6.如图所示,|OA →|=|OB →|=1,|OC →|=3,∠AOB =60°,OB ⊥OC ,设OC →=xOA →+yOB →,则( )A .x =-2,y =-1B .x =-2,y =1C .x =2,y =-1D .x =2,y =1B 解析 过点C 作CD ∥OB 交AO 的延长线于点D ,连接BC ,如图所示.由|OB →|=1,|OC →|=3,∠AOB =60°,OB ⊥OC ,知∠COD =30°.在Rt △OCD 中,可得OD =2CD =2,则OC →=OD →+DC →=OD →+OB →=-2OA →+OB →.故x =-2,y =1.故选B 项.7.在△ABC 中,点P 是AB 上一点,且CP →=23CA →+13CB →,点Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则实数t 的值为________.解析 因为CP →=23CA →+13CB →,所以3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →,所以2AP→=PB →,即点P 为AB 的一个三等分点(靠近点A ).又由题意可知A ,M ,Q 三点共线,则可设AM →=λAQ →,所以CM →=AM →-AC →=λAQ →-AC →=λ⎝⎛⎭⎫12AB →+12AC →-AC →=λ2AB →+λ-22AC →,又CM →=tCP →=t (AP →-AC →)=t ⎝⎛⎭⎫13AB →-AC →=t 3AB →-tAC →,故⎩⎪⎨⎪⎧ λ2=t 3,λ-22=-t ,解得⎩⎨⎧t =34,λ=12.故t 的值是34.答案 34【变式】如图,平行四边形ABCD 的两条对角线相交于点O ,7AE →=5AB →,AD →=4AF →,EF 交AC 于点K ,AK →=λOA →,则实数λ的值为____________.解析 因为AK →=λOA →=-λAO →=-λ2(AB →+AD →),所以AK →=-λ2⎝⎛⎭⎫75AE →+4AF →.又E ,F ,K 三点共线,所以-λ2×⎝⎛⎭⎫75+4=1,解得λ=-1027. 答案 -1027题型三 向量的数量积及应用)1.向量的数量积是一个实数,求向量数量积的三种方法:一是利用向量数量积的定义,a·b =|a||b|cos θ;二是根据向量数量积的几何意义,a·b 等于a 的模与b 在向量a 方向上的投影的乘积;三是建立坐标系,写出向量坐标a =(x 1,y 1),b =(x 2,y 2),a·b =x 1x 2+y 1y 2.在解决与平面几何有关的数量积问题时,充分利用向量的线性运算,将所求向量用共同的基底表示出来,再利用平面向量的数量积运算法则求解.2.向量的投影:|b |cos θ叫向量b 在向量a 方向上的投影,|b |cos θ=a·b|a|.3.若向量a 与b 的夹角为θ,则θ的范围为[0,π],cos θ=a·b|a||b|;若已知向量a =(x 1,y 1),b =(x 2,y 2),向量a 与b 的夹角为θ,则cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22.4.已知非零向量a ,b ,则a ⊥b ⇔a·b =0;已知非零向量a ,b ,若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.5.向量的模是非负数,|a|2=a 2=a·a ;若向量a =(x 1,y 1),则|a |=x 21+y 21.8.已知非零向量a ,b 满足|a|=2|b|,且(a -b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π6B 解析 因为(a -b )⊥b ,所以(a -b )·b =a·b -b 2=0,所以a·b =b 2,所以cos θ=a·b|a|·|b|=|b|22|b|2=12,所以a 与b 的夹角为π3.故选B 项. 9.已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →=( ) A .-3 B .-2 C .2D .3C 解析 因为BC →=AC →-AB →=(1,t -3),所以|BC →|=12+(t -3)2=1,所以t =3,所以AB →·BC →=(2,3)·(1,0)=2.故选C 项.10.已知向量a =(-4,3),b =(6,m ),且a ⊥b ,则m =________.解析 依题意向量a =(-4,3),b =(6,m ),a ⊥b ,则a·b =0,即-4×6+3m =0,即m =8.答案 811.在四边形ABCD 中,AD ∥BC ,AB =23,AD =5,∠A =30°,点E 在线段CB 的延长线上,且AE =BE ,则BD →·AE →=________.解析 如图,因为E 在线段CB 的延长线上,所以EB ∥AD .因为∠DAB =30°,所以∠ABE =30°.因为AE =BE ,所以∠EAB =30°.又因为AB =23,所以BE =2.因为AD =5,所以EB →=25AD →.所以AE →=AB →+BE →=AB →-25AD →.又因为BD →=AD →-AB →,所以BD →·AE →=(AD →-AB →)·⎝⎛⎭⎫AB →-25AD →=AD →·AB →-25AD →2-AB →2+25AD →·AB →=75|AD →|·|AB →|·cos 30°-25×52-(23)2=75×5×23×32-10-12=21-22=-1.答案 -1 【规范演练】1.下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 B 解析 A 项中,零向量与任意向量都共线,故其不可以作为基底;B 项中,不存在实数λ,使得e 1=λe 2,故两向量不共线,故其可以作为基底;C 项中,e 2=2e 1,两向量共线,故其不可以作为基底;D 项中,e 1=4e 2,两向量共线,故其不可以作为基底.故选B 项.2.设a ,b 均为单位向量,则“a 与b 夹角为2π3”是“|a +b |=3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件D 解析 因为a ,b 均为单位向量,若a 与b 夹角为2π3,则|a +b |=|a |2+|b |2+2a·b =1+1+2×1×1×cos 2π3=1,所以由“a 与b 夹角为2π3”不能推出“|a +b |=3”;若|a +b |=3,则|a +b |=|a|2+|b|2+2a·b =1+1+2×1×1×cos 〈a ,b 〉=3,解得cos 〈a ,b 〉=12,即a 与b 夹角为π3,所以由“|a +b |=3”不能推出“a 与b 夹角为2π3”.因此“a 与b 夹角为2π3”是“|a +b |=3”的既不充分也不必要条件.故选D 项.3.已知向量a =(1,2),b =(-2,3),c =(4,5),若(a +λb )⊥c ,则实数λ=( ) A .-12B .12C .-2D .2C 解析 因为a =(1,2),b =(-2,3),所以a +λb =(1-2λ,2+3λ),又(a +λb )⊥c ,所以(a +λb )·c =0,即4(1-2λ)+5(2+3λ)=0,解得λ=-2.故选C 项.4.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A .⎝⎛⎭⎫0,13 B .⎝⎛⎭⎫0,12C .⎝⎛⎭⎫-13,0 D .⎝⎛⎭⎫-12,0 C 解析 由题意得AO →=AC →+CO →,O 在线段CD 上且不与端点重合,所以存在k (0<k <1),使CO →=kCD →,又BC →=3CD →,所以CD →=13BC →=13(AC →-AB →),所以AO →=AC →+k 3(AC →-AB →)=-k 3AB→+⎝⎛⎭⎫1+k 3AC →,又AO →=xAB →+(1-x )AC →,所以x =-k 3,所以-13<x <0.故选C 项. 5.在矩形ABCD 中,|AB →|=4,|AD →|=2.若点M ,N 分别是CD ,BC 的中点,则AM →·MN →=( )A .4B .3C .2D .1C 解析 由题意作出图形,如图所示.由图及题意,可得AM →=AD →+DM →=AD →+12AB →,MN →=CN →-CM →=12CB →-12CD →=-12BC →+12DC →=-12AD →+12AB →.所以AM →·MN →=⎝⎛⎭⎫AD →+12AB →·⎝⎛⎭⎫-12AD →+12AB →=-12·|AD →|2+14·|AB →|2=-12×4+14×16=2.故选C 项. 【跟踪检测】 基础热身1.已知向量BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°A 解析 |BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →|·|BC →|=32.因为0°≤∠ABC ≤180°,所以∠ABC=30°.故选A 项.2.向量a ,b ,c 在正方形网格中的位置如图所示.若向量c =λa +b ,则实数λ=( )A .-2B .-1C .1D .2D 解析 由题中所给图象可得2a +b =c ,又c =λa +b ,所以λ=2.故选D 项. 3.已知平面向量a =(-1,2),b =(2,y ),且a ∥b ,则3a +2b =( ) A .(-1,7) B .(-1,2) C .(1,2)D .(1,-2)D 解析 因为a =(-1,2),b =(2,y ),且a ∥b ,所以-1×y -2×2=0,解得y =-4,故可得3a +2b =3(-1,2)+2(2,-4)=(1,-2).故选D 项.4.设向量a ,b 满足|a +b|=10,|a -b|=6,则a·b =( ) A .1 B .2 C .3D .5A 解析 由|a +b |=10得|a +b |2=10, 即a 2+2a·b +b 2=10,①又|a -b |=6,所以a 2-2a·b +b 2=6,② 由①-②得4a·b =4,则a·b =1.故选A 项.5.已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b|=( ) A .9 B .3 C .109D .310 D 解析 向量a =(2,-4),b =(-3,x ),c =(1,-1),所以2a +b =(1,x -8),由(2a +b )⊥c ,可得1+8-x =0,解得x =9,则|b |=(-3)2+92=310.故选D 项.6.(2019·广东东莞统考)如图所示,△ABC 中,BD →=2DC →,点E 是线段AD 的中点,则AC →=( )A .34AD →+12BE →B .34AB →+BE →C .54AD →+12BE →D .54AD →+BE →C 解析 由题意和图可知,AC →=AD →+DC →,DC →=12BD →,BD →=BE →+ED →,ED →=12AD →,所以AC →=54AD →+12BE →.故选C 项.7.如图,已知|OA →|=|OB →|=1,|OC →|=2,tan ∠AOB =-43,∠BOC =45°,OC →=mOA →+nOB →,则m n=( )A .57B .75C .37D .73A 解析 以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立平面直角坐标系如图所示.因为|OA →|=|OB →|=1,且tan ∠AOB =-43,所以cos ∠AOB =-35,sin ∠AOB =45,所以A (1,0),B ⎝⎛⎭⎫-35,45,又令∠AOC =θ,则θ=∠AOB -∠BOC ,所以tan θ=tan(∠AOB -∠BOC )=-43-11-43=7,又因为点C 在∠AOB 内,所以cos θ=210,sin θ=7210,又|OC →|=2,所以C ⎝⎛⎭⎫15,75,因为OC →=mOA →+nOB →(m ,n ∈R ),所以⎝⎛⎭⎫15,75=(m,0)+⎝⎛⎭⎫-35n ,45n =⎝⎛⎭⎫m -35n ,45n ,即⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧n =74,m =54,所以m n =57.故选A 项.8.已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析 cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3-λ3+11+λ2=12,解得λ=33. 答案339.已知向量a ,b 的夹角为120°,且|a|=2,|b|=4,则b 在a 方向上的投影等于________.解析 因为a·b =2×4cos 120°=-4,所以b 在a 方向上的投影为a·b |a|=-42=-2.答案 -210.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析 由条件知M 是△ABC 的重心,设D 是BC 边的中点,则AB →+AC →=2AD →,而AM →=23AD →,所以2AD →=m ·23AD →,所以m =3.答案 311.在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →,且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为________.解析 如图,△ABC 中,∠ACB 为钝角,AC =BC =1,记NA →=CA →-mCB →,则当N 在D 处,即AD ⊥BC 时,f (m )取得最小值32,因此|AD →|=32,容易得到∠ACB =120°.因为CO →=xCA →+yCB →,且x +y =1,所以O 在边AB 上,所以当CO ⊥AB 时,|CO →|最小,|CO →|min =12.答案 1212.平行四边形ABCD 中,AB =4,AD =2,AB →·AD →=4,点P 在边CD 上,则P A →·PC →的取值范围是________.解析 设|PD →|=x ,x ∈[0,4],则P A →·PC →=(PD →+DA →)·PC →=⎝⎛⎭⎫-x 4AB →-AD →·4-x 4AB →=-x 4×4-x 4AB →2-4-x 4AD →·AB →=-x 4×4-x 4×16-4-x 4×4=x 2-3x -4=⎝⎛⎭⎫x -322-254,所以当x =32时,取最小值-254,当x =4时,取最大值0,即P A →·PC →的取值范围是⎣⎡⎦⎤-254,0. 答案 ⎣⎡⎦⎤-254,0 能力提升13.设平面向量a =(-2,1),b =(1,λ),若a 与b 的夹角为钝角,则λ的取值范围是____________.解析 因为a 与b 的夹角为钝角,所以a ·b <0,且a 与b 不平行,所以有⎩⎪⎨⎪⎧-2+λ<0,-2λ≠1,即λ<2且λ≠-12,所以λ的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,2. 答案 ⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,2 14.已知A B →与A C →的夹角为90°,|A B →|=2,|A C →|=1,AM →=λA B →+μA C →(λ,μ∈R ),且AM →·B C →=0,则λμ的值为________.解析 根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB→=(0,2),AC →=(1,0),BC →=(1,-2).设M (x ,y ),则AM →=(x ,y ),所以AM →·BC →=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM →=λAB →+μAC →,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y x =14. 答案 1415.如图,△ABC 是边长为23的正三角形,P 是以C 为圆心,1为半径的圆上任意一点,则AP →·BP →的取值范围是________.解析 取AB 的中点D ,连接CD ,CP ,则CA →+CB →=2CD →,所以AP →·BP →=(CP →-CA →)·(CP →-CB →)=CP →2-CP →·(CA →+CB →)+CA →·CB →=CP →2-2CD →·CP →+CA →·CB →=1-2×3×1×cos CD →,CP→+(23)2cos π3=7-6cos CD →,CP →,所以当cos CD →,CP →=1时,AP →·BP →取得最小值为1;当cos CD →,CP →=-1时,AP →·BP →取得最大值为13.因此AP →·BP →的取值范围是[1,13].答案 [1,13]16.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求向量a 在b 上的投影;(2)设c =(0,1),若a +b =c ,求α,β的值.解析 (1)a -b =(cos α-cos β,sin α-sin β),则|a -b |=2-2cos (α-β)=2,所以cos(α-β)=0,而0<β<α<π,所以0<α-β<π,所以α-β=π2.所以向量a 在b 上的投影为|a |cos a ,b =a ·b |b |=cos(α-β)=0. (2)由a +b =c 得⎩⎪⎨⎪⎧ cos α+cos β=0, ①sin α+sin β=1, ②①2+②2得cos(α-β)=-12,而0<α-β<π,故α-β=2π3,而由①得α+β=π,解得α=5π6,β=π6.。

