五年级数学竞赛模拟试卷及答案
2023年五年级上册数学竞赛试卷及答案

五年级数学竞赛试卷及答案一、填空(共28分,每空2分)1. 两个数的和是61.6,其中一个数的小数点向右移动一位,就与另一个数相同。
两个数分别是( )、( )。
2. 有三根木料,打算把每根锯成3段,每锯开一处需要3分钟,所有锯完需要( )分钟。
3. 笑笑同学的家住在5楼,每层楼梯有16级,她从1楼走到5楼,共要走()级楼梯。
4. 把一张边长24厘米的正方形纸对折4次后得到一个小正方形,这个小正方形的面积是()平方厘米。
5. 李师傅3小时生产96个零件,照这样计算生产288个零件要()6. 一个长方形的长为9厘米,把它的长的一边减少3厘米,另一边不变,面积就减少9平方厘米,这时变成的梯形面积是()平方厘米。
7. 小明和小英两人同时从甲、乙两地相向而行,小明每分钟行a米,小英每分钟行b米,行了4分钟两人相遇。
甲、乙两地的路程是( )米。
8.哥哥7年前的年龄和妹妹5年后的年龄相等,当哥哥()岁时,正好是妹妹年龄的3倍。
9.按规律在括号里填数。
(1)1、3、7、15、31、()、()。
(2)2、8、5、20、7、28、11、44、()、12。
(3)1,1,2,3,5,8,(),21。
10. 五(1)班的同学去划船。
他们算了一下,假如增长一条船,正好每条船坐6人;假如减少一条船,正好每条船坐9人。
这个班共有()名同学。
二、判断(对的的在括号里画“√”,错误的画“×”。
共15分,每小题3分)11. 用10张同样长的纸条接成一条长31厘米的纸带,假如每个接头都重叠1厘米,那么每张纸条长4.1厘米。
( )12. 用三个长3厘米、宽2厘米,高1厘米的长方体,拼成一个大长方体,有3种拼法。
()13. 把一批圆木自上而下按1、2、3……14、15根放在一起,这批圆木共有240根。
()14. 在a÷b=5……3中,把a、b同时扩大3倍,商是5,余数是3。
( ) 15.右图中长方形的面积与阴影部分的面积相等。
五年级上册数学竞赛试卷及答案

五年级上册数学竞赛试卷及答案五年级上册数学竞赛试卷及答案数学竞赛是一项锻炼学生思维能力和解题能力的活动。
在这场数学竞赛中,我们将选取五年级上册的知识点进行考察,帮助学生们巩固和拓展数学知识。
本次竞赛试卷分为三个部分,共计30道题目,难度从简单到困难逐渐递增。
其中,第一部分为基础题,共计10道题目,主要是为了考察学生对基础知识的掌握情况;第二部分为应用题,共计10道题目,主要是为了考察学生运用数学知识解决实际问题的能力;第三部分为拓展题,共计10道题目,主要是为了考察学生的数学思维能力和创新能力。
以下是本次数学竞赛的试卷及答案:一、基础题(每题2分,共计20分)1、计算:3+5= 答案:82、计算:8-6= 答案:23、计算:7×8= 答案:564、计算:40÷5= 答案:85、计算:12÷3= 答案:46、计算:25+3= 答案:287、计算:20-6= 答案:148、计算:15×3= 答案:459、计算:48÷8= 答案:610、计算:36÷9= 答案:4二、应用题(每题5分,共计25分)1、小明有10个苹果,他吃了4个,请问他还剩下多少个苹果?答案:10-4=62、小红有20元钱,她花了8元买了一本书,请问她还剩下多少钱?答案:20-8=123、小李有30个橘子,他送给了朋友10个,请问他还剩下多少个橘子?答案:30-10=204、小华有40个糖果,他分享给了同学们15个,请问他还剩下多少个糖果?答案:40-15=255、小张有50元零花钱,他捐了12元给贫困地区的孩子,请问他还剩下多少钱?答案:50-12=38三、拓展题(每题10分,共计50分)1、小明每天早上都要喝一杯牛奶,已知牛奶的净重为200毫升,请问他每天喝的牛奶重量为多少克?答案:200毫升 = 200克,因此小明每天喝的牛奶重量为200克。
2、小华和小明一起去公园玩耍,已知公园的门票价格为每人10元,他们一共带了80元,请问他们能买到几张公园门票?答案:80元可以买到8张公园门票。
【经典】小学五年级数学竞赛试卷(附答案)图文百度文库

【经典】小学五年级数学竞赛试卷(附答案)图文百度文库一、拓展提优试题1.如图,7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是.12533421542.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.3.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.4.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.5.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.6.如图,正方形的边长是6厘米,AE=8厘米,求OB=厘米.7.定义新运算:a&b=(a+1)÷b,求:2&(3&4)的值为.8.用0、1、2、3、4这五个数字可以组成个不同的三位数.9.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.10.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.11.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是分.12.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?13.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.14.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.15.(7分)如图,按此规律,图4中的小方块应为个.【参考答案】一、拓展提优试题1.解:首先理解题目,找出唯一填法的空格,例如第一行第一个1,与其唯一相邻的空白空格必须为1,以此类推,第二行第一个5也具有唯一相邻空格.逆推得出唯一图形.相加求和为150.故答案为150.2.解:法一:假设甲一小时走5米,乙一小时走2米,列表如下:时间甲(米)乙(米)时间甲(米)乙(米)0小时043小时7.5100.5小时 2.55 3.5小时10111小时 2.564小时10121.5小时57 4.5小时12.5132小时585小时12.5142.5小时7.59 5.5小时1515观察得5.5小时恰好追上(如果这时间超过了乙,就要用具体追及公式计算追及时间)法二:也可以设甲的速度为每小时10a(甲要休息,实际每小时走5a),乙的速度为每小时4a,因此要追8a.