紫外可见分光光度法的原理及应用

合集下载

紫外可见分光光度法在食品检测中的应用

紫外可见分光光度法在食品检测中的应用
定,A-c曲线应为经过原点旳直线,但实际
工作中直线经常发生弯曲,这称为朗伯-比
尔定律旳偏离。
原因:
吸光物质浓度较高;非单色光引起;介质
不均匀引起;吸光物质不稳定引起。
摩尔吸收系数ε:
1mol/L浓度旳溶液,液层厚度为1cm时旳吸
收度。
强吸收:ε>104;
中档强度吸收:102 < ε < 104;
度。(吸收池厚度为10.0mm)。
c.
4、紫外-可见分光光度计旳构成、类型和使用
(1)构成:光源、单色器、吸收池、检测器、
信号处理器、显示屏
可见光源:碘钨灯、钨灯:320-2500nm
紫外光源:氢灯、氘灯、汞灯:150-400nm

玻璃吸收池:仅用于可见光区
石英池:可用于紫外光区和可见光区
选择原则:
能完全溶解样品;
在所用旳波长范围内有很好旳透光性;
纯度为“光谱纯”或经检验其空白符合要求。

处理措施:
蒸馏水煮沸清除气泡;
乙醇清除醛类、苯等杂质;
环己烷、正己烷清除苯;
氯仿预防光和空气破坏;
乙醚清除过氧化物;
烃类吸附除杂

(3)参比溶液旳选择
1). 溶剂参比:试样构成简朴、共存组份少(基体

注意事项:
粗酶液制备时根据目旳酶旳性质选择缓冲液、温度、
时间等条件;
酶和底物旳反应条件也要恰当;
一般以检测产物变化量居多。

二、紫外-可见分光光度法
在食品检测中旳应用
(一)、食品酶分析
1、-半乳糖苷酶(乳糖酶)
以ONPG(邻硝基苯β-D-半乳吡喃糖苷)为
底物测定-半乳糖苷酶活力。

紫外可见分光光度法

紫外可见分光光度法

光子能量与它的频率成正比,与波长成 反比,与光强度无关。光的波长越短
(频率越高),其能量越大。
单色光: 同一波长的光称为单色光; 复合光: 不同波长的光组成的光称为复合光; 可见光: 凡是被肉眼感受到的光称为可见光; 波长范围为400-780nm
复合光
单色光
物质颜色的产生
固体
反射蓝色光 吸收黄色光
互补色
液体
透过紫色光 吸收绿色光
二、 物质对光的选择性吸收
M + h 基态 E0 (△E) M* 激发态 E1
E1
激发态
E2
E = E1 - E0 = h =h c/λ λ=hc/ E
物质对光选择性吸收
E0
基态
E
例题
某分子中两个电子能级之间的能级差为1eV, 若要电子在两个能级之间发生跃迁,需要
是指分子中的一些带有非成键电子对的基团本身在紫外-可 见光区不产生吸收,但是当它与生色团连接后,增强生色团的 生色能力,使生色团的吸收带向长波移动,且吸收强度增大。 助色团为含有未共用电子对的杂原子基团:-OH、-Cl、-Br
C.红移与蓝移
有机化合物的吸收谱带常
常因引入取代基或改变溶剂使
最大吸收波长λmax和吸收强度 发生变化:
π→π*跃迁的λmax为170nm 。
(4)n→π*跃迁:分子中孤对电子和π键同 时存在时发生n→π* 跃迁。丙酮n→π* 跃迁的λmax为275nm。
(5)电荷迁移跃迁:分子本身具有电子给予
体和电子接受部分,外来辐射照射,电子从
具有给予体特性的部分转移到具有电子接受
体特性的部分所发生的跃迁。其谱带较宽,
思考
1、庚烷、环己烷等烷烃在200-400nm内有无吸收?