高三数学平面向量坐标运算试题答案及解析

高三数学平面向量坐标运算试题答案及解析

高三数学平面向量坐标运算试题答案及解析1.平面向量,,(),且与的夹角等于与的夹角,则 .【答案】2.【解析】由题意得:,选D.法二、由于OA,OB关于直线对称,故点C必在直线上,由此可得【考点】向量的夹角及向量的坐标运算.2.平面向量,,(),且与的夹角等于与的夹角,则()A.B.C.D.【答案】 D.【解析】由题意得:,选D.法二、由于OA,OB关于直线对称,故点C必在直线上,由此可得【考点】向量的夹角及向量的坐标运算.3.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为 .【答案】【解析】由知是的中点,设,则,由题意,,解得.【考点】向量的坐标运算.4.已知向量a=(cos ,sin ),b=(-sin ,-cos ),其中x∈[,π].(1)若|a+b|=,求x的值;(2)函数f(x)=a·b+|a+b|2,若c>f(x)恒成立,求实数c的取值范围.【答案】(1)x=或x=(2)(5,+∞)【解析】(1)∵a+b=(cos -sin ,sin -cos ),∴|a+b|==,由|a+b|=,得=,即sin 2x=-.∵x∈[,π],∴π≤2x≤2π.因此2x=π+或2x=2π-,即x=或x=.(2)∵a·b=-cos sin -sin cos =-sin 2x,∴f(x)=a·b+|c+b|2=2-3sin 2x,∵π≤2x≤2π,∴-1≤sin 2x≤0,∴2≤f(x)=2-3sin 2x≤5,∴[f(x)]max=5.又c>f(x)恒成立,因此c>[f(x)]max ,则c>5.∴实数c的取值范围为(5,+∞).5.向量a=(-1,1)在向量b=(3,4)方向上的投影为________.【答案】【解析】设向量a=(-1,1)与b=(3,4)的夹角为θ,则向量a在向量b方向上的投影为|a|·cos θ===.6.若向量a=(x-1,2),b=(4,y)相互垂直,则9x+3y的最小值为________.【答案】6【解析】由a⊥b得,4(x-1)+2y=0,即2x+y=2,∴9x+3y=32x+3y≥2=2=6.当且仅当“32x=3y”时,即y=2x时,上式取“=”.此时x=,y=1.7.若向量,满足条件,则x=()A.6B.5C.4D.3【答案】A【解析】∵,,∴8=(8,8)﹣(2,5)=(6,3)∵∴12+3x=30∴x=6故选A8.四边形是平行四边形,,,则= ()A.B.C.D.【答案】(A)【解析】因为.故选(A).【考点】1.向量的加减.2.向量的相等.9.在平面直角坐标系中,为坐标原点,直线与圆相交于两点,.若点在圆上,则实数()A.B.C.D.【答案】C【解析】设,将直线方程代人,整理得,,所以,,.由于点在圆上,所以,,解得,,故选.【考点】直线与圆的位置关系,平面向量的坐标运算.10.已知向量=(,),=(,),若,则=.【答案】【解析】由已知.,解得,.【考点】平面向量的坐标运算.11.已知向量若,则m=______.【答案】-3【解析】根据向量加法的坐标运算得,,因为,故,故填-3【考点】向量加法向量共线12.设向量,满足,,且与的方向相反,则的坐标为【答案】【解析】设,∵与的方向相反,故又∵,则,解得,,故答案为.【考点】共线向量,平面向量的坐标运算.13.已知向量a=(1,m),b=(m,2),若a∥b,则实数m等于()A.-B.C.-或D.0【答案】C【解析】由a∥b,得m2-2=0,解得m=±.故选C.14.若向量a=(2,3),b=(x,-9),且a∥b,则实数x=________.【答案】-6【解析】a∥b,所以2×(-9)-3x=0,解得x=-6.15.若向量=(2,3),=(4,7),则=________.【答案】(-2,-4)【解析】=+=-=(-2,-4).16.在平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则=________.【答案】(-3,-5)【解析】由题意,得=-=-=(-)-=-2=(1,3)-2(2,4)=(-3,-5).17.在△ABC中,已知a、b、c分别为内角A、B、C所对的边,S为△ABC的面积.若向量p =(4,a2+b2-c2),q=(1,S)满足p∥q,则C=________.【答案】【解析】由p=(4,a2+b2-c2),q=(1,S)且p∥q,得4S=a2+b2-c2,即2abcosC=4S=2absinC,所以tanC=1.又0<C<π,所以C=.18.已知a=(sin α,sin β),b=(cos(α-β),-1),c=(cos(α+β),2),α,β≠kπ+(k∈Z).(1)若b∥c,求tan α·tan β的值;(2)求a2+b·c的值.【答案】(1)-3(2)-1【解析】(1)若b∥c,则2cos(α-β)+cos(α+β)=0,∴3cos αcos β+sin αsin β=0,∵α,β≠kπ+ (k∈Z),∴tan αtan β=-3.(2)a2+b·c=sin2α+sin2β+cos(α-β)cos(α+β)-2=sin2α+sin2β+cos2αcos2β-sin2αsin2β-2=sin2α+cos2αsin2β+cos2αcos2β-2=sin2α+cos2α-2=1-2=-1.19.已知点A(-1,5)和向量a=(2,3),若=3a,则点B的坐标为().A.(7,4)B.(7,14)C.(5,4)D.(5,14)【答案】D【解析】设B(x,y),由=3a,得解得20.已知点点是线段的等分点,则等于.【答案】【解析】由题设,,,,……,,…… , .所以,,,,……,,…… , ,= = ,=所以答案是:【考点】1、等差数列的前项和;2、向量的坐标运算;3、向量的模.21.如图,已知圆,四边形ABCD为圆的内接正方形,E,F分别为边AB,AD的中点,当正方形ABCD绕圆心转动时,的取值范围是()A.B.C.D.【答案】B【解析】因为圆的半径为2,所以正方形的边长为.因为.所以==.所以.故选B.【考点】1.向量的和差.2.向量的数量积.3.由未知线段转化为已知线段.4.化归思想.22. .若向量,则A.B.C.D.【答案】B【解析】【考点】向量的坐标运算.23.若向量,且与的夹角为则 .【答案】(-3,-6)【解析】由与的夹角为知,【考点】向量数量积的性质和向量的坐标运算.24.向量,,则()A.B.C.D.【答案】A【解析】,故选A.【考点】平面向量的减法运算25.在平面直角坐标系中,已知向量若,则x=( ) A.-2B.-4C.-3D.-1【答案】D【解析】∵,∴,则,所以,又,∴,.【考点】1、向量的坐标运算;2、向量共线的坐标表示.26.设、是平面内两个不平行的向量,若与平行,则实数 .【答案】【解析】不妨假设,则,因为,所以.【考点】平面向量的坐标运算.27.已知外接圆的半径为1,圆心为O.若,且,则等于()A.B.C.D.3【答案】D.【解析】因为,所以,所以,为的中点,故是直角三角形,角为直角.又,故有为正三角形,,,与的夹角为,由数量积公式可得选D.【考点】平面向量的线性运算,平面向量的数量积、模及夹角.28.已知正方体的棱长为,,点N为的中点,则()A.B.C.D.【答案】A【解析】以为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,a),N(a,0,),(a,a,0),设M(x,y,z),因为,所以(x-0,y-0,z-a)=(a-x,a-y,0-z)即,解得,即M(,,),所以=,故选A.【考点】空间向量的坐标运算和向量的模.29.已知向量,,且,则等于()A.B.C.D.【答案】A【解析】,,且与共线,所以,故选A.【考点】1.共线向量;2.平面向量的坐标运算30.已知向量a=(1,1),b=(2,x).若a+b与4b-2a平行,则实数x的值是( )A.-2B.0C.1D.2【答案】D【解析】由已知得,,因为与平行,则有,解得.【考点】向量共线的坐标表示31.已知.(1)若,求的值;(2)若,且,求的值.【答案】(1);(2)7.【解析】(1)利用向量数量积的坐标表示,可转化为三角函数,然后利用利用三角函数的相关公式对其变形,则可求解;(2)利用向量数量积的坐标表示,可转化为角的三角函数,然后利用角之间的关系,使用两角和与差的三角函数相关公式可求解.试题解析:(1)解:(1)∵∴(2)∵∴,,==7【考点】平面向量的数量积、两角和与差的三角函数、同角三角函数关系式.32.设平面向量,,则 ( )A.B.C.D.【答案】D【解析】因为,所以.【考点】1.平面向量的坐标运算;2.平面向量的模33.已知向量=(cosθ,sinθ),向量=(,-1),则|2-|的最大值与最小值的和是()A.4B.6C.4D.16【答案】C【解析】因为|2-|,故其最大值为,最小值为,它们的和为,选C.【考点】平面向量坐标运算、平面向量的模、两角差的正弦定理.34.已知平面向量,,且,则向量()A.B.C.D.【答案】A【解析】,,且,,解得,,故,故选A.【考点】1.平面向量垂直;2.平面向量的坐标运算35.已知是正三角形,若与向量的夹角大于,则实数的取值范围是__________.【答案】【解析】建立如图所示坐标系,不妨设,则,所以,,由与向量的夹角大于,得,即,故答案为.【考点】平面向量的坐标运算,平面向量的数量积、夹角、模.36.已知,,,为坐标原点.(Ⅰ),求的值;;(Ⅱ)若,且,求与的夹角.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求、的坐标,,利用三角函数公式化简求得;(Ⅱ)利用已知条件求,确定的值,在由求解.试题解析:(Ⅰ),,,∴,.(Ⅱ)∵,,,,即,,又,,又,,,∴.【考点】平面向量的坐标运算,向量的夹角与模.37.已知向量,向量,则的最大值和最小值分别为()A.B.C.D.【答案】B【解析】,所以;.【考点】本小题主要考查平面向量坐标运算,求向量的模.38.已知向量,,,若∥,则=___ ..【答案】5【解析】因为,向量,,,所以,,又∥,所以,,故答案为5.【考点】平面向量的坐标运算39.已知平面向量,,如果向量与平行,那么与的数量积等于( )A.B.C.D.【答案】D【解析】,,∴,.∵与平行,∴,解得.∴.∴.故选D.【考点】向量的概念及其与运算,考查向量平行,考查两个向量的数量积.40.已知向量,,若,则=()A.-4B.-3C.-2D.-1【答案】B【解析】由.故选B.【考点】向量的坐标运算41.已知的三个内角所对的边分别为a,b,c,向量,,且.(Ⅰ)求角的大小;(Ⅱ)若向量,,试求的取值范围【答案】(Ⅰ) . (Ⅱ).【解析】(Ⅰ)由题意得,即. 3分由余弦定理得,. 6(Ⅱ)∵, 7∴.∵,∴,∴.∴,故. 12分【考点】平面向量的坐标运算,和差倍半的三角函数公式,正弦型函数图象和性质,余弦定理的应用。