半小时内最多追3a,可以先从要追的8a中扣除3a,因为在此之前不可能追上(之前的距离差不止3a).之后再开始按每半小时列出,若不够半小时的话,用追及公式算.前面追的5a,相当于每小时追a,可以用5a÷(5a﹣4a)=5(小时)计算.之后,甲半小时再走2a,乙再走5a,加上还差的3a,正好追上.因此,要追5.5小时,即330分钟.故答案为:330.3.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,=,则=,=,由鸟头定理可知道3×KP×AP=RP×PQ,综上可得:PR=2KP=RE,那么由三角形AEK是六边形面积的,且S△APK ,=S△AKES△APK=S ABCDEF=47,所以阴影面积为47×3=141故答案为141.4.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.5.解:行驶300米,甲车比乙车快2小时;那么甲比乙快1小时,需要都行驶150米;300﹣150=150(千米);故答案为:1506.解:6×6÷2=18(平方厘米),18×2÷8=4.5(厘米);答:OB长4.5厘米.故答案为:4.5.7.解:2&(3&4),=(2+1)÷[(3+1)÷4],=3÷1,=3;故答案为:3.8.解:4×4×3,=16×3,=48(种);答:这五个数字可以组成 48个不同的三位数.故答案为:48.9.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.10.解:根据分析,(1)△ABC面积等于六边形面积的,连接AD,四边形ABCD是正六边形面积的,故△ACD面积为正六边形面积的(2)S△ABC :S△ACD=1:2,根据风筝模型,BG:GD=1:2;(3)S△BGC:S CGD=BG:GD=1:2,故;故AGDH面积=六边形总面积﹣(S△ABC +S△CGD)×2=360﹣(+40)×2=160.11.解:(84×10﹣93)÷(10﹣1)=747÷9=83(分)答:其他9个人的平均分是83分.故答案为:83.12.解:设3小时顺流行驶单趟用时间为x小时,则逆流行驶单趟用的时间为(3﹣x)小时,故:x:(3﹣x)=4:88x=4×(3﹣x)8x=12﹣4x12x=12x=1逆流行驶单趟用的时间:3﹣1=2(小时),两船航行方向相同的时间为:2﹣1=1(小时),答:在3个小时中,有1小时两船同向都在逆向航行.13.解:原式=++++=++++=×(﹣+﹣+…+﹣)=×()=5+24=29故答案为:2914.解:10÷2=5(颗)18÷2=9(颗)此时A有:26﹣10+9=25(颗)此时C有:25×4=100(颗)原来C有:100﹣9﹣5=86(颗)答:松鼠C原有松果 86颗.15.解:因为图1中小方块的个数为1+2×3=7个,图2中小方块的个数为1+(1+2)+3×4=16个,图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,故答案为:50.。
小学五年级数学竞赛训练卷(6)(五年级)竞赛测试.doc

小学五年级数学竞赛训练卷(6)(五年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________一、xx 题 (每空xx 分,共xx 分) 【题文】(5分)哥哥和妹妹共有30张邮票,哥哥给妹妹6张后,两人的邮票张数相等,妹妹原来有 张邮票.【答案】9.【解析】试题分析:由“哥哥给妹妹6张后,两人的邮票张数相等”,可知原来哥哥比妹妹多6×2=12(张),那么30﹣12=18(张)是妹妹张数的2倍,可知妹妹原来的张数是18÷2=9(张).解:(30﹣6×2)÷2,=(30﹣12)÷2,=18÷2,=9(张);答:妹妹原来有9张.故答案为:9.点评:此题属于和差问题,在计算时,运用了关系式:(和﹣差)÷2=小数.【题文】(5分)由1、2、3、4 四个数字可组成个不同的三位数.【答案】24.【解析】试题分析:把三位数的三个数位用1、2、3、4四个数字填上,分三步完成:先填百位数位从四个数字中选一个,有4种可能;再填十位数字,从剩下的三个数字中选一个有3种可能;最后填个位数字,从剩下的2两个数字中选一个,只有2种可能;按照乘法原理,即可得解.解:4×3×2=24(个),答:由1、2、3、4 四个数字可组成 24个不同的三位数;故答案为:24.点评:灵活运用乘法原理来解决排列组合问题.【题文】(5分)计算:1990+1991+1992+1993+…2003= .【答案】27951.【解析】试题分析:根据题意,把原式变为1000×10+900×10+90×10+(1+2+3+…+9)+2000×4+(1+2+3),然后运用加法交换律与结合律以及高斯求和公式简算.解:1990+1991+1992+1993+…2003,=1000×10+900×10+90×10+(1+2+3+…+9)+2000×4+(1+2+3),=10000+9000+900+(1+9)×9÷2+8000+6,=19900+8000+(45+6),=27900+51,=27951;故答案为:27951.点评:完成此题,应注意分析式中数据,运用运算定律或运算技巧,灵活解答.【题文】(5分)(2012•南昌)把的分子加上6,要使分数大小不变,分母应加上.【答案】16.【解析】试题分析:根据的分子加上6,可知分子由3变成9,相当于分子乘3;根据分数的性质,要使分数的大小不变,分母也应该乘3,由8变成24,也可以认为是分母加上16;据此解答即可.解:的分子加上6,由3变成9,相当于分子乘3,根据分数的性质,要使分数的大小不变,分母也应该乘3,由8变成24,也可以认为是分母加上16;故答案为:16.点评:此题考查分数的基本性质的运用,分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变.【题文】(5分)如图中含有“★的三角形共有个.【答案】9.【解析】试题分析:①一个图形构成的含有“★”的三角形有1个;②2个图形构成的含有“★”的三角形有2个;③4个图形构成的含有“★”的三角形有1个;④6个图形构成的含有“★”的三角形有1个;⑤8个图形构成的含有“★”的三角形有2个;⑥12个图形构成的含有“★”的三角形有2个.相加即可求解.