紫外可见分光光度计范围

紫外可见分光光度计范围

紫外可见分光光度计范围紫外可见分光光度计是一种常用的光谱分析仪器,用于测量物质在紫外可见光波段的吸收和透过性质。

它能够提供物质吸收光谱的信息,帮助我们了解物质的组成和结构。

本文将介绍紫外可见分光光度计的基本原理、应用范围以及其在科学研究和工业生产中的重要意义。

一、紫外可见分光光度计的基本原理紫外可见分光光度计的基本原理是利用物质对特定波长光的吸收和透过性质来测量其浓度或含量。

它通过光源产生的连续光束,经过样品后,被光电传感器接收并转换为电信号。

根据样品的吸收特性,我们可以得到样品的吸光度,从而推算出其浓度或含量。

二、紫外可见分光光度计的应用范围紫外可见分光光度计广泛应用于医药、化学、生物、环境科学等领域。

它可以用于测定药品的纯度和含量,监测水质和空气质量,分析生物样品中的成分等。

以下是几个具体的应用范例:1.药物分析:紫外可见分光光度计可用于测定药物的纯度、含量和稳定性。

通过测量药物在特定波长下的吸收光谱,我们可以判断药物的质量,并及时调整生产工艺,确保药品的安全性和有效性。

2.环境监测:紫外可见分光光度计可用于监测水体和大气中的污染物含量。

例如,我们可以通过测量水体中溶解有机物的吸光度来评估水质状况,或者通过测量大气中气体的吸光度来监测空气污染物的浓度。

3.生物分析:紫外可见分光光度计可用于测定生物样品中的蛋白质、核酸和其他生物分子的浓度。

通过测量这些分子在紫外可见光波段的吸收光谱,我们可以了解其结构和功能,并进一步研究生物过程和疾病机制。

4.食品安全:紫外可见分光光度计可用于检测食品中的添加剂、污染物和有害物质。

例如,我们可以通过测量食品中色素的吸光度来判断其是否合格,或者通过测量食品中残留农药的吸光度来评估其安全性。

三、紫外可见分光光度计的重要意义紫外可见分光光度计在科学研究和工业生产中具有重要的意义。

它不仅为我们提供了分析物质的工具,还为我们研究物质的性质和反应机制提供了重要的信息。

以下是紫外可见分光光度计的几个重要意义:1.质量控制:紫外可见分光光度计可以用于药品、食品、化妆品等产品的质量控制。

紫外分光光度法缩写

紫外分光光度法缩写

紫外分光光度法缩写紫外分光光度法(UV-Vis Spectrophotometry)1. 引言紫外分光光度法是一种常用的分析方法,广泛应用于化学、生物、环境等领域。