高二数学平面向量试题答案及解析

高二数学平面向量试题答案及解析

高二数学平面向量试题答案及解析1.已知则 ,.【答案】;【解析】由三边可知,以向量为邻边的平行四边形是菱形,夹角为,,为另一对角线长度为1【考点】向量运算与三角形法则2.已知,向量的夹角为120°,且,则实数t的值为()A.-2B.-1C.1D.2【答案】B【解析】【考点】向量的数量积运算3.已知点,曲线C:恒过定点B,P为曲线C上的动点且的最小值为2,则()A.﹣2B.﹣1C.2D.1【答案】D【解析】曲线C:恒过点B,则令,可得,即,又点,设,则,由于在(0,+∞)上有最小值2,且,故是的极值点,即最小值点.,恒成立,在(0,+∞)上是增函数,所以没有最小值;故不符合题意;当a>0,时,,函数在是减函数,在是增函数,所以有最小值为,即,解得;故选D.【考点】平面向量数量积的运算.4.已知平面向量,且,则实数的值为()A.1B.4C.D.【答案】D【解析】因为,所以.故选D.【考点】向量平行的充要条件.5.已知菱形的边长为,,则()A.B.C.D.【答案】D【解析】.故D正确.【考点】1向量的加减法;2向量的数量积.6.如图,设为内的两点,且,=+,则的面积与的面积之比为()A.B.C.D.【答案】B【解析】设,则,由平行四边形法则知,所以,同理,故.故答案为:B.【考点】平面向量共线.【思路点睛】首先,利用向量的运算法则——平行四边形法则作出P,利用同底的三角形的面积等于高的比求出,然后再平行四边形法则作出Q,同理可求出,再将两个式子相比,即可求出的面积与的面积之比.7.已知平面向量,,且//,则()A.B.C.D.4【答案】C【解析】两向量平行坐标满足【考点】向量平行的判定8.设,,且,则锐角为()A.B.C.D.【答案】C【解析】由,得,即,由二倍角公式得,故选C.【考点】1、向量的坐标运算;2、向量共线的基本定理.【思路点晴】本题主要考查的向量的基本概念与简单运算、向量的坐标运算,属于容易题.本题通过向量共线,得,代入坐标运算的公式;再由二倍角公式,得到关于角的三角函数值,从而求得锐角的值.9.已知向量,,若与共线,则的值为()A.B.2C.-D.-2【答案】D【解析】,,若与共线,所以有【考点】向量共线与坐标运算10.(本小题满分12分)已知非零向量满足,且.(1)求;(2)当时,求向量与的夹角的值.【答案】(1)(2)【解析】(1)本题考察的是求向量的模,根据题目所给条件很容易得到,即可得到。

专题平面向量常见题型与解题指导

专题平面向量常见题型与解题指导

专题平面向量常见题型与解题指导Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#平面向量常见题型与解题指导一、考点回顾1、本章框图2、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2、掌握向量的加法和减法的运算法则及运算律。

3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。

4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。

7、掌握正、余弦定理,并能初步运用它们解斜三角形。

8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。

3、热点分析对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。

对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。

本章的另一部分是解斜三角形,它是考查的重点。

总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。

考查的重点是基础知识和基本技能。

4、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。

平面向量试题的命题走向分析

平面向量试题的命题走向分析
1、一般来说,平面向量试题的命题走向要求考生掌握平面向量的基本概念,包括向量定义,向量的概念,向量的模,向量的表示法等。

2、平面向量的试题考查内容还应结合平面向量的运算,比如向量的加减法,向量的数量积、外积、内积等,以及矩阵之间的转换,向量的凸性,角度、平行性、垂直性等等。

3、此外,在考查平面向量的试题中,还可以要求考生根据实际情况,结合平面向量的知识,进行深入思考,从而做出正确的选择。

比如在几何形状(如圆、椭圆、抛物线)的显示中,以及图像的表示、处理中,以及物理现象的分析中等,充分利用平面向量的知识,使得试题更加贴近实际,结果更客观、准确,对于考察学生在实际应用中熟练掌握和使用平面向量的能力有很好的帮助。