解:①一个图形构成的含有“★”的三角形有1个;②2个图形构成的含有“★”的三角形有2个;③4个图形构成的含有“★”的三角形有1个;④6个图形构成的含有“★”的三角形有1个;⑤8个图形构成的含有“★”的三角形有2个;⑥12个图形构成的含有“★”的三角形有2个.1+2+1+1+2+2=9(个).答:图中含有“★的三角形共有9个.故答案为:9.点评:考查了组合图形中三角形的计数,本题关键是按顺序准确的找到各类三角形的个数,做到不重复不遗漏.【题文】(5分)甲地到乙地有不同的3条路可走,乙地到丙地有不同的4条路可走,小军从甲地到丙地必经过乙,他有种不同的走法.【答案】12.【解析】试题分析:甲地地乙地有不同的3条路可走,乙地到丙地有不同的4条路可走,则第一条从甲地经乙地再到丙地共有4种不同的走法,由于从甲到乙共有三条不同的路,根据乘法原理可知,从从甲地经乙地到丙地共有3×4=12条不同的走法.解:3×4=12(条).答:共有12条不同的走法.故答案为:12.点评:乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2不同的方法,…,做第n步有mn不同的方法.那么完成这件事共有N=m1m2…mn种不同的方法.【题文】(5分)五(1)班学生人数不足50人,排队时,每排3人,结果多1人;每排4人,结果多3人;每排7人,结果多1人.五(1)班共有人.【答案】43.【解析】试题分析:从排队时,每排3人,结果多1人;每排7人,结果多1人,可知五(1)班的人数减少1人,则3人一排或7人一排都正好排完没有剩余,所以五(1)班人数减1是3和7的公倍数,又要求这个班人数不足50人,可以求出3和4的最小公倍数,然后再加上1.看符合是否每排4人,结果多3人;不符合再扩大公倍数加1,直到符合为止.解:3和7的最小公倍数是21,21+1=22(人),22÷4=5…2,不行,21×2+1=43(人),43÷4=10…3,正符合.所以五(1)班共有43人,故答案为:43.点评:此题考查了最小公倍数在实际生活中的应用.【题文】(5分)有规格相同的5种颜色的手套各20只(不分左右手),混装在箱内,随意从箱内摸手套,至少要摸出只手套才能保证配成3双.【答案】10.【解析】试题分析:可以把五种不同的颜色看成是5个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出6只手套.这时拿出1副同色的后5个抽屉中还剩4只手套.再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推;即可得出答案.解:把五种颜色看做5个抽屉,要保证有3副同色的,先考虑保证有1副,就要摸出6只手套.这时拿出1副同色的后,5个抽屉中还剩下4只手套.根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的.以此类推,要保证有3副同色的,共摸出的手套有:6+2+2=10(只);答:最少要摸出10只手套才能保证才能保证配成3双.故答案为:10.点评:本题需要分步完成即先保证有一副同色的,至少要摸出6只手套;再摸出2只手套,又可保证有一副手套是同色的;最后再摸出2只手套,又可保证有一副手套是同色的;这样分三次即可达到目的.【题文】(5分)一个最简分数,若分子加上1,分数值为;若分母加上1,分数值为,这个分数是.【答案】.【解析】试题分析:由于一个最简分数,若分子加上1,分数值为,所以原分数的分母一定是3的倍数,即可能是3,6,9…,再根据分母加上1,分数值为这一条件判定即可.解:当分母为3时,的分母加上1,分数值为,不符合题意;当分母为6时,=,分子减1为,不是最简分数,不符合题意;当分母为9时,=,分子减1为,分母加上1,分数值为=,符合题意.故答案为:.点评:本题主要考查分数的基本性质:分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变.【题文】(5分)一个长方形,如果长增加2米,宽增加5米,那么面积增加60平方米,这时恰好成为一个正方形.原来长方形的面积是平方米.【答案】40.【解析】试题分析:设正方形的边长为x米,则正方形的面积为x2平方米,原来长方形的长是(x﹣2)米,宽是(x﹣5)米,面积是(x﹣2)×(x﹣5),再根据面积增加60平方米,列出方程解答即可.解:设正方形边长为x米,x2﹣(x﹣2)(x﹣5)=60,x2﹣x2+7x﹣10=60,7x﹣10=607x=70x=10,原来面积为:(10﹣2)×(10﹣5),=8×5,=40(平方米),答:原来长方形的面积是40平方米,故答案为:40.点评:关键是设出中间量,再根据数量关系等式,列出方程求出之间量,进而求出面积.【题文】(5分)(2010•深圳模拟)两数相除,商3余4,如果把被除数、除数、商与余数相加,和为43,被除数是.【答案】28.【解析】试题分析:如果设除数为x,那么被除数就是3x+4,由题意可知:被除数+除数+商+余数=43,由此等量关系列出方程即可解决问题.解:设除数为x,则被除数为3x+4,根据题意可得方程,3x+4+x+3+4=43,解这个方程得x=8,所以3x+4=28,答:被除数是28.故答案为:28.点评:此题考查了有余数的除法各部分间的关系,本题采用列方程解应用题简捷易行.【题文】(5分)王红喝了一杯牛奶的一半,然后加满水,又喝了一杯的一半,再倒满水后,把一杯都喝了.王红喝了杯牛奶,喝了杯水.【答案】1,1.【解析】试题分析:由于这一过程中,原来有一整杯牛奶,由于这一过程杯中牛奶没有增加,最后杯子空了,则一杯牛奶全部喝没,即喝了1杯牛奶:用分数表示这一过程中喝的牛级的数量为,第一次喝了全部的,第二次喝了全部的×,第三次喝了全部的×,三次共喝了+×+×;这一过程中第一次倒入杯子的容量的的水,第二次又倒入杯子的容量的的水,最后全部喝光,则共喝水为:.解:+×+×、=++,=1;=1.即:王红喝了1杯牛奶,喝了1杯水.故答案为:1,1.点评:本题不进行过程中所喝牛奶分率的变化分析,根据这原有1杯,这一过程杯中牛奶没有增加,最后杯子空了即能得出喝了1杯牛奶.【题文】(5分)学校买来三种书共210本,其中科技书是文艺书的3倍,故事书比文艺书多10本,学校买来故事书本.【答案】50.【解析】试题分析:设文艺书有x本,则科技书有3x本,故事书有(x+10)本,由“学校买来三种书共210本”即可列方程求解.解:设文艺书有x本,x+3x+x+10=210,5x+10=210,5x=200,x=40;40+10=50(本);答:学校买来故事书50本.故答案为:50.点评:解答此题的关键是:设出未知数,表示出另外两个量,由题目中的等量关系,列方程求解即可.