本文将介绍紫外分光光度法的原理、仪器和应用。

2. 原理紫外分光光度法利用物质对紫外可见光的吸收特性进行分析。

紫外光具有较短的波长,能够使样品中的电子从基态跃迁到激发态,吸收光能。

通过测量样品吸收光的强度,可以确定样品中特定物质的浓度。

3. 仪器紫外分光光度计是进行紫外分光光度法分析的关键仪器。

它由光源、单色器、样品室和探测器等部分组成。

光源发出一束连续的紫外光,经过单色器选择特定波长的光进入样品室,样品吸收部分光能后,剩余的光通过探测器进行检测和记录。

4. 操作步骤(1)准备样品:将待测样品溶解于适当的溶剂中,以获得透明的溶液。

(2)设置仪器:进入紫外分光光度计软件,选择合适的波长范围和检测模式。

(3)调零:用空白溶液(即不含待测物质的溶剂)进行调零,确保仪器在零吸光度状态下进行测量。

(4)测量样品:将样品溶液放入样品室,测量吸光度,并记录结果。

(5)计算浓度:根据吸光度与样品浓度之间的线性关系,计算出待测物质的浓度。

5. 应用紫外分光光度法在许多领域中都有广泛的应用。

(1)药物分析:紫外分光光度法可以用来测定药物的含量和纯度,对药物的质量控制起到重要的作用。

(2)环境监测:紫外分光光度法可以用来检测水体、大气等环境样品中的有害物质,帮助评估环境污染程度。

(3)生物学研究:紫外分光光度法可用于测定蛋白质、核酸等生物大分子的浓度,研究其结构和功能。

(4)食品分析:紫外分光光度法可以用来检测食品中的添加剂、污染物等,保障食品安全。

6. 优势与局限紫外分光光度法具有操作简单、快速、灵敏度高的优点。

然而,该方法对样品的透明度要求较高,不能用于浑浊或有色样品的分析。

7. 结论紫外分光光度法是一种常用的分析方法,通过测量样品对紫外可见光的吸收特性,可以确定样品中特定物质的浓度。

紫外-可见分光光度法测定

紫外-可见分光光度法测定

紫外-可见分光光度法测定1. 引言1.1 引言紫外-可见分光光度法是一种常用的分析化学方法,通常用于测定物质的浓度或测定物质的吸光度。

该方法利用紫外-可见光谱仪测量样品对紫外和可见光的吸收情况,从而推断样品中所含物质的浓度或结构。

在化学分析实验中,紫外-可见分光光度法具有灵敏度高、准确性高和简便易行的优点,因此被广泛应用于药物分析、环境监测、食品检测等领域。

本实验旨在通过该方法测定样品中目标物质的浓度,并探讨影响测定结果的因素。

通过对仪器原理、操作步骤、实验结果、数据分析和影响因素的详细讨论,我们将深入了解紫外-可见分光光度法的原理和应用,并为今后在相关领域的研究提供参考和借鉴。

希望本实验能够为我们提供更多关于分光光度法的实际操作经验,提升我们的实验技能和分析能力。

1.2 背景介绍紫外-可见分光光度法是一种广泛应用于化学分析领域的分析方法,通过测定物质在紫外-可见光区域的吸收特性,从而确定物质的浓度或者进行定性分析。

紫外-可见分光光度法具有操作简单、灵敏度高、选择性强的特点,被广泛应用于环境监测、食品安全检测、药品质量控制等领域。

随着科学技术的不断发展,紫外-可见分光光度法在实验室分析中扮演着越来越重要的角色。

通过测定物质在特定波长范围内的光吸收情况,我们可以获得关于物质性质的重要信息,如浓度、溶解度、稳定性等。

掌握紫外-可见分光光度法的原理和操作方法,对于提高实验准确性和效率具有重要意义。

在本文中,我们将介绍紫外-可见分光光度法的仪器原理、操作步骤、实验结果、数据分析和影响因素,希望能够为读者提供一份系统全面的紫外-可见分光光度法测定指南。

通过总结和展望,我们也希望能够进一步探讨该方法在化学分析领域的应用前景。

1.3 研究目的紫外-可见分光光度法是一种常用的分析化学技术,可以用于测定物质的吸光度,从而推断物质的浓度。

本实验的研究目的主要分为以下几点:1. 研究紫外-可见分光光度法在测定物质浓度方面的应用。

紫外可见分光光度法的应用现状及发展

紫外可见分光光度法的应用现状及发展

紫外可见分光光度法的应用现状及发展紫外可见分光光度法是一种常用的分析技术,广泛应用于化学、生物、环境等领域。

本文将深入探讨紫外可见分光光度法的应用现状以及未来的发展趋势。

一、紫外可见分光光度法的基本原理紫外可见分光光度法基于物质对可见光和紫外光的吸收特性进行分析。

它利用紫外可见分光光度计,将样品溶液或气体暴露于特定波长的光源下,测量经过样品后的光强变化,从而得出样品的吸光度值。

吸光度值与样品中被测试化合物的浓度成正比,可以通过比较吸光度值与标准曲线来确定样品中的化合物浓度。

二、紫外可见分光光度法在化学分析中的应用1. 无机化学分析:紫外可见分光光度法广泛应用于金属离子的测定、配位化合物稳定常数的测定等方面。

通过测量在一定波长下溶液中金属离子的吸光度,可以确定金属离子的含量。

2. 有机化学分析:紫外可见分光光度法在有机化合物的分析中也有重要应用。

可以用来测定有机色素的含量、有机酸的浓度等。

紫外可见分光光度法还可以用于有机物质的结构表征和质量控制分析。

3. 药物分析:药物分析常常依赖于紫外可见分光光度法,用于药物的含量测定、药物溶解度的研究、药代动力学的研究等。

紫外可见分光光度法具有快速、准确、灵敏度高等优点,对于药物分析具有重要意义。

4. 环境监测:紫外可见分光光度法在环境监测中也发挥了重要作用。

可以用来检测水质中各种有害物质的浓度,如重金属离子、有机污染物等。

紫外可见分光光度法还可以用于大气污染物的检测、土壤分析等。

三、紫外可见分光光度法的发展趋势1. 多重检测器的应用:为了提高紫外可见分光光度法的分析灵敏度和选择性,将多重检测器(如二极管阵列检测器)引入紫外可见分光光度法成为一种趋势。