;。

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析1.设A(a,1)、B(2,b)、C(4,5)为坐标平面上三点,O为坐标原点,若与在方向上的投影相同,则a与b满足的关系式为()A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=14【答案】A【解析】据投影定义知,=⇒·-·=0⇒·=0,⇒4(a-2)+5(1-b)=0⇒4a-5b=3.2. (08·浙江)已知a、b是平面内两个互相垂直的单位向量,若向量c满足(a-c)·(b-c)=0,则|c|的最大值是()A.1B.2C.D.【答案】C【解析】由(a-c)·(b-c)=0得a·b-(a+b)·c+c2=0,即c2=(a+b)·c,故|c|·|c|≤|a+b|·|c|,即|c|≤|a+b|=,故选C.3. (2010·金华十校)△ABO三顶点坐标为A(1,0),B(0,2),O(0,0),P(x,y)是坐标平面内一点,满足·≤0,·≥0,则·的最小值为________.【答案】3【解析】∵·=(x-1,y)·(1,0)=x-1≤0,∴x≤1,∴-x≥-1,∵·=(x,y-2)·(0,2)=2(y-2)≥0,∴y≥2.∴·=(x,y)·(-1,2)=2y-x≥3.4.已知=(6,1),=(x,y),=(-2,-3),若∥,⊥.(1)求x、y的值;(2)求四边形ABCD的面积.=||·||=×4×8=16.【答案】(1)x=2,y=-1或x=-6,y=3(2)S四边形ABCD【解析】(1)=++=(4+x,y-2),∴=(-4-x,2-y),由∥得,x(2-y)+y(4+x)=0①=+=(6+x,y+1),=+=(x-2,y-3),由⊥得,(6+x)(x-2)+(y+1)(y-3)=0②由①②解得x=2,y=-1或x=-6,y=3.(2)当x=2,y=-1时,=(8,0),=(0,4),∴S=||·||=×8×4=16;四边形ABCD当x=-6,y=3时,=(0,4),=(-8,0),∴S=||·||=×4×8=16.四边形ABCD5.已知a=(,-1),b=.(1)求证:a⊥b;(2)若存在不同时为0的实数k和t,使x=a+(t-3)b,y=-ka+tb,且x⊥y,试求函数关系式k =f(t);(3)求函数k=f(t)的最小值.【答案】(1)见解析(2)k=t(t-3).(3)-.【解析】(1)由a·b=-=0,得a⊥b.(2)由x⊥y得,x·y=[a+(t-3)b]·(-ka+tb)=0,即-ka2-k(t-3)a·b+ta·b+t(t-3)b2=0.-ka2+t(t-3)b2=0.∴k=t(t-3).(3)k=t(t-3)=-,所以当t=时,k取最小值-.6.已知||=1,||=,⊥,点C在∠AOB内,∠AOC=30°,设=m+n,则=()A.B.3C.3D.【答案】B【解析】∵·=m||2+n·=m,·=m·+n·||2=3n,∴=S=1,∴=3.7.已知直线ax+by+c=0与圆O:x2+y2=4相交于A、B两点,且|AB|=2,则·=________.【答案】-2【解析】∵|AB|=2,|OA|=|OB|=2,∴∠AOB=120°.∴·=||·||·cos120°=-2.8.一条宽为km的河,水流速度为2km/h,在河两岸有两个码头A、B,已知AB=km,船在水中最大航速为4km/h,问该船从A码头到B码头怎样安排航行速度可使它最快到达彼岸B码头?用时多少?【答案】船实际航行速度大小为4km/h,与水流成120°角时能最快到达B码头,用时半小时【解析】如图所示,设为水流速度,为航行速度,以AC和AD为邻边作▱ACED且当AE与AB重合时能最快到达彼岸.根据题意AC⊥AE,在Rt△ADE和▱ACED中,||=||=2,||=4,∠AED=90°.∴||==2,sin∠EAD=,∴∠EAD=30°,用时0.5h.答:船实际航行速度大小为4km/h,与水流成120°角时能最快到达B码头,用时半小时.9.已知△ABC中,点D在BC边上,且=2,=r+s,则r+s的值是() A.B.C.-3D.0【答案】D【解析】∵=-,=-.∴=--=--.∴=-,∴=-.又=r+s,∴r=,s=-,∴r+s=0.10.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则〈a,b〉=()A.150°B.120°C.60°D.30°【答案】B【解析】∵|a|=|b|=|c|≠0,且a+b=c∴如图所示就是符合题设条件的向量,易知OACB是菱形,△OBC和△OAC都是等边三角形.∴〈a,b〉=120°.11.P是△ABC所在平面上一点,若·=·=·,则P是△ABC的()A.外心B.内心C.重心D.垂心【答案】D【解析】由·=·得·(-)=0,即·=0,∴PB⊥CA.同理PA⊥BC,PC⊥AB,∴P为△ABC的垂心.12.已知向量a、b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角为()A.B.C.D.【答案】C【解析】根据向量数量积的意义,a·b=|a|·|b|·cosθ=4cosθ=2及0≤θ≤π,可得θ=,选C.13. (09·天津文)若等边△ABC的边长为2,平面内一点M满足=+,则·=______________.【答案】-2【解析】∵=+,∴=-=-,=-=-.∴·=- 2- 2+·=-×12-×12+×12×=-2.14.已知|a|=,|b|=3,a与b夹角为45°,求使a+λb与λa+b的夹角为钝角时,λ的取值范围.【答案】<λ<且λ≠-1.【解析】由条件知,cos45°=,∴a·b=3,设a+λb与λa+b的夹角为θ,则θ为钝角,∴cosθ=<0,∴(a+λb)(λa+b)<0.λa2+λb2+(1+λ2)a·b<0,∴2λ+9λ+3(1+λ2)<0,∴3λ2+11λ+3<0,∴<λ<.若θ=180°时,a+λb与λa+b共线且方向相反,∴存在k<0,使a+λb=k(λa+b),∵a,b不共线,∴,∴k=λ=-1,∴<λ<且λ≠-1.本题易忽视θ=180°时,也有a·b<0,忘掉考虑夹角不是钝角而致误.15.已知a,b是两个非零向量,证明:当b与a+λb(λ∈R)垂直时,a+λb的模取到最小值.【答案】当b与a+λb(λ∈R)垂直时,a+λb的模取到最小值.【解析】当b与a+λb(λ∈R)垂直时,b·(a+λb)=0,∴λ=-.|a+λb|2=λ2b2+2λa·b+a2=b2=b22+a2-2.当λ=-时,|a+λb|取得最小值.即当b与a+λb(λ∈R)垂直时,a+λb的模取到最小值.[点评]本题是将向量、函数的知识有机地结合起来,考查了向量与函数知识的综合应用.要注意a+λb的模是一个关于λ的二次函数.16. .已知a,b均是非零向量,设a与b的夹角为θ,是否存在θ,使|a+b|=|a-b|成立,若存在,求出θ的值;若不存在,请说明理由.【答案】θ∈∪时,能使|a+b|=|a-b|成立【解析】假设满足条件的θ存在,由|a+b|=|a-b|,得(a+b)2=3(a-b)2.∴|a|2+2a·b+|b|2=3(|a|2-2a·b+|b|2),即|a|2-4a·b+|b|2=0,∴|a|2-4|a||b|cosθ+|b|2=0,由Δ≥0,得(4cosθ)2-4≥0,解得cosθ≤-或cosθ≥,又cosθ∈[-1,1],∴-1≤cosθ≤-或≤cosθ≤1,∵θ∈[0,π],∴θ∈∪,故当θ∈∪时,能使|a+b|=|a-b|成立.17.已知a=(2,1),b=(x,-2)且a+b与2a-b平行,则x等于()A.-6B.6C.-4D.4【答案】C【解析】∵(a+b)∥(2a-b).又a+b=(2+x,-1),2a-b=(4-x,4),∴(2+x)×4-(-1)×(4-x)=0,解得x=-4.18.已知向量a=(1,3),b=(2,1),若a+2b与3a+λb平行,则λ的值等于()A.-6B.6C.2D.-2【答案】B【解析】a+2b=(5,5),3a+λb=(3+2λ,9+λ),由条件知,5×(9+λ)-5×(3+2λ)=0,∴λ=6.19. (09·北京文)已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么()A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向【答案】D【解析】c=(k,0)+(0,1)=(k,1),d=(1,0)-(0,1)=(1,-1),c∥d⇒k×(-1)-1×1=0,∴k=-1.∴c=(-1,1)与d反向,∴选D.20.若三点A(-2,-2),B(0,m),C(n,0)(mn≠0)共线,则+的值为________.【答案】-【解析】∵A、B、C共线,∴∥,∵=(2,m+2),=(n+2,2),∴4-(m+2)(n+2)=0,∴mn+2m+2n=0,∵mn≠0,∴+=-.21.设向量a=(1,-3),b=(-2,4),若表示向量4a,3b-2a,c的有向线段首尾相接能构成三角形,则向量c为()A.(1,-1)B.(-1,1)C.(-4,6)D.(4,-6)【答案】D【解析】设c=(x,y),∵a=(1,-3),b=(-2,4),∴4a=(4,-12),3b-2a=(-8,18).又由表示向量4a,3b-2a,c的有向线段首尾相接能构成三角形,则有4a+(3b-2a)+c=0,即(4,-12)+(-8,18)+(x,y)=(0,0),∴x=4,y=-6,∴c=(4,-6).22.如图所示,点O是正六边形ABCDEF的中心,则以图中点A、B、C、D、E、F、O中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量外,与向量共线的向量共有()A.6个B.7个C.8个D.9个【答案】D【解析】与向量共线的向量有:,,,,,,,,,故共有9个23.在下列判断中,正确的是()①长度为0的向量都是零向量;②零向量的方向都是相同的;③单位向量的长度都相等;④单位向量都是同方向;⑤任意向量与零向量都共线.A.①②③B.②③④C.①②⑤D.①③⑤【答案】D【解析】由定义知①正确,②由于两个零向量是平行的,但不能确定是否同向,也不能确定是哪个具体方向,故不正确.显然,③、⑤正确,④不正确,所以答案是D.24.下列命题正确的是()A.向量a与b共线,向量b与c共线,则向量a与c共线B.向量a与b不共线,向量b与c不共线,则向量a与c不共线C.向量与是共线向量,则A、B、C、D四点一定共线D.向量a与b不共线,则a与b都是非零向量【答案】D【解析】当b=0时,A不对;如图a=,c=,b与a,b与c均不共线,但a与c共线,∴B错.在▱ABCD中,与共线,但四点A、B、C、D不共线,∴C错;若a与b有一个为零向量,则a与b一定共线,∴a,b不共线时,一定有a与b都是非零向量,故D正确.25.如图所示,点O为正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形.在图中所示的向量中:(1)分别写出与,相等的向量;(2)写出与共线的向量;(3)写出与的模相等的向量;(4)向量与是否相等?【答案】(1) =,=;(2)与共线的向量为:,,;(3)||=||=||=||=||=||=||=||;(4)不相等【解析】(1) =,=;(2)与共线的向量为:,,;(3)||=||=||=||=||=||=||=||;(4)不相等26.已知两个力F1、F2的方向互相垂直,且它们的合力F大小为10N,与力F1的夹角是60°,求力F1、F2的大小.【答案】力F1,F2的大小分别为5N和5N.【解析】设表示力F1,表示力F2,以OA,OB为邻边作平行四边形OACB,则表示合力F,由题意易得||=||cos60°=5,||=||sin60°=5,因此,力F1,F2的大小分别为5N和5N.27.若E,F,M,N分别是四边形ABCD的边AB,BC,CD,DA的中点,求证:=.【答案】略【解析】如图所示,连结AC,在△DAC中,∵N,M分别是AD,CD的中点,∴∥,且||=||,且与的方向相同.同理可得||=||且与的方向相同,故有||=||,且与的方向相同,∴=.28.化简-++的结果等于()A.B.C.D.【答案】B【解析】原式=(+)+(+)=+0=.29..如图,在平行四边形ABCD中,下列结论中错误的是()A.=B.+=C.-=D.+=0【答案】C【解析】A显然正确.由平行四边形法则知B正确.C中-=,故C错误.D中+=+=0.30.在平面上有A,B,C三点,设m=+,n=-,若m与n的长度恰好相等,则有()A.A,B,C三点必在一条直线上B.△ABC必为等腰三角形且∠B为顶角C.△ABC必为直角三角形且∠B为直角D.△ABC必为等腰直角三角形【答案】C【解析】以,为邻边作平行四边形ABCD,则m=+=,n=-=-=,由m,n的长度相等可知,两对角线相等,因此平行四边形一定是矩形.∴选C.。

高一数学平面向量坐标运算试题答案及解析

高一数学平面向量坐标运算试题答案及解析1.已知是同一平面内的三个向量,其中.(Ⅰ)若,且,求向量;(Ⅱ)若,且与垂直,求与的夹角的正弦值.【答案】(Ⅰ)或;(Ⅱ).【解析】(Ⅰ)因为是在坐标前提下解决问题,所以求向量,即求它的坐标,这样就必须建立关于坐标的方程;(Ⅱ)求与的夹角的正弦值,首先应想到求它们的余弦值,如何求,还是要建立关于它的方程,可由与垂直关系,确立方程来解决问题.试题解析:(Ⅰ),可设, 1分∴,, 2分∴ 4分∴或. 6分(Ⅱ)∵与垂直,∴,即 8分∴,∴, 10分,所以与的夹角的正弦值 12分【考点】平面向量的坐标运算和向量之间的关系.2.在直角坐标系中,已知点,点在三边围成的区域(含边界)上(1)若,求;(2)设,用表示,并求的最大值.【答案】(1),(2)1.【解析】(1)本小题中因为思路一即化为坐标运算:从而求得x,y,即可求出其模长,思路二先化向量运算,再化坐标运算:即可求得模长;(2)本小题因为所以则,两式相减得,m-n=y-x,令y-x=t,以下把问题转化为目标函数为t的线性规划问题加以解决.试题解析:(1)解法一:又解得x=2,y=2,即所以解法二:则,所以所以(2),两式相减得,m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.【考点】平面向量的线性运算与坐标运算;线性规划问题.3.已知(1)若,求x的范围;(2)求的最大值以及此时x的值.【答案】(1);(2),或【解析】(1)先利用向量的数量积的坐标表示把的解析式表示出来,得,然后解关于的一个一元二次不等式得到的范围,然后再解三角不等式即可。

(2)用换元法求的最大最小值,然后求的取值即可。

试题解析:解:(1)由题意,即,;(2)∵令,则,当,即或时,.【考点】1、向量的坐标运算;2、三角不等式;3、换元法求函数的最值;4.已知点,,向量,若,则实数的值为.【答案】4【解析】由题知,=(2,3),由向量共线的充要条件及得,,解得=4考点:点坐标与向量坐标关系;向量平行的条件5.已知向量,,函数.(1)若,求的最大值并求出相应的值;(2)若将图象上的所有点的纵坐标缩小到原来的倍,横坐标伸长到原来的倍,再向左平移个单位得到图象,求的最小正周期和对称中心;(3)若,求的值.【答案】(1),;(2),(3)。

高一数学讲义 第七章 平面向量

高一数学讲义 第七章 平面向量7.1 向量的基本概念及表示现实生活中,有些量在有了测定单位之后只需用一个实数就可以表示,例如温度,时间,面积,这些只需用一个实数就可以表示的量叫作标量.还有些量不能只用一个实数表示,例如位移,力,速度等既有大小又有方向的量,这些既有大小又有方向的量叫作向量.向量既有大小又有方向,因此向量不能比较大小.数学中常用平面内带有箭头的线段来表示平面向量.以线段的长来表示向量的大小:以箭头所指的方向(即从始点到终点的方向)来表示向量的方向.一般地,以点P 为始点,点Q 为终点的向量记作PQ .为书写简便,在不强调向量的起点与终点时,向量也可以用一个小写的字母并在上面画一个小箭头来表示,如a .PQ 的大小叫作PQ 的模,记作PQ ,类似地,a 的模记作a . 1.零向量:长度为0的向量叫做零向量,记作0;0的方向是任意的. 2.单位向量:长度为1的向量叫做单位向量.3.平行向量:方向相同或相反的向量叫做平行向量(也叫共线向量). 4.相等向量:长度相等且方向相同的向量叫做相等向量.5.负向量:与a 的模相等,方向相反的向量叫作a 的负向量,记作a -.我们规定:0的相反向量仍是零向量.易知对任意向量a 有()a a --=.向量共线与表示它们的有向线段共线不同:向量共线时表示向量的有向线段可以是平行的,不一定在一条直线上;而有向线段共线则线段必须在同一条直线上.规定。