【题文】(5分)从正午12时时针与分针相遇,到午夜12时,时针与分针还能再相遇次?【答案】11.【解析】试题分析:根据时针与分针的速度可知,分针每转一圈,时针走一格.钟面共分12格,因此正午12时到午夜12时,分针转12圈,时针走12格,除了第一圈不相遇(第一圈从开始分针就在前边),以后分针每转一圈就与时针相遇一次,所以,因此正午12时到午夜12时时针与分针还能再相遇12﹣1=11(次).解:分针每转一圈,时针转一个大格,分针每转一圈与时针相遇一次,但第一圈不相遇.共12圈,所以相遇:12﹣1=11(次).答:因此正午12时到午夜12时时针与分针还能再相遇11次.点评:完成本题要注意到开始第一圈分针始终在前,不相遇.【题文】(8分)一个长方形的长为9厘米,把它的长的一边减少3厘米,另一边不变,面积就减少9平方厘米,这时变成的梯形面积是平方厘米.【答案】45.【解析】试题分析:由已知得,长方形的长的一边减少3厘米,面积就减少9平方厘米,减少的是一个直角三角形,根据已知三角形的面积和底求出高(长方形的宽),用长方形的面积减去这个三角形的面积就是梯形的面积.由此列式解答.如图:解:9×2÷3,=18÷3,=6(厘米);9×6﹣9,=54﹣9,=45(平方厘米);答:这时变成的梯形的面积是45平方厘米.故答案为:45.点评:此题解答关键是求出三角形的高(长方形的宽),再利用面积公式解答即可.【题文】(8分)大猴给小猴分桃子,如果每只小猴分8个桃子,还剩10个桃子;如果每只小猴子分9个桃子,那么有一只小猴就分不足9个,但仍可以分到桃子.最多有多少只小猴子?【答案】18只【解析】试题分析:如果每只小猴分8个桃子,还剩10个桃子,如果每只小猴子分9个桃子,那么有一只小猴就分不足9个,但仍可分到,则这个猴子最少可分得1个,即不足9﹣1=8个,即盈10个,又不足8个,两次分配的差为(9﹣8),根据盈亏问题公式可知,最多有(10+8)÷(9﹣8)=18只猴子.解:(10+8)÷[9﹣(9﹣1)]=18÷1,=18(只);答:最多有18只小猴子.点评:因为要求最多有多少只猴子,因此要使分不足的小猴分得的桃子尽量少,即亏的尽量多.【题文】(8分)一架飞机从甲地开往乙,原计划每分钟飞行9千米,现在按每分钟12千米的速度飞行,结果比原计划提前半小时到达,甲、乙两地相距多少千米?【答案】1080千米.【解析】试题分析:速度×时间=路程,那么可用原计划每分钟飞行9千米乘30分钟即可得到原计划比现在慢飞行的路程,然后再用慢飞行的路程除以现在每分钟比原计划每分钟快飞行的速度可得到现在飞行所需要的时间,最后再用现在飞行的时间乘现在飞行的速度即可得到甲、乙两地相距的距离.解:(30×9)÷(12﹣9)×12=270÷3×12,=90×12,=1080(千米),答:甲、乙两地相距1080千米.点评:解答此题的关键是确定行完全程原计划比现在慢飞行的路程,用慢飞行的路程除以慢的时间即可得到现在飞机飞行的时间,最后再根据公式进行计算即可.【题文】(8分)(2008•龙南县)从龙南县城租车运62 吨货物去信丰县城,已知大车每次可运10 吨,运费200元,小车每次可运 4 吨,运费95元.要使总费用最少,应租大车、小车各多少辆?共需运费多少元?【答案】应租大车5辆、小车3辆;共需运费1285元.【解析】试题分析:先求出大车运1吨货物的价钱,再求出小车运1吨货物的钱数,看哪种车运1吨货物花费的钱数少,就尽量租用哪种车,另外还要把62吨货物正好装下,由此即可得出答案.解:200÷10=20(元),95÷4=23.75(元),20<23.75,所以,尽量租用大车,并且,还要正好装下62吨货物,当租1辆大车时,需要租13辆小车,运费为:200+13×95,=200+1235,=1435(元),当租2辆大车时,需要租11辆小车,运费为:2×200+11×95,=400+1045,=1445(元),当租3辆大车时,需要租8辆小车,运费为:200×3+8×95,=600+760,=1360(元),当租4辆大车时,需要租6辆小车,运费为:200×4+6×95,=800+570,=1370(元),当租大车5量时,需要租小车3辆,共需运费为:5×200+3×95,=1000+285,=1285(元),当租6辆大车,需要租1辆小车,运费为:6×200+1×95,=1200+95,=1295(元)综合以上可知,租大车5量时,租小车3辆,运费最少.答:要使总费用最少,应租大车5辆、小车3辆;共需运费1285元.点评:解答此题的关键是,设计方案时,尽量租用运费少的车,并且所租的车又能够正好装下62吨货物,由此即可得出答案.【题文】(9分)下面有5段铁链,每段铁链由3个小铁环组成,现在要把这5段铁链连接成一条铁链,那么至少要打开几个铁环?请写出操作方法.【答案】至少打开3个铁环.把其中一截铁环拆开成三个铁环,将这三个铁环连接其他四截没有拆开的铁环,这样就连成一条.【解析】试题分析:只需要打开三个铁环.我们把其中的一组三个环,全部分解为单独的三个铁环,用这三个铁环分别链接其余的四个铁环.解:至少打开3个铁环.把其中一截铁环拆开成三个铁环,将这三个铁环连接其他四截没有拆开的铁环,这样就连成一条.点评:考查了通过操作实验探索规律,本题关键是把其中一截铁环拆开成三个铁环.【题文】(9分)一个正方形可以剪成4个小正方形,那么,能否将下图再剪成11小正方形(大小不一定相同)?如果能,应该怎样剪?如果不能,请说明理由?【答案】能剪成11个小正方形,如图:【解析】试题分析:画一个4×4的方阵,先保留右上角的一个九格的;剩下的都是一格的全部剪下,剪下去了7个;再把9格原来的线去掉,画成2×2的小格,就有4个小正方形,一共有11个小正方形.解:能剪成11个小正方形,如图:点评:当直接求得结果有困难时,换个角度思考问题,迂回间接求解,常可使问题迎刃而解.【题文】长方形长10厘米,宽9厘米,把它分割成几种边长是整厘米的正方形,那么,最少可以分割成多少个正方形?【答案】最少分割6个正方形,如图:【解析】试题分析:先分成2个5×5的正方形,剩下的部分是4×10,然后把剩下的这部分分成2个4×4的正方形和2个2×2的正方形.解:最少分割6个正方形,如图:点评:一开始分边的时候,两边尽量接近,由此逐步找出分割的方法.。
2020年数学思维竞赛五年级模拟试题及答案