与任一向量平行.图7-1图7-1三个向量a 、b 、c 所在的直线平行,易知这三个向量平行,记作a b c ∥∥,我们也可以称这三个向量共线.例l .如图7-2所示,128A A A 、是O 上的八个等分点,则在以128A A A 、及圆O 九个点中任意两点为起点与终点的向量中,模等于半径的向量有多少??A 8A 7A 6A 5A 4A 3A 2A 1图7-2解:(1)模等于半径的向量只有两类,一类是()128i OA i =、共8个;另一类是()128iAO i =、也有8个.两类合计16个. (2)以128A A A 、为顶点的O 的内接正方形有两个,一个是正方形1257A A A A ;另一个是正方形2468A A A A .在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的√2倍的向量共有42216⨯⨯=个. 注意:(1)在模等于半径的向量个数的计算中,要计算i OA 与()128i AO i =、两类.一般地我们易想到()128i OA i =、这8个,而易遗漏()128iAO i =、这8个.(2的两个向量,例如边13A A 对应向量13A A 与31A A ,因此与(1)一样,在解题过程中主要要防止漏算.认为满足条件的向量个数为8是错误的.例2.在平面中下列各种情形中,将各向量的终点的集会分别构成什么图形? (1)把所有单位向量的起点平移到同一点O .(2)把平行于直线l 的所有单位向量的起点平移到直线l 上的p 点. (3)把平行于直线l 的所有向量的起点平移到直线l 的点p . 解:(1)以点O 为圆心,l 为半径的圆.(2)直线l 上与点p 的距离为1个长度单位的两个点. (3)直线l .例3.判断下列命题的真假:①直角坐标系中坐标轴的非负轴都是向量; ②两个向量平行是两个向量相等的必要条件;③向量AP 与CD 是共线向量,则A 、B 、C 、D 必在同一直线上; ④向量a 与向量b 平行,则a 与b 的方向相同或相反; ⑤四边形ABCD 是平行四边形的宽要条件是AB DC =.解:①直角坐标系中坐标轴的非负半轴,虽有方向之别,但无大小之分,故命题是错误的.②由于两个向量相等,必知这两个向量的方向与长度均一致,故这两个向量一定平行,所以,此命题正确; ③不正确.AB 与CD 共线,可以有AB 与CD 平行;④不正确.如果其中有一个是零向量,则其方向就不确定;⑤正确.此命题相当于平面几何中的命题:四边形ABCD是平行四边形的充要条件是有一组对边平行且相等.1.下列各量中是向量的有__________.(A)动能(B)重量(C)质量(D)长度(F)作用力与反作用力(F)温度2.判断下列命题是否正确,若不正确,请简述理由.①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④共线的向量,若起点不同,则终点一定不同.3.回答下列问题,并说明理由.(1)平行向量的方向一定相同吗?(2)共线向量一定相等吗?(3)相等向量一定共线吗?不相等的向量一定不共线吗?4.命题“a b∥,b c∥()∥,则a bA.总成立B.当0a ≠时成立C.当0b ≠时成立D.当0c ≠时成立5.已知正六边形ABCDEF(见图7-3),在下列表达式中:①BC CD EC+;③FE ED++;②2BC DC+;④2ED FA-;与AC相等的有__________.CF图737.2向量的加减法两个向量可以求和.一般地,对于两个互不平行的向量a、b,以A为共同起点平移向量,有AB a=,=叫作a和b这两个向量的和,即AD b=,则以AB、AD为邻边的平行四边形ABCD的对角线AC c+=.求两个向量和的运算叫做向量的加法.上述求两个向量的和的方法称为向量加法的平行四a b c边形法则,见图7-4.平行四边形法则B图74又AD BC = AB BC AC ∴+=由此发现,当第二个向量的始点与第一个向量的终点重合时.这两个向量的和向量即为第一个向量的始点指向第二个向量终点的向量.此法则称为向量加法的三角形法则,地图7-5.三角形法则图75特殊地.求两个平行向量的和,也可以用三角形法则进行(如图7-6):(b )(a )a BA图76显然,对于任何a ,有0a a +=;()0a a +-=. 对于零向量与任一向量a ,有00a a a +=+=.向量的加法具有与实数加法类似的运算性质,向量加法满足交换律与结合律: 交换律:a b b a +=+结合律:()()a b c a b c ++=++与实数的减法相类似,我们把向量的减法定义为向量加法的逆运算.若向量a 与b 的和为向量c ,则向量b 叫做向量c 与a 的差,记作b c a =-.求向量差的运算叫做向量的减法.由向量加法的三角形法则以及向量减法的定义.我们可得向量减法的三角形法则,其作法:在平面内取一点O,作OA a=-,即a b-声可以表示为从向量b的终点指向向=,则BA a b=,OB b量a的终点的向量.注意差向量的“箭头”指向被减向量,见图7-7.CB图77此外,我们可以先做向量b的负向量OB b′,可根据向量加法的平行四边形法则得()=-OC a b=+-.易知向量OC BA=,因此,()+-=-.a b a b例1.如图7-8所示,已知向量a,b,c,试求作和向量a b c++.图78分析:求作三个向量的和的问题,首先求作其中任意两个向量的和,因为这两个向量的和仍为一个向量,然后再求这个新向量与另一个向量的和.即可先作a b+,再作()++.a b c解:如图7-9所示,首先在平面内任取一点O,作向量OA a=+,=,再作向量AB b=,则得向量OB a b然后作向量BC c=++即为所求.=,则向量OC a b cO图79例2.化简下列各式(1)AB CA BC ++; (2)OE OF OD DO -+--.解:(1)原式()0AB BC CA AB BC CA AC CA AC AC =++=++=+=-= (2)原式()()0OE OF OD DO EO OF EF =+-+=+-=例3.用向量方法证明:对角线互相平分的四边形是平行四边形.分析:要证明四边形是平行四边形只要证明某一组对边平行且相等.由相等向量的意义可知,只需证明其一组对边对应的向量是相等向量.已知:如图7-10,ABCD 是四边形,对角线AC 与BD 交于0,且AO OC =,DO OB =.ODCBA图710求证:四边形ABCD 足平行四边形. 证明:由已知得AO OC =,BO OD =,AD AO OD OC BO BO OC BC =+=+=+=,且A D B C ,,,不在同一直线上,故四边形ABCD 是平行四边形.例4.已知平面上有不共线的四点O A B C ,,,.若320OA OB OC -+=,试求AB BC的值.解:因为23OA OC OB +=,所以()2OB OA OC OB -=-.于是有2AB BC =-.因此2AB BC=.基础练习1.若对n 个向量12n a a a ,,,存在n 个不全为零的实数12n k k k ,,,,使得11220n n k a k a k a +++=成立,则称向量12n a a a ,,,为“线性相关”,依此规定,能说明()110a =,,()211a =-,,()322a =,“线性相关”的实数123k k k ,,依次可以取____________________(写出一组数值即可,不必考虑所有情况).2.已知矩形ABCD 中,宽为2,长为AB a =,BC b =,AC c =,试作出向量a b c ++,并求出其模的大小.3.设a ,b 为两个相互垂直的单位向量.已知OP a =,OR ra kb =+.若PQR △为等边三角形,则k ,r 的取值为( )A.k r == B.k r =C.k r ==D.k r = 4.若A B C D 、、、是平面内任意四点,则下列四式中正确的是( )①AC BD BC AD +=+ ②AC BD DC AB -=+ ③AB AC DB DC --=④AB BC AD DC +-=A .1B .2C .3D .45.设a 表示“向东走10km ”,b 表示“5km ”,c 表示“向北走10km ”,d 表示“向南走5km ”.说明下列向量的意义.(1)a b +;(2)b d +;(3)d a d ++.6.在图7-11的正六边形ABCDEF 中,AB a =,AF b =,求AC ,AD ,AE .FC图7117.3 实数与向量的乘法如图7-12,已知非零向量a ,可以作出a a a ++和()()()a a a -+-+-.P Q M N aaa-a图712aOC OA AB BC a a a =++=++,简记3OC a =;同理有()()()3PN PQ QM MN a a a a =++=-+-+-=-.观察得:3a 与a 方向相反相反且33a a -=.一般地,实数λ与向量a 的积是一个向量,记作:a λ.a λ的模与方向规定如下:(1)a a λλ=;(2)a λ的方向定义为:0λ>时a λ与a i 方向相同;0λ<时a λ与a i 方向相反;0λ=或0a =时规定:0a λ=.以上规定的实数与向量求积的运算叫作实数与向量的乘法(简称向量的数乘).向量数乘的几何意义就是:把向量a 沿向量a 的方向或反方向放大或缩小,a λ与a 是互相平行的向量.对于任意的非零向量a ,与它同方向的单位向量叫做向量a 的单位向量,记作0a .易知01a a a =.向量共线定理:如果有一个实数λ,使()0b a a λ=≠,那么b 与a 是共线向量;反之,如果b 与()0a b ≠是共线向量,那么有且只有一个实数λ,使得b a λ=.通过作图,可以验证向量数乘满足以下运算定律:当m 、n ∈R 时,有 1.第一分配律()m n a ma na +=+. 2.第二分配律()m a b ma mb +=+. 3.结合律()()m na mn a =. 例1.计算:(1)()()63292a b a b -+-+;(2)原式12711332236227a a b b a a b ⎛⎫⎛⎫=-+--++ ⎪ ⎪⎝⎭⎝⎭;(3)()()()64222a b c a b c a c -+--+--+. 解:(1)原式18121893a b a b b =---+=-. (2)原式12711332236227a a b b a a b ⎛⎫⎛⎫=-+--++ ⎪ ⎪⎝⎭⎝⎭17732367a b a b ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ 77106262b a a b =+--=. (3)原式66648442a bc a b c a c =-+-+-+-()()()64468642a a a b b c c c =-++-++-- 62a b =+.例2.已知O 为原点,A ,B ,C 为平面内三点,求证A ,B ,C 三点在一条直线上的充要条件是OC OA OB αβ=+,且αβ∈R ,,1αβ+=.分析:证明三点共线可从三点构成的其中两个向量存在数乘关系.证明必要条件也是从向量共线时向量的数乘关系入手.证明:必要性.设A B C ,,三点共线,则AC 与AB 共线.于是存在实数λ,使AC AB λ=. 而AC OC OA =-,AB OB OA =-,()OC OA OB OA λ∴-=-.()1OC OB OA λλ∴=+-. 令λβ=,1λα-=,有()11αβλλ+=-+=, OC OA OB αβ∴=+,且1αβ+=.充分性.若OC OA OB αβ=+,且1αβ+=,则()1OC OA OB ββ=-+,()OC OA OB OA β=+-,()OC OA OB OC β-=-,AC AB β∴=,β∈R . AC ∴与AB 共线,而A 为AC 与AB 的公共端点,A B C ∴,,三点在一条直线上.在证明必要性时,A B C ,,三点共线还可用AB kBC =,AC kBC =表示.本题的结论还可有更一般的形式:A B C 、、三点在一条直线上的充要条件是存在实数h ,k ,l ,使0hOA kOB lOC ++=,且1h k l ++=,l k h ,,中至少有一个不为0.例3.如图7-13,设O 为ABC △内一点,PQ BC ∥,且PQt BC=,,OB b =,OC c =,试求OP ,OQ . 解:由平面几何知,APQ ABC ⨯△∽△,且对应边之比为t ,图713故AP AQ PQt AB AC BC===, 又A P B 、、与A Q C 、、分别共线,即知 AP t AB =,AQ t AC =.()()OP OA AP OA t AB OA t OB OA a t b a ∴=+=+=+-=+-,即()1OP t a tb =-+,()()OQ OA AQ OA t AC OA t OC OA a t c a =+=+=+-=+-, 即()1OQ t a c =-+.例4.设两非零向量1e 和2e 不共线,(1)如果12AB e e =+,1228BC e e =+,()123CD e e =-,求证A B D ,,三点共线. (2)试确定实数k ,使12ke ke +共线. (1)证明12AB e e =+,()121212283355BD BC CD e e e e e e AB =+=++-=+=,AB BD ∴,共线,又有公共点B A B D ∴,,三点共线.(2)解12ke e +与12e ke +共线,∴存在λ使()1212ke e e ke λ+=+, 则()()121k e k e λλ-=-,由于1e 与2e 不共线, 只能有010k k λλ-=⎧⎨-=⎩则1k =±.例5.在ABC △中,F 是BC 中点,直线l 分别交AB AF AC ,,于点D ,G ,E (见图7-14).如果AD AB λ=,AE AC μ=,λ,μ∈R .证明:G 为ABC △重心的充分必要条件是113λμ+=.l GF E DCB A图714解:若G 为ABC △重心,则()221332AG AF AB AC ==⋅+=13AD AE λμ⎛⎫+ ⎪ ⎪⎝⎭. 又因点D G E ,,共线,所以,()113AD AE AG t AD t AE λμ⎛⎫=+-=+ ⎪ ⎪⎝⎭, 因AD ,AE 不共线,所以,13t λ=且113t μ=-,两式相加即得113λμ+=. 反之,若113λμ+=,则()2xAG xAF AB AC ==+()12x AD AE t AD t AE λμ⎛⎫=+=+- ⎪ ⎪⎝⎭, 所以,2x t λ=且12x t μ=-,相加即得23x =,即G 为ABC △重心. 基础练习1.已知向量a 、b 是两非零向量,在下列四个条件中,能使a 、b 共线的条件是( ) ①234a b e -=且23a b e +=-;②存在相异实数λ、u ,使0a ub λ+=; ③0xa yb +=(其中实数x y 、满足0x y +=); ④已知梯形ABCD 中,其中AB a =、CD b =. A .①② B .①③C .②④D .③④2.判断下列命题的真假:(1)若AB 与CD 是共线向量,则A B C D ,,,四点共线. (2)若AB BC CA ++=0,则A B C ,,三点共线. (3)λ∈R ,则a a λ>.(4)平面内任意三个向量中的每一个向量都可以用另外两个向量的线性组合表示. 3.已知在ABC △中,D 是BC 上的一点,且BDDCλ=,试求证:1AB AC AD λλ+=+. 4.已知3AD AB =,3DE BC =.试判断AC 与AE 是否共线.5.已知在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,求证:四边形ABCD 是梯形.6.已知()2cos A αα,()2cos B ββ,()10C -,是平面上三个不同的点,且满足关系式CA BC λ=,求实数λ的取值范围.7.已知梯形ABCD 中,2AB DC =,M N ,分别是DC AB 、的中点,若1AB e =,2AD e =,用1e ,2e 表示DC BC MN 、、.8.四边形ABCD 是一个梯形,AB CD ∥且2AB CD =,M N 、分别是DC 和AB 的中点,已知AB a =,AD b =,试用a ,b 表示BC 和MN .9.