2020年数学思维竞赛五年级模拟试题一.解答题(共10小题,满分60分,每小题6分)1.214×0.16+314×0.0225+4.7×2.25+0.225×30= . 2.小吉参加了一次数学测试.计分规则是:每答对1题得5分,时间是1小时.她答对了所有她回答的问题.如果她回答第一题用了1秒钟,第二题用了2秒钟,第三题用了4秒钟…,如此下去,每一题都用了前一题答题时间的2倍,则小吉得了 分.3.若十位数a2016b2017能被33整除,那么,这样的十位数有 个.4.父子二人今年的年龄和为40岁,已知两年前父亲的年龄是儿子年龄的8倍,那么两年前父亲的年龄是 岁.5.某班40名学生全都面向前方,从前向后站成一列,按照1、2、3、4、1、2、3、4、…的顺序循环报数,每人报一次数,报到3的同学向后转.之后,如果相邻两个学生面对面,他们就会握一次手,然后同时向后转,一直到不再有学生面对面.那么,整个过程中,全班同学一共握手了 次.6.已知A 、B 均为三位数,A 的各位数字和为4,B 的各位数字和为23,且A 、B 的和的各位数字之和为9.那么A 、B 的和的最大值为 .7.一个班有51个同学,每个同学都有一个信息希望通过短信告诉别人,若每次一个同学可以给另一同学发短信告诉他(她)自己已经知道的所有信息,同学们至少一共要发送 条短信才能使每个同学都知道所有信息.8.把正方体用一个与它的一面平行的平面切开,分成A 、B 两个长方体.当A 、B 的表面积之比为3:5时,如果A 长方体的体积为312cm 3,那么B 长方体的体积为 cm 3.9.甲、乙、丙三人绕操场步行一周,甲走要3分钟,乙走要4分钟,丙走要6分钟.如果三人同时同地同向出发绕操场行走,当他们三人第一次重新相遇在出发点时,三人共走了 周.10.如图中共有 个平行四边形.二.解答题(共5小题,满分30分,每小题6分)11.在下列各题括号中可以填哪些自然数.(1)27<17()<13 (2)611<109()<59 12.有一个停车场上,现有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子.其中摩托车有 辆.13.张丽正在读一本181页的故事书,可是她不小心把书合上了,只记得刚读完的连续两页页码之和为81,如果张丽每天读30页,那么剩下的几天能读完?14.已知abc 是27的倍数,试判断:bca 与cab 之和是否仍是27的倍数?并对你的结论加以证明.15.8位同学按身高由低到高排队,每两个相邻的同学身高相差2厘米,且最高同学的身高与最矮同学的身高之和是234厘米.这8位同学中最高的同学身高是多少?。
奥林匹克数学竞赛五年级海选A(含答案)

绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
五年级试题(A卷)(本试卷满分120分 ,考试时间90分钟 )一、填空题。
(每题5分,共计50分)1、一瓶喝去一半水的矿泉水连瓶子重310克,已知瓶子10克,则一瓶矿泉水连瓶子重 克。
2、一条绳子对折3次后,从中间剪开,这条绳子被分成 段。
3、韩梅梅家的电话号码共7位,前三位数字相同,后四位数字也相同,把这些数字加起来,所得的和正好等于左起第三、四位组成的两位数,这个电话号码是 。
4、一列数,第一个数是3,第二个数是4,从第三个数开始,每个数是前两个数之和,问这列数的第2016个数除以3余 。
5、学校钟楼的大钟3点钟敲3下,用了6秒,9点时敲9下用了 秒。
6、如图有一长方形草坪,长30米,宽25米,草坪中间留了宽1米的路,路把草坪分成4块,则草坪的实有面积是 平方米.7、苹果比桃子多20个,如果每天吃2个苹果、1个桃子,桃子吃完后,苹果还剩5个。
原来有苹果 个。
8、韩梅梅从家里去书店,每分钟走525米,预计40分钟到达,但走到一半路程时,遇到了熟人,聊天用了5分钟,如果仍要按预计的时间到达,每分钟应比原来快 米。
9、32016表示2016个3连乘,它的结果个位上的数是 。
10、有数列如下1,1,2,3,5,8,……问第20个数是 。
二、计算题。
(每题6分,共计12分)11、 587+589+584+585+588+586+583+590+581+58212、 1998×1997-1997×1996-1996×1995+1995×1994省 市 学校 姓名 赛场 参赛证号∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕∕〇∕∕∕∕∕∕ 密 〇 封 〇 装 〇 订 〇 线 ∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕密 封 线 内 不 要 答 题三、解答题。
小学五年级数学竞赛试题word纯文字版附详细答案
小学五年级数学竞赛试题一、填空题。
(每题5分,共20分)1、(2.15+5.17+3.62)×(5.17+2.15+8.5)−(3.62+2.15+8.5+5.17)×(2.15+5.17)= _________。
2、满足被3除余1,被4除余2,被5除余3,被6除余4的最小自然数是_________。
3、一个长方体的棱的总长是100厘米,相交于一个顶点的三条棱的长度和是_________厘米。
4、如图长方形ABCD的长为8厘米,宽为6厘米,E、F分别为所在边的中点,阴影部分的面积是_________平方厘米。
二、选择题。
(每题5分,共20分)1、王奶奶家现存有40个鸡蛋,还养了一只每天要下一个鸡蛋的老母鸡,如果王奶奶每天吃3个鸡蛋,那么她可以这样连续吃( )天。
A.20B.15C.16D.212、从正午12时时针与分针相遇,到午夜12时,时针与分针还能相遇( )次。
A.11B.12C.23D.243、假设A※B表示A的3倍减去B的2倍,即A※B=3A−2B。
已知x※(4※1)=7,那么x※4( )=。
A.7B.9C.19D.364、有国光、红星、香蕉三类苹果各10个,混放在一起,王雷闭着眼睛去拿,问他一次至少拿( )个,才能保证两个苹果是同一品种。
A.5B.4C.3D.6二、解答题。
(每题20分,共60分)1、一个通讯员骑自行车送紧急文件到某地,如果每小时行12千米,就要迟到15分钟,如果每小时行15千米,就会提前5分钟到达。
通讯员去某地的路程有多少千米?2、小明参加少年宫音乐小组,7月8日开学,每4天上一次课;小萍参加美术小组,7月9日开学,每5天上一次课;小强参加棋艺小组,7月10日开学,每6天上一次课。
那么他们三人在同一天都去少年宫上课的首次时间是几月几日?3、在“学雷锋,树新风”活动中,甲、乙、丙三名同学每人做了两件好事,共做了六件好事:帮助军属大扫除、修理桌椅、拾到手表交公、参加街道值勤、给小同学补课、办黑板报。
小学数学五年级竞赛试题8(附参考答案)
五年级数学竞赛试题
班级考号姓名总分
1.乐乐比哥哥小3岁,比弟弟大2岁,他们兄弟三人年龄的乘积是1800,那么乐乐______岁.
2.下图中黄色部分的面积为60,蓝色部分的面积为________.
2题图 3题图
3.甲、乙、丙回答同样的7个判断题,他们的判断如上图:
4.一次爱心捐款活动共有72人捐款,捐款总额是五位整数,它的万位数字是5,百位数字是3,十位数字是7,且平均每人的捐款数额是整数元.那么平均每人捐款________元.
5.一堆相同的珠子共2940颗,每次取x颗,取若干次后正好取完.若x为奇数,则有a种不同的取法;若x为质数时,则有b种不同的取法.a+b=________.
6.定义:a△b=a×a–2×b,那么1△2+2△3+3△4+……+98△99+99△100=__________.
7.小智第一次购买了1个粘土小人,第二次购买了2个粘土小人,第三次购买了3个粘土小人,……,第九次购买了9个粘土小人.这九次购买共付款2025元,那么一个粘土小人的单价为________元.
8.分子小于6且分母小于100的最简真分数有________个.
9.茜茜和旺旺两人在一条长为100米的直跑道上往返跑.两人同时从跑道同一端出发,茜茜每秒跑5米,旺旺每秒跑4米,两人到达跑道两端时都会休息5秒再出发.如果两人在途中(不含跑道两端)迎面相遇就击掌一次,那么2分钟内两人共击掌_______次.
10.一些大小相同的小正方体搭成的几何体,从上面看到的图形如图所示,正方形中的数字表示该位置上小正方体的个数,那么从左面看到的图形是()
附:参考答案。
五年级数学竞赛试卷及答案word百度文库
五年级数学竞赛试卷及答案word百度文库一、拓展提优试题1.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.2.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…3.星期天早晨,哥哥和弟弟去练习跑步,哥哥每分钟跑110米,弟弟每分钟跑80米,弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米,那么,哥哥跑了米.4.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.5.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是分.6.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.7.用0、1、2、3、4这五个数字可以组成个不同的三位数.8.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)9.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?10.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).11.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.12.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.13.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.14.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.15.(7分)如图,按此规律,图4中的小方块应为个.【参考答案】一、拓展提优试题1.解:法一:假设甲一小时走5米,乙一小时走2米,列表如下:时间甲(米)乙(米)时间甲(米)乙(米)0小时043小时7.5100.5小时 2.55 3.5小时10111小时 2.564小时10121.5小时57 4.5小时12.5132小时585小时12.5142.5小时7.59 5.5小时1515观察得5.5小时恰好追上(如果这时间超过了乙,就要用具体追及公式计算追及时间)法二:也可以设甲的速度为每小时10a(甲要休息,实际每小时走5a),乙的速度为每小时4a,因此要追8a.半小时内最多追3a,可以先从要追的8a中扣除3a,因为在此之前不可能追上(之前的距离差不止3a).之后再开始按每半小时列出,若不够半小时的话,用追及公式算.前面追的5a,相当于每小时追a,可以用5a÷(5a﹣4a)=5(小时)计算.之后,甲半小时再走2a,乙再走5a,加上还差的3a,正好追上.因此,要追5.5小时,即330分钟.故答案为:330.2.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.3.解:设哥哥跑了X分钟,则有:(X+30)×80﹣110X=900,80x+2400﹣110x=900,2400﹣30x=900,X=50;110×50=5500(米);答:哥哥跑了5500米.故答案为:5500.4.解:行驶300米,甲车比乙车快2小时;那么甲比乙快1小时,需要都行驶150米;300﹣150=150(千米);故答案为:1505.解:设录取者的平均成绩为X分,我们可以得到方程,200X+(1000﹣200)×(X﹣60)=55×1000,200X+800(X﹣60)=55000,1000X﹣48000=55000,1000X=103000,X=103;所以录取分数线是103﹣4=99(分).答:录取分数线是99分.故答案为:99.6.解:假设全打中,乙得了:(208﹣64)÷2=72(分),乙脱靶:(20×10﹣72)÷(20+12),=128÷32,=4(发);打中:10﹣4=6(发);答:乙打中6发.故答案为:6.7.解:4×4×3,=16×3,=48(种);答:这五个数字可以组成 48个不同的三位数.故答案为:48.8.解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是 151.故答案为:151.9.解:42÷2=21(只)21÷3×26=7×26=182(只)182÷2×3=91×3=273(只)273×3=819(只)答:3头牛可以换819只鸡.10.解:设矩形的长为am,宽为bm,且a≥b,根据题意,a+b=17,由于a,b均为整数,因此(a,b)的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8),故答案为8.11.解:根据分析:这个数除以2,3,4,5均余1,那么这个数减去1后就能同时被2,3,4,5整除;2,3,4,5的最小公倍数是60,则这个数为60的倍数加1.又因为这个数大于1,所以这个数最小是61.故答案为:61.12.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)=5000××××=5000(元)答:小胖这个月的工资是5000元.故答案为:5000.13.解:2.5×2÷(6﹣1)+2.5=5÷5+2.5=1+2.5=3.5(千克)答:B桶中原来有水3.5千克.故答案为:3.5.14.解:设既带水壶又带水果的为x人,则参加春游的同学共有2x人,由题意可得:80+70﹣x+6=2x156﹣x=2x3x=156x=52则2x=2×52=104答:则参加春游的同学共有104人.故答案为:104.15.解:因为图1中小方块的个数为1+2×3=7个,图2中小方块的个数为1+(1+2)+3×4=16个,图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,故答案为:50.。