已知a b 、是不共线的非零向量,11c a b λμ=+,22d a b λμ=+,其中1122λμλμ、、、为常数,若c d ma nb +=+,求m n 、的值.10.设a 、b 是不共线的两个非零向量,OM ma =,ON nb =,OP a b αβ=+,其中m n αβ、、、均为实数,0m ≠,0n ≠,若M P N 、、三点共线,求证:1mnαβ+=.11.在ABC △中,BE 是CD 交点为P .设AB a =,AC b =,AP c =,AD a λ=,(01λ<<),()01AE b μμ=<<,试用向量a ,b 表示c .12.在平面直角坐标系中,O 为坐标原点,设向量()12OA =,,()21OB =-,若OP xOA yOB =+且12x y ≤≤≤,则求出点P 所有可能的位置所构成的区域面积.7.4 向量的数量积数量积定义:一般地.如果两个非零向量a 与b 的夹角为α.我们把数量cos a b α⋅叫做a 与b 的数量积(或内积),记作:a b ⋅,即:cos a b a b α⋅=⋅,其中记法“a b ⋅”中间的“⋅”不可以省略,也不可以用“×”代替.特别地,a b ⋅可记作2a .规定:0与任何向量的数量积为0.非零向量夹角的范围:0≤口≤Ⅱ.投影的定义:如果两个非零向量a 与b 的夹角为α,则数量cos b θ称为向量b 在a 方向上的投影.注意:投影是一个数量.数量积的几何意义:如图7-15,我们把cos b α<叫做向量b 在a 方向上的投影,即有向线段1OB 的数量.图715当π02α<≤时,1OB 的数量等于向量1OB 的模1OB ; 当ππ2α<≤时,1OB 的数量等于向量1OB 的模-1OB ; 当π2α=时,1OB 的数量等于零. 当然,cos a α即为a 在b 方向上的投影.综上,数量积的几何意义:a b ⋅等于其中一个向量a 的模a 与另一个向量b 在a 的方向上的投影cos b α的乘积.向量的数量积的运算律: ①a b b a ⋅=⋅②()()()a b b a b λλλ⋅⋅=⋅(λ为实数)③()a b c a c b c +⋅=⋅+⋅ 鉴于篇幅这里仅证明性质②:证明:(1)若0λ>,()cos a b a b λλθ⋅=,()cos a b a b λλθ⋅=,()cos a b a b λλθ⋅=,(2)若0λ<,()()()cos πcos cos a b a b a b a b λλθλθλθ⋅=-=--=,()cos a b a b a b λλλθ⋅=⋅=,()()()cos πcos a b a b a b λλθλθ⋅=-=--=cos a b λθ. (3)若0λ=,则()()()0a b a b a b λλλ⋅=⋅=⋅=. 综合(1)、(2)、(3),即有()()()a b a b a b λλλ⋅=⋅=⋅.例1.已知4a =,5b =,当(1)a b ∥,(2)a b ⊥,(3)a 与b 的夹角为30︒时,分别求a 与b 的数量积.解:(1)a b ∥,若a 与b 同向,则0θ=︒,cos04520a b a b ∴⋅=⋅︒=⨯=; 若a 与b 反向,则180θ=︒,()cos18045120a b a b ∴⋅=⋅︒⨯⨯⨯-=-. (2)当a b ⊥时,90θ=︒,cos900a b a b ∴⋅=⋅︒=.(3)当a 与b 的夹角为30︒时,cos3045a b a b ⋅=⋅︒=⨯= 例2.空间四点A B C D 、、、满足3AB =,7BC =,11CD =,9DA =,则AC BD ⋅的取值有多少个?解:注意到2222311113079+==+,由于0AB BC CD DA +++=, 则()()2222222DA DA AB BC CDAB BC CD AB BC BC CD CD AB ==++=+++⋅+⋅+⋅()()2222AB BC CD AB BC BC CD =-+++⋅+,即222220AC BD AD BC AB CD ⋅=+--=,AC BD ∴⋅只有一个值0.例3.已知a b 、都是非零向量,且3a b +与75a b -垂直,4a b -与72a b -垂直,求a b 、的夹角. 解:由()()223750716150a b a b a a b b +⋅-=⇒+⋅-= ①()()22472073080a b a b a a b b -⋅-=⇒-⋅+=②两式相减:22a b b ⋅=代入①或②得:22a b =. 不妨设a b 、的夹角为θ,则221cos 22a b ba bbθ⋅===,又因为0πθ≤≤,60θ∴=︒.例4.在凸四边形ABCD 中,P 和Q 分别为对角线BD 和AC 的中点,求证:2222224AB BC CD DA AC BD PQ +++=++.证明:联结BQ ,QD ,因为BP PQ BQ +=,DP PQ DQ +=, 所以()()2222BQ DQ BP PQ DP PQ +=+++ 222222BP DP PQ BP PQ DP PQ =+++⋅+⋅()22222BP DP PQ BP DP PQ =++++⋅ 2222BP DP PQ =++①又因为BQ QC BC +=,BQ QA BA +=,0QA QC +=, 同理222222BA BC QA QC BQ +=++② 222222CD DA QA QC QD +=++③由①、②、③可得()()2222222224222BA BC CD QA BQ QD AC BP PQ ++=++=++= 2224AC BD PQ ++.得证.例5.平面四边形ABCD 中,AB a =,BC b =,CD c =,DA d =,且a b b c c d d a ⋅=⋅=⋅=⋅,判断四边形ABCD 的形状.证明:由四边形ABCD 可知,0a b c d +++=(首尾相接)()a b c d ∴+=-+,即()()22a bc d +=+展开得222222aa b b c c d d +⋅+=+⋅+a b c d ⋅=⋅,222a b c d ∴+=+①同理可得2222a dbc +=+② ①-②得2222b a ac =⇒=,b d ∴=,ac =,即AB CD =,BC DA =, 故四边形ABCD 是平行四边形.由此a c =-,bd =-.又a b b c ⋅=⋅,即()0b a c -=()20b a ∴⋅=即a b AB BC ⊥⇒⊥, 故四边形ABCD 是矩形.例6.已知非零向量a 和b 夹角为60︒,且()()375a b a b +⊥-,求证:()()472a b a b -⊥-.证明:因为a 和b 夹角为60︒,所以1cos602a b a b a b ⋅=⋅⋅︒=⋅;又因为()()375a b a b +⊥-,所以,即()()3750a b a b +⋅-=.22222217161571615781502a ab b a a b b a a b b +⋅-=+⨯⋅-=+⋅-=. ()()7150a b a b ∴+⋅-=,0a b ∴-=,即a b =.因为()()22222214727308730871582a b a b a a b b a a b b a a b b -⋅-=-⋅+=-⨯+=-+,把a b =代入上式消去b 得()()2247271580a b a b a a a a -⋅-=-+=.所以()()472a b a b -⊥-.基础练习1.已知a b c 、、是三个非零向量,则下列命题中真命题的个数为( ) ①a b a b a b ⋅=⋅⇔∥; ②a b 、反向a b a b ⇔⋅=-⋅; ③a b a b a b ⊥⇔+=-; ④a b a c b c =⇔⋅=⋅. A .1B .2C .3D .42.已知向量i j ,为相互垂直的单位向量,28a b i j +=-,816a b i j -=-+,求a b ⋅.3.如图7-16所示,已知平行四边形ABCD ,AB a =,AD b =,4a=,2b =,求:OA OB ⋅.C图7164.设6a =,10b =,46a b -=,求a 和b 的夹角θ的余弦值. 5.已知a b ⊥,2a =,3b =,当()()32a b a b λ-⊥+时,求实数λ的值.6.已知不共线向量a ,b ,3a =,2b =,且向量a b +与2a b -垂直.求:a 与b 的夹角θ的余弦值. 7.已知3a =,4b =,且a 与b 不共线,k 为何值时,向量a kb +与a kb -互相垂直? 8.在ABC △中,已知4AB AC ⋅=,12AB BC ⋅=-,求AB .9.在ABC △中,AB a =,BC b =,且0a b ⋅>,则ABC △的形状是__________. 10.已知向量()24a =,,()11b =,.若向量()b a b λ⊥+,则实数λ的值是__________.11.如图7-17,在四边形ABCD 中,4AB BD DC ++=,0AB BD BD DC ⋅=⋅=,4AB BD BD DC ⋅+⋅=,求()AB DC AC +⋅的值.图717DCBA能力提高12.如图7-18,在Rt ABC △中,已知BC a =,若长为2a 的线段PQ 以点A 为中点.问PQ 与BC 的夹角θ为何值时,BP CQ ⋅的值最大?并求出这个最大值.PQ图71813.已知ABC △中满足()2ABAB AC BA BC CA CB =⋅+⋅+⋅,a b c 、、分别是ABC △的三边.试判断ABC △的形状并求sin sin A B +的取值范围.14.设边长为1的正ABC △的边BC 上有n 等分点,沿点B 到点C 的方向,依次为121n P P P -,,,,若1121n n S AB AP AP AP AP AC -=⋅+⋅++⋅,求证:21126n n S n-=.15.在ABC △中,AB a =,BC c =,CA b =,又()()()123c b b a a c ⋅⋅⋅=∶∶∶∶,则ABC △三边长之比a b c =∶∶__________.16.在向量a b c ,,之间,该等式()()())132a b c a b b c c a ⎧++=⎪⎨⋅⋅⋅=-⎪⎩∶∶∶成立,当1a =时,求b 和c 的值.17.若a b c ,,中每两个向量的夹角均为60︒,且4a =,6b =,2c =,求a b c ++的值. 7.5 向量的坐标表示及其运算向量的坐标表示在平面直角坐标系中,每一个点都可用一对实数()x y ,来表示,那么,每一个向量可否也用一对实数来表示?前面的平面向量分解告诉我们,只要选定一组基底,就有唯一确定的有序实数对与之一一对应. 我们分别选取与x 轴、y 轴方向相同的单位向量i ,j 作为基底,由平面向量的基本定理.对于任一向量a ,存在唯一确定的实数对()x y ,使得()a xi y j x y =+∈R ,,我们称实数对()x y ,叫向量a 的坐标,记作()a x y =,.其中x 叫向量a 在x 轴上的坐标,y 叫向量a 在y 轴上的坐标,见图7-19.图719注意:(1)与a 相等的向量的坐标也是()x y ,.(2)所有相等的向量坐标相同;坐标相同的向量是相等的向量. 平面向量的坐标运算(1)设()11a x y =,,()22b x y =,,则()1212a b x x y y +=++,. (2)设()11a x y =,,()22b x y =,,则()1212a b x x y y -=--,. (3)设()11A x y ,,()22B x y ,,则()2121AB OB OA x x y y =-=--,. (4)设()11a x y =,,λ∈R ,则()a x y λλλ=,.(5)设()11a x y =,,()22b x y =,,则()1212a b x x y y ⋅=+. 向量平行的坐标表示设()11a x y =,,()22b x y =,,且0b ≠,则()1212a b x x y y =+∥. 向量的平行与垂直的充要条件设()11a x y =,,()22b x y =,,且0b ≠,0a ≠则 12210a b b a x y x y λ⇔=⇔-=∥. 121200a b a b x x y y ⊥⇔⋅=⇔+=.重要的公式(1)长度公式:2221a a a x y ===+()()11a x y =,(2)夹角公式:()())1122cos a x y b x y θ===,,,.(3)平面两点间的距离公式: (()())1122A B d AB AB AB x A x y B xy ==⋅=,,,,.(4)不等式:cos a b a b a b θ⋅=≥.例1.已知()12a a a =,,()12b b b =,,且12210a b a b -≠,求证:(1)对平面内任一向量()12c c c ,,都可以表示为()xa yb x y +∈R ,的形式; (2)若0xa yb +=,则0x y ==.证明:(1)设c xa yb =+,即()()()()1212121122c c x a a y b b a x b y a x b y =+=++,,,,, 111222.a xb yc a x b y c +=⎧∴⎨+=⎩,12210a b a b -≠,∴上述关于x y ,的方程组有唯一解.1221122112211221.c b c b x a b a b a c a c y a b a b -⎧=⎪-⎪⎨-⎪=⎪-⎩,1221122112211221c b c b a c a c c a b a b a b a b a b --∴=+--. (2)由(1)的结论,0c =,即120c c ==,则 122112210c b c b x a b a b -==-,122112210a c a c y a b a b -==-,0x y ∴==. 小结:证明(1)的过程就是求实数x ,y 的过程,而12210a b a b -≠是上面二元一次方程组有唯一解的不可缺少的条件.另外,本题实际上是用向量的坐标形式表述平面向量基本定理.其中1x λ=,2y λ=,这里给出了一个具体的求12λλ,的计算方法.例2.向量()10OA =,,()11OB =,,O 为坐标原点,动点()P x y ,满足0102OP OA OP OB ⎧⋅⎪⎨⋅⎪⎩≤≤≤≤,求点()Q x y y +,构成图形的面积.解:由题意得点()P x y ,满足0102x x y ⎧⎨+⎩≤≤≤≤,令x y uy v +=⎧⎨=⎩,则点()Q u v ,满足0102u v u -⎧⎨⎩≤≤≤≤,在uOv 平面内画出点()Q u v ,构成图形如图7-20所示,∴其面积等于122⨯=.图720例3.在直角坐标系中,已知两点()11A x y ,,()22B x y ,;1x ,2x 是一元二次方程222240x ax a -+-=两个不等实根,且A B 、两点都在直线y x a =-+上. (1)求OA OB ⋅;(2)a 为何值时OA 与OB 夹角为π3. 解:(1)12x x 、是方程222240x ax a -+-=两个不等实根,()224840a a ∴∆=-->解之a -<()212142x x a =-,12x x a +=又A B 、两点都在直线y x a =-+上,()()()()2212121212142y y x a x a x x a x x a a ∴=-+-+=-++=- 121224OA OB x x y y a ∴⋅=+=-(2)由题意设1x =,2x =112y x a x ∴=-+==,同理21y x =(()22212121224OA OB xx x x x x x ∴==+=+-=当OA 与OB夹角为π3时,π1cos 4232OA OBOA OB ⋅==⨯= 242a ∴-=解之(a =- a ∴=即为所求. 例4.已知()10a =,,()21b =,. ①求3a b +;②当k 为何实数时,ka b -与3a b +平行,平行时它们是同向还是反向?解:①()()()31032173a b +=+=,,,,2373a b ∴+=+ ②()()()102121ka b k k -=-=--,,,. 设()3ka b a b λ-=+,即()()2173k λ--=,,, 12731313k k λλλ⎧=-⎪-=⎧⎪∴⇒⎨⎨-=⎩⎪=-⎪⎩.故13k =-时,它们反向平行.例5.对于向量的集合(){}221A v x y x y ==+,≤中的任意两个向量12v v 、与两个非负实数αβ、;求证:向量12v v αβ+的大小不超过αβ+.