五年级数学竞赛试卷及答案_学科竞赛
五年级数学竞赛试卷及答案_学科竞赛一、拓展提优试题1.如图,7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是 .1 2 5 33 4 215 42.已知13411a b -=,那么()20132065b a --=______。
3.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁. 年后爸爸、妈妈的年龄和是小翔的6倍.4.(7分)将偶数按下图进行排列,问:2008排在第 列. 2 4 6 816 14 12 1018 20 22 2432 30 28 26…5.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是 59895 .6.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是 分.7.定义新运算:a &b =(a +1)÷b ,求:2&(3&4)的值为 .8.用0、1、2、3、4这五个数字可以组成 个不同的三位数.9.如图,将一个等腰三角形ABC 沿EF 对折,顶点A 与底边的中点D 重合,若△ABC 的周长是16厘米,四边形BCEF 的周长是10厘米,则BC = 厘米.10.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).12.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.13.观察下面数表中的规律,可知x=.14.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分(甲和乙)的面积差是5.04,则S=.△ABC15.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.【参考答案】一、拓展提优试题1.解:首先理解题目,找出唯一填法的空格,例如第一行第一个1,与其唯一相邻的空白空格必须为1,以此类推,第二行第一个5也具有唯一相邻空格.逆推得出唯一图形.相加求和为150.故答案为150.2.2068[解答]由于13411a b -=,所以()6520513451155a b a b -=⨯-=⨯=,所以()()20132065201365202068b a a b --=+-=3.【分析】设x 年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x 年后的年龄×4=小翔爸爸x 年后的年龄+小翔妈妈x 年后的年龄,列出方程解答即可.解:设x 年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x )×6=48+42+2x30+6x =90+2x4x =60x =15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.4.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.5.解:根据分析,得知,=45=5×9既能被5整除,又能被9整除,故a的最大值为5,b=9,45被59□95整除,则□=8,五位数最大为59895故答案为:598956.解:设录取者的平均成绩为X分,我们可以得到方程,200X+(1000﹣200)×(X﹣60)=55×1000,200X+800(X﹣60)=55000,1000X﹣48000=55000,1000X=103000,X=103;所以录取分数线是103﹣4=99(分).答:录取分数线是99分.故答案为:99.7.解:2&(3&4),=(2+1)÷[(3+1)÷4],=3÷1,=3;故答案为:3.8.解:4×4×3,=16×3,=48(种);答:这五个数字可以组成 48个不同的三位数.故答案为:48.9.解:△ABC的周长是16厘米,可得△AEF的周长为:16÷2=8 (厘米),△AEF和四边形BCEF周长和为:8+10=18(厘米),所以BC=18﹣16=2(厘米),答:BC=2厘米.故答案为:2.10.解:1+2+3=6,1+2+4=7,1+2+5=8,2+3+4=9,2+3+5=10,3+4+5=12,其中不能被3整除的数的和是7、8、10,即有三组(1、2、4),(1、2、5)(2、3、5),每一组可以组成3×2×1=6个,三组共可以组成6×3=18个,即不能被3整除的数共有18个.故答案为:18.11.解:设矩形的长为am,宽为bm,且a≥b,根据题意,a+b=17,由于a,b均为整数,因此(a,b)的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8),故答案为8.12.解:依题意可知:结果的首位是2,那么在第二个结果中的首位还是2.再根据第一个结果中有一个1,那么就是有和数字5相乘以后数字1的进位同时十位数字是偶数才能满足条件,第一个乘数的个位数字只能是2或者3才能满足进位是1.当第一个乘数尾数是2时,首位数字无论是哪一个偶数都不能得到200多的结果.不满足题意.当第一个乘数尾数是3时,来看看偶数的情况.23×9=207.43,63,83无论乘以数字几都不能构成百位十位是20的结果.故是23×95=2185,那么23+95=118.故答案为:11813.解:根据分析可得,81=92,所以,x=9×5=45;故答案为:45.14.解:根据分析,S△BDC=S△EBC⇒S△DOB=S△EOC,∴S甲﹣S乙=(S甲+S△DOB)﹣(S乙+S△EOC)=5.04,又∵S△BDC :S△DEC=BC:DE=2:1即:S△BDC=2S△DEC∴S四边形DECB =3S△DEC;S△ADE=S△DEC∴S△ABC =S四边形DECB+S△ADE=4S△DEC,设S△DEC =X,则S△BDC=2X,故有2X﹣X=5.04,∴X=5.04,S△ABC =4S△DEC=4X=4×5.04=20.16故答案是:20.1615.解:10÷2=5(颗)18÷2=9(颗)此时A有:26﹣10+9=25(颗)此时C有:25×4=100(颗)原来C有:100﹣9﹣5=86(颗)答:松鼠C原有松果 86颗.故答案为:86.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学竞赛模拟试卷及答案(一) 1. (1)甲、乙两数之和加上甲数是220,加上乙数是170,求甲、乙两数之和。 (2)小明在计算有余数的除法时,把被除数115错写成151,结果商比正确的结果大了3,但余数恰好相同,写出这个除法算式。 2. (1)在下面的( )内填上适当的数字,使得三个数的平均数是140。 ( ),( )8,( )27 (2)按规律填数 5,20,45,80,125,_____________,245。 3. 一个台阶图的每一层都由黑色和白色的正方形交错组成。且每一层的两端都是黑色的正方形(如图),那么第2000层中白色的正方形的数目是多少?