证明:设()111v x y =,,()222v x y =,,根据已知条件有:22111x y +≤,22221x y +≤, 又因为(12v v αβα+==其中12121x x y y +所以12v v αβααβαβ+=+=+≤. 基础练习1.已知()21a =,,()34b =-,,求a b +,a b -,34a b +的坐标. 2.设O 点在ABC △内部,且有230OA OB OC ++=,求ABC △的面积与AOC △的面积的比. 3.已知平行四边形ABCD 的三个顶点A B C ,,的坐标分别为(-2,1),(-1,3),(3,4),求顶点D 的坐标.4.已知向量i ,j 为相互垂直的单位向量,设()12a m i j =+-,()1b i m j =+-,()()a b a b +⊥-,求m 的值.5.已知等腰梯形ABCD ,其中AB CD ∥,且2DC AB =,三个顶点()12A ,,()21B ,,()42C ,,求D 点的坐标.6.如图7-21所示,已知()20OA =,,(1OB =,将BA 绕着B 点逆时针方向旋转60︒,且模伸长到BA 模的2倍,得到向量BC .求四边形AOBC 的面积S .图7217.如图7-22所示,已知四边形ABCD 是梯形,AD BC ∥,2BC AD =,其中()12A ,,()31B ,,()24D ,,求C 点坐标及AC 的坐标.图7228.已知向量()2334a x x x =+--,与AB 相等,其中()12A ,,()32B ,,求x . 9.平面内有三个已知点()12A -,,()70B ,,()56C -,,求 (1)AB ,AC ;(2)AB AC +,AB AC -;(3)122AB AC +,3AB AC -. 10.已知向量()12a =,,()1b x =,,2u a b =+,2v a b =-,且u v ∥,求x . 11.已知()23a =,,()14b =-,,()56c =,,求()a b c ⋅,和()a b c ⋅⋅.12.已知两个非零向量a 和b 满足()28a b +=-,,()64a b -=--,,求a 与b 的夹角的余弦值. 能力提高13.已知平面上三个向量a ,b ,c 均为单位向量,且两两的夹角均为120︒,若()1ka b c k ++>∈R ,求k 的取值范围.14.已知OA ,OB 不共线,点C 分AB 所成的比为2,OC OA OB λμ=+,求λμ-. 7.6 线段的定比分点公式与向量的应用线段的定比分点公式设点P 是直线12P P 上异于1P 、2P 的任意一点,若存在一个实数()1λλ≠-,使12PP PP λ=,则λ叫做点P 分有向线段12P P 所成的比,P 点叫做有向线段12P P 的以定比为λ的定比分点.当P 点在线段12P P 上时0λ⇔≥;当P 点在线段12P P 的延长线上时1λ⇔<-; 当P 点在线段21P P 的延长线上时10λ⇔-<<;设()111P x y ,,()222P x y ,,()P x y ,是线段12P P 的分点,λ是实数且12P P PP λ=,则121211x x x OP y y y λλλλ+⎧=⎪⎪+⇔=⎨+⎪=⎪+⎩()12121111OP OP OP tOP t OP t λλλ+⎛⎫⇔=+-= ⎪++⎝⎭.()1λ≠-由线段的定比分点公式得:中点坐标公式设()111P x y ,,()222P x y ,,()P x y ,为12P P 的中点,(当1λ=时) 得121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩三角形的重心坐标公式ABC △三个顶点的坐标分别为()11A x y ,、()22B x y ,、()33C x y ,,则ABC △的重心的坐标是12312233x x x y y y G ++++⎛⎫ ⎪⎝⎭,. 利用向量可以解决许多与长度、距离及夹角有关的问题.向量兼具几何特性和代数特性,成为沟通代数、三角与几何的重要工具,同时在数学、物理以及实际生活中都有着广泛的应用. 三角形五“心”向量形式的充要条件设O 为ABC △所在平面上一点,角A ,B ,C 所对边长分别为a ,b ,c 则(1)O 为ABC △的外心222OA OB OC ⇔==. (2)O 为ABC △的重心0OA OB OC ⇔++=.(3)O 为ABC △的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC △的内心0aOA bOB cOC ⇔++=. (5)O 为ABC △的A ∠的旁心()aOA b OB cOC ⇔=+.例1.如图7-23所示,已知矩形ABCD 中,()21A ,,()54B ,,()36C ,,E 点是CD 边的中点,联结BE 与矩形的对角线AC 交于F 点,求F 点坐标.图723解:四边形ABCD 是矩形,E 是CD 边的中点,ABF CEF ∴△∽△,且2AB CE =2AF CF ∴=即点F 分AC 所成的比2λ=.设()F x y ,.由(21)A ,,(36)C ,,根据定比分点坐标公式得2238123x +⨯==+,12613123y +⨯==+ F ∴点坐标是81333⎛⎫⎪⎝⎭,. 例2.证明:()cos cos cos sin sin αβαβαβ-=+.证明:在单位圆O 上任取两点A ,B ,以Ox 为始边,以OA ,OB 为终边的角分别为β,α,见图7-24.β,sin β)B (cos α图724则A 点坐标为()cos sin ββ,,B 点坐标为()cos sin αα,;则向量()cos sin OA ββ=,,()cos sin OB αα=,,它们的夹角为αβ-,1OA OB ==,cos cos sin sin OA OB αβαβ⋅=+, 由向量夹角公式得:()cos cos cos sin sin OA OB OA OBαβαβαβ⋅-==+,从而得证.注意:用同样的方法可证明()cos cos cos sin sin αβαβαβ+=-.例3.证明柯西不等式()()()2222211221212x y x y x x y y +⋅++≥.证明:令()11a x y =,,()22b x y =,(1)当0a =或0b =时,12120a b x x y y ⋅=+=,结论显然成立; (2)当当0a ≠且0b ≠时,令θ为a ,b 的夹角,则[]0πθ∈,1212cos a b x x y y a b θ⋅=+=.又cos 1θ≤,a b a b ∴⋅≤(当且仅当ab ∥时等号成立). 1212x x y y ∴+()()()2222211221212x y x y x x y y ∴+⋅++≥(当且仅当1212x x y y =时等号成立). 例4.给定ABC △,求证:G 是ABC △重心的充要条件是0GA GB GC ++=.证明:必要性 设各边中点分别为D E ,,F ,延长AD 至P ,使DP GD =,则2AG GD =GP =. 又因为BC 与GP 互相平分,所以BPCG 为平行四边形,所以BG PC ∥,所以GB CP =. 所以0GA GB GC GC CP PG ++=++=.充分性 若0GA GB GC ++=,延长AG 交BC 于D ,使GP AG =,联结CP ,则GA PG =. 因为0GC PG PC ++=,则GB PC =,所以GB CP ∥,所以AG 平分BC .同理BG 平分CA .所以G 为重心. 例5 ABC △外心为O ,垂心为H ,重心为G .求证:O G H ,,为共线,且12OG GH =∶∶. 证明:首先()()2112333OG OA AG OA AM OA AB AC OA AO OB OC =+=+=++=+++= ()13OA OB OC ++. 其次设BO 交外接圆于另一点E ,则联结CE 后得CE BC ⊥. 又AH BC ⊥,所以AH CE ∥.又EA AB ⊥,CH AB ⊥,所以AHCE 为平行四边形.所以AH EC =. 所以OH OA AH OA EC OA EO OC OA OB OC =+=+=++=++, 即3OH OG =,所以OG 与OH 共线,所以O G H ,,共线. 即12OG GH =∶∶. 注意:O G H ,,所在的直线称为欧拉线.例6.已知ABC △,AD 为中线,求证()2222122BC AD AB AC ⎛⎫=+- ⎪⎝⎭(中线长公式). 证明:以B 为坐标原点,以BC 所在的直线为x 轴建立如图7-25所示的直角坐标系,图725设()A a b ,,()0C c ,,02c D ⎛⎫⎪⎝⎭,,则()22222024c c AD a b ac a b ⎛⎫=-+-=-++ ⎪⎝⎭,()()22222222221122244BC c c AB AC a b c a b a b ac ⎛⎫⎡⎤⎪+-=++-+-=+-+⎢⎥ ⎪⎣⎦⎝⎭, 从而()2222122BC AD AB AC ⎛⎫ ⎪=+- ⎪⎝⎭,()2222122BC AD AB AC ⎛⎫=+- ⎪⎝⎭. 例7.是否存在4个两两不共线的平面向量,其中任两个向量之和均与其余两个向量之和垂直?解:如图7-26所示,在正ABC △中,O 为其内心,P 为圆周上一点,满足PA ,PB ,PC ,PO 两两不共线,有POCBA图726()()PA PB PC PO +⋅+=()()PO OA PO OB PO OC PO +++⋅++()()22PO OA OB PO OC =++⋅+ ()()22PO OC PO OC =-⋅+ 2240PO OC =-=有()PA PB +与()PC PO +垂直. 同理可证其他情况.从而PA ,PB ,PC ,PO 满足题意、故存在这样四个平面向量.例8.已知向量1OP ,2OP ,3OP 满足条件1230OP OP OP ++=,1231OP OP OP ===,求证:123PP P △是正三角形.解:令O 为坐标原点,可设()111cos sin P θθ,,()222cos sin P θθ,,()333cos sin P θθ, 由123OP OP OP +=-,即()()()112233cos sin cos sin cos sin θθθθθθ+=--,,, 123123cos cos cos sin sin sin θθθθθθ+=-⎧⎪⎨+=-⎪⎩①② 两式平方和()1212cos 11θθ+-+=,()121cos 2θθ-=-,由此可知12θθ-的最小正角为120︒,即1OP 与2OP 的夹角为120︒, 同理可得1OP 与3OP 的夹角为120︒,2OP 与3OP 的夹角为120︒, 这说明123P P P ,,三点均匀分布在一个单位圆上, 所以123PP P △为等腰三角形. 基础练习1.在ABC △中,若321AB BC BC CA AB CA⋅⋅⋅==,则tan A =__________. 2.已知P 为ABC △内一点,且满足3450PA PB PC ++=,那么PAB PBC PCA S S S =△△△∶∶__________. 3.如图7-27,设P 为ABC △内一点,且2155AP AB AC =+,求ABP △的面积与ABC △的面积之比. PCA图7274.已知ABC △的三顶点坐标分别为()11A ,,()53B ,,()45C ,,直线l AB ∥,交AC 于D ,且直线l 平分ABC △的面积,求D 点坐标. 5.已知()23A ,,()15B -,,且13AC AB =,3AD AB =,求点C D 、的坐标. 6.点O 是平面上一定点,A B C ,,是此平面上不共线的三个点,动点P 满足AC AB OP OA AB AC λ⎛⎫ ⎪=++ ⎪⎝⎭,[)0λ∈+∞,.则点P 的轨迹一定通过ABC △的__________心.能力提高7.设x y ∈R ,,i j 、为直角坐标系内x y 、轴正方向上的单位向量,若()2a xi y j =++,()62b xi y j =+-且2216a b +=.(1)求点()M x y ,的轨迹C 的方程;(2)过定点()03,作直线l 与曲线C 交于A B 、两点,设OP OA OB =+,是否存在直线l 使四边形OAPB 为正方形?若存在,求出l 的方程,或不存在说明理由.8.(1)已知4a =,3b =,()()23261a b a b -⋅+=,求a 与b 的夹角θ;(2)设()25OA =,,()31OB =,,()63OC =,,在OC 上是否存在点M ,使MA MB ⊥,若存在,求出点M 的坐标,若不存在,请说明理由. 9.设a b 、是两个不共线的非零向量()t ∈R (1)记OA a =,OB tb =,()13OC a b =+,那么当实数t 为何值时,A B C 、、三点共线? (2)若1a b ==且a 与b 夹角为120︒,那么实数x 为何值时a xb -的值最小?10.设平面内的向量()17OA =,,()51OB =,,()21OM =,,点P 是直线OM 上的一个动点,求当PA PB ⋅取最小值时,OP 的坐标及APB ∠的余弦值.11.已知向量()11m =,,向量n 与向量m 夹角为3π4,且1m n ⋅=-. (1)求向量n ;(2)若向量n 与向量()10q =,的夹角为π2,向量22sin 4cos 2A p A ⎛⎫= ⎪⎝⎭,,求2n p +的值.12.已知定点()01A ,,()01B -,,()10C ,.动点P 满足:2AP BP k PC ⋅=. (1)求动点P 的轨迹方程;(2)当0k =时,求2AP BP +的最大值和最小值.13.在平行四边形ABCD 中,()11A ,,()60AB =,,点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若()35AD =,,求点C 的坐标; (2)当AB AD =时,求点P 的轨迹.14.已知向量()22a =,,向量b 与向量a 的夹角为3π4,且2a b ⋅=-, (1)求向量b ;(2)若()10t =,且b t ⊥,2cos 2cos 2C c A ⎛⎫= ⎪⎝⎭,,其中A C 、是ABC △的内角,若三角形的三内角A B C 、、依次成等差数列,试求b c +的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7讲:平面向量试题的特色 17
第7讲:平面向量试题的特色
特色惊爆
平面向量是安徽卷的一个必考题,每年文、理卷各一题;平面向量问题的基本类型有:自由向量、解析向量和几何向量问题,在安徽高考中这三类问题均有考查;
试题揭秘
为揭秘安徽卷中的平面向量试题,我们从研究真题开始:
1.自由向量型:
1.(2011年安徽高考试题第14、13题)(文理)已知向量a 、b 满足(a +2b )(a -b )=-6,且|a |=1,|b |=2,则a 与b 的夹角为 .
[解析]:由(a +2b )(a -b )=-6⇒a 2+ab -2b 2=-6⇒|a |2+ab -2|b |2=-6⇒ab =1⇒cos<a ,b >=
|
|||b a b a ⋅=
2
1
⇒<a ,b >=3π.
2.(2013年安徽高考试题第13题)(文)若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为_______.
[解析]:由|a |=|a +2b |⇒|a |2
=|a +2b |
2
⇒a 2=(a +2b )2⇒ab =-b 2
⇒cos<a ,b >=
|
|||b a b a ⋅=
2
2|
|3||b b -=-3
1
.
3.(2012年安徽高考试题第14题)(理)若平面向量a ,b 满足:|2a -b |≤3,则ab 的最小值是_____
[解析]:由|2a -b |≤3⇒|2a -b |2≤9⇒4a 2-4ab +b 2≤9⇒4a 2+b 2≤9+4ab ;又因4a 2+b 2=4|a |2+|b |2≥4|a ||b |≥4|ab |≥-4ab
⇒-4ab ≤9+4ab ⇒ab ≥-8
9. 2.解析向量型:
1.(2012年安徽高考试题第8题)(理)在平面直角坐标系中,O(0,0),P(6,8),将向量OP 按逆时针旋转4