4. 在一个停车场上,汽车,摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,问,停车场上,两种车各多少辆? 5. 将100个苹果分给10个小朋友,每个小朋友的苹果个数互不相同。分得苹果个数最多的小朋友,至少得到几个苹果? 6. 书架有甲、乙、丙三层,共放了192本书,先从甲层拿出与乙层同样多的书放进乙层,再从乙层拿出与丙层同样多的书放进丙层,最后从丙层拿出与甲层同样多的书放进甲层。这时,甲、乙、丙三层的书同样多。求原来三层各有多少本书? 7. 某乡有10个养鸡场,每个鸡场所养鸡的数量都不相同,且不到万只,凑巧的是各鸡场的只数各位上的数字相加的和都等于34,求这10个养鸡场共养了多少只鸡。 8. 在下面的数表中,第100行左边的第一个数是什么? 5 4 3 2 6 7 8 9 13 12 11 10 14 15 16 17 21 20 19 18 _______________________________________ 9. 两个孩子逆着自动扶梯行驶的方向行走,男孩每秒钟可走3级梯级,女孩每秒钟可走2级梯级,结果从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒,问扶梯有多少级梯级? 10. 有一个五位奇数,将这个五位奇数中的所有2都换成5,所有5也都换成2,其它数保持不变,得到一个新的五位数,若新五位数的一半比原五位数大1,那么原五位数是多少? 【试题答案】 1. (1)甲、乙两数之和加上甲数是220,加上乙数是170,求甲、乙两数之和。 据题意 2甲+2乙=220 (1) 甲+2乙=170 (2) (1)式+(2)式得到 3甲+3乙=390 所以,甲、乙两数之和为 390÷3=130 (2)小明在计算有余数的除法时,把被除数115错写成151,结果商比正确的结果大了3,但余数恰好相同,写出这个除法算式。 因为商增加了3,可求得除数 (151-115)÷3=36÷3 =12 所以,所求的除式为: 115÷12=9……7 2. (1)在下面的( )内填上适当的数字,使得三个数的平均数是140。 (5),(8)8,(3)27 三数的平均数是140,则三数之和: 140×3=420 第三个数应为327 420-327=93 显然,第一个数是5,第二个数是88。 (2)按规律填数 5,20,45,80,125,180,245。 20=5+15 45=20+25 80=45+35 125=80+45 所以下一个数应为: 125+55=180 3. 一个台阶图的每一层都由黑色和白色的正方形交错组成。且每一层的两端都是黑色的正方形(如图),那么第2000层中白色的正方形的数目是多少? 观察图形可知,每层的白色正方形的个数等于层数减1,所以,第2000层中应有1999个白色正方形。 4. 在一个停车场上,汽车,摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,问,停车场上,两种车各多少辆? 假设48辆车都是汽车 应有车轮数为 48×4=192 所以,摩托车的数量为 (48×4-172)÷(4-1) =20(辆) 汽车有48-20=28(辆) 5. 将100个苹果分给10个小朋友,每个小朋友的苹果个数互不相同。分得苹果个数最多的小朋友,至少得到几个苹果? 所有人的苹果个数应当尽量接近,10个小朋友先分别得到:1,2,3……10个苹果,剩下的苹果除以10得 〔100-(1+2+3+……+10)〕÷10 =45÷10=4……5 所以,再给每个小朋友增加4个苹果,后5个小朋友每人再增加1个苹果,10个小朋友的苹果个数应分别为: 5,6,7,8,9,11,12,13,14,15。 所以,得到苹果最多的小朋友至少得15个。 6. 书架有甲、乙、丙三层,共放了192本书,先从甲层拿出与乙层同样多的书放进乙层,再从乙层拿出与丙层同样多的书放进丙层,最后从丙层拿出与甲层同样多的书放进甲层。这时,甲、乙、丙三层的书同样多。求原来三层各有多少本书? 列表,用倒推法(从下往上填) 甲 乙 丙 初始状态 88 56 48 甲给乙后 32 112 48 乙给丙后 32 64 96 丙给甲后 64 64 64 甲、乙、丙三层原有书分别为:88本、56本、48本。 7. 某乡有10个养鸡场,每个鸡场所养鸡的数量都不相同,且不到万只,凑巧的是各鸡场的只数各位上的数字相加的和都等于34,求这10个养鸡场共养了多少只鸡。 各位数字之和为34,小于10000的数只能是四位数。 所以,各鸡场养鸡的只数,是只能由9,9,9,7或9,9,8,8组成的四位数,据题意各不相同,知10个数分别为: 7997,9799,9979,9997,8899,8989,8998,9889,9898,9988。 它们的和为:94435(只)。 8. 在下面的数表中,第100行左边的第一个数是什么? 5 4 3 2 6 7 8 9 13 12 11 10 14 15 16 17 21 20 19 18
__________________________________________________ 因为每行有4个数,所以前99行共有: 99×4=396(个)数 又因为这个数表中开始的最小的一个数为2,所以,依数列的排列规律可知,第100行的左边第1个数为: 396+1+1=398 9. 两个孩子逆着自动扶梯行驶的方向行走,男孩每秒钟可走3级梯级,女孩每秒钟可走2级梯级,结果从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒,问扶梯有多少级梯级? 男孩100秒走了 3×100=300(级) 女孩300秒走了 2×300=600(级) 说明自动扶梯每秒走 (600-300)÷(300-100) =1.5(级) 所以自动扶梯共有 (3-1.5)×100=150(级) 10. 有一个五位奇数,将这个五位奇数中的所有2都换成5,所有5也都换成2,其它数保持不变,得到一个新的五位数,若新五位数的一半比原五位数大1,那么原五位数是多少? 首先,原数的万位数字显然是2,新数的万位数字则只能是5, 其次,原数的千位数字必大于4,否则乘2不进位,但百位数字乘2后至多进1到千位,这样千位数字只能为9。 依次类推得到原数的前四位数字为2,9,9,9。 又个位数字只能为奇数,经检验,原数的个位数字为5。 所以,所求的原五位奇数为29995。
五年级数学竞赛模拟试卷及答案(二) 1. (1)(294.4-19.2×6)÷(6+8) (2)12.5×0.76×0.4×8×2.5 2. (1)二数相乘,若被乘数增加12,乘数不变,积增加60,若被乘数不变,乘数增加12,积增加144,那么原来的积是什么? (2)1990年6月1日是星期五,那么,2000年10月1日是星期几? 3. 一角钱6张,伍角钱2张,一元钱8张,可以组成多少种不同的币值? 4. 现将12枚棋子,放在图中的20个方格中,每格最多放1枚棋子。要求每行每列所放的棋子数的和都是偶数,应该怎样放,在图上表示出来。
5. 有一栋居民楼,每家都订了2份不同的报纸,该居民楼共订了三种报纸,其中,中国电视报34份,北京晚报30份,参考消息22份,那么订北京晚报和参考消息的共有多少家? 6. 在桌子上有三张扑克牌,排成一行,我们已经知道: (1)k右边的两张牌中至少有一张是A。 (2)A左边的两张牌中也有一张是A。 (3)方块左边的两张牌中至少有一张是红桃。 (4)红桃右边的两张牌中也有一张是红桃。 请将这三张牌按顺序写出来。 7. 将偶数排成下表: A B C D E 2 4 6 8 16 14 12 10 18 20 22 24 32 30 28 26 …… 那么,1998这个数在哪个字母下面? 8. 在下图的14个方格中,各填上一个整数,如果任何相连的三个方格中填的数之和都是20,已知第4格填9,第12格填7,那么,第8个格子中应填什么数?
9. 将自然数1,2,3……15,这15个自然数分成两组数A和B。求证:A或者B中,必有两个不同的数的和为完全平方数。 10. 把一张纸剪成6块,从中任取几块,将每一块剪成6块,再任取几块,又将每一块剪成6块,如此剪下去,问:经过有限次后,能否恰好剪成1999块?说明理由。