后,得向量OQ ,则点Q 的坐标是( )
(A)(-72,-2) (B)(-72,2) (C)(-46,-2) (D)(-46,2)
[解析]:因|OP |=10,tan ∠POx=
34⇒sin ∠POx=54,cos ∠POx=5
3
⇒10sin(∠POx+43π)=-2,10cos(∠POx+43π)=-72,
故选(A).
2.(2010年安徽高考试题第3题)(文理)设向量a =(1,0),b =(
21,2
1
),则下列结论中正确的是( ) (A)|a |=|b | (B)ab =
2
2
(C)a -b 与b 垂直 (D)a //b [解析]:由a =(1,0),b =(2
1,2
1)⇒(a -b )b =ab -b 2=ab -|b |2=2
1-2
1=0⇒(a -b )⊥b .故选(C).
3.(2012年安徽高考试题第11题)(文)设向量a =(1,2m),b =(m+1,1),c =(2,m),若(a +c )⊥b ,则|a |= .
[解析]:由(a +c )⊥b ⇒(a +c )b =0⇒3(m+1)+3m=0⇒m=-2
1
⇒|a |=2. 3.几何向量型:
1.(2009年安徽高考试题第14题)(文)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC =λAE +ηAF ,其中λ,η∈R,则λ+μ= .
[解析]:由E 和F 分别是边CD 和BC 的中点⇒2AE =AD +AC ,2AF =AB +AC ⇒2(AE +AF )=AD +AB +2AC =3AC ⇒ 18 第7讲:平面向量试题的特色
AC =
32AE +32AF ⇒λ=μ=32⇒λ+μ=3
4. 2.(2009年安徽高考试题第14题)(理)给定两个长度为1的平面向量OA 和OB , B C
它们的夹角为1200
.如图所示,点C 在以O 为圆心的圆弧B
A ˆ上变功,若O C = x OA +y O
B ,其中x,y ∈R,则x+y 的最大值是 . O A
[解析]:由O C =x OA +y OB
⇒O C 2=(x OA +y OB )2⇒1=x 2+y 2-xy ⇒(x+y)2
-1=3xy ≤3(
2
y x +)2
⇒x+y ≤2. 3.(2013年安徽高考试题第9题)(理)在平面直角坐标系中,O 是坐标原点,两定点A 、B 满足|OA |=|OB |=OA ⋅OB =2,则点集{P|OP =λOA +μOB ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )
(A)22 (B)23 (C)42 (D)43
[解析]:由|OA |=|OB |=OA ⋅
OB =2⇒cos<OA ,OB >=
2
1
⇒<OA ,OB >=3π;当λ、μ≥0时,延长AP 与AB 交于点Q,则
OQ =m OP (m ≥1);由OP =λOA +μOB ⇒OQ =m OP =m λOA +m μOB ⇒m λ+m μ=1⇒λ+μ≤1,即点P 在△OAB 内,S △OAB =
3,注意到其他三种情况知,区域的面积=43.故选(D).
分析以上真题可知:1.自由向量型的热点是求向量的夹;解析向量型的热点是向量的坐标运算;几何向量型的热点是向量的线性表示及其几何意义;2.平面向量问题的难点是几何向量型问题,理科平面向量试题的特点是与不等式,尤其是均值不等式的有机结合;3.安徽高考中,平面向量的三类问题交替出现,如理科:2009年是几何向量型,2010年是解析向量型,2011年是自由向量型,2012年是自由向量型,2013年是几何向量型;正是基于这样的分析预测,在《2013年Y ·P ·M 预测六套试卷(安徽卷)》第Ⅰ卷中的第14题:
己知|OA |=|OB |=2,且OA ⋅OB =-2.动点P 满足:OP =x OA +y OB ,其中非负实数x,y 满足:x+y ≤1.则动点P 的轨迹所覆盖的平面区域的面积等于_________.
该题击中了2013年安徽高考试题;值得指出的是作者命制该题的背景是:
(2003年全国高中数学联赛安徽初赛试题)设O 是△ABC 的内心,AB=5,AC=6,BC=7,OP =x OA +y OB +z OC ,0≤x,y,x ≤1,动点P 的轨迹所覆盖的平面区域的面积等于_________.
竞赛试题与高考试题的互译,在安徽高考中多次出现应当关注.。

相关文档
最新文档