多重检测器可以同时检测多个波长的吸光度信号,提高分析效率和准确性。

2. 微流控技术的应用:微流控技术结合紫外可见分光光度法可以实现样品预处理、反应和测量的集成,提高分析速度和样品处理容量。

3. 转向纳米材料的应用:纳米材料具有较大的比表面积和特殊的光学性质,可以用于增强样品的信号强度,提高分析的灵敏度。

紫外可见分光光度法在化学分析中的应用

紫外可见分光光度法在化学分析中的应用概述紫外可见分光光度法(UV-Vis)是一种重要的分析技术,广泛应用于化学分析领域。

通过测量物质在紫外和可见光区域的吸收和透射特性,可以得到目标物质的浓度、纯度以及反应动力学等相关信息。

本文将从理论背景、仪器原理、应用实例等方面探讨紫外可见分光光度法在化学分析中的应用。

一、理论背景紫外可见分光光度法基于光与物质相互作用的原理。

物质会吸收特定波长的光线,吸收光线的强度与物质的浓度成正比关系。

当物质溶液中有多种物质存在时,它们的光线吸收能力会相互影响,因此需要进行光谱分离和定量。

二、仪器原理紫外可见分光光度法的仪器主要由光源、光解析系统和光度计三部分组成。

1. 光源:常用光源包括汞灯、氘灯、钨灯等。

它们能发出紫外和可见光,提供光照射样品的能量。

2. 光解析系统:该部分包括进光设备(光栅、光纤等)和出光设备(单色器、滤光片等)。

进光设备用于区分不同波长的入射光,而出光设备用于选择特定波长的光作为检测信号。

3. 光度计:光度计是紫外可见分光光度法的核心组件,用于测量样品的吸收光强度。

常见的光度计包括双光束光度计和单光束光度计。

三、应用实例1. 离子浓度测定:紫外可见分光光度法常被用于测定溶液中金属离子的浓度。

通过比较标准曲线,可以确定待测溶液中金属离子的浓度,如钙、镁、铁等。

2. 有机物定量分析:紫外可见分光光度法在有机物定量分析中也得到广泛应用。

例如,通过测量有机物溶液的吸光度,可以确定有机物的浓度,如蛋白质浓度的测定、核酸浓度的测定等。

3. 反应动力学研究:紫外可见分光光度法可以用于研究化学反应的动力学过程。

通过测量反应溶液中吸光度的变化,可以获得反应速率常数等相关参数。

4. 药物分析:药物分析中,紫外可见分光光度法常被用于测定药物的含量和纯度。

通过把目标药物与特定试剂反应后,测量光谱吸光度的变化,可以计算出药物的含量和纯度。

四、优势与前景紫外可见分光光度法具有分析简便、操作方便、灵敏度高等优点,因此在化学分析中得到了广泛应用。

紫外-可见分光光度法 标准曲线相关系数 小木虫

紫外-可见分光光度法是一种广泛应用的分析化学技术,它通过测量物质在紫外-可见光波段的吸收或透射来确定样品中特定物质的浓度。

该方法具有灵敏度高、分辨率好、操作简便等优点,在化学、生物化学、环境监测等领域都有着重要的应用价值。

一、紫外-可见分光光度法的原理紫外-可见分光光度法是利用物质对紫外-可见光的吸收或透射特性来进行定量分析的一种方法。

当紫外-可见光照射到物质上时,如果物质吸收了部分光能,则其吸收的光强与物质浓度成正比。

根据比尔定律,可以得到吸光度与浓度的线性关系:A = εlc其中A为吸光度,ε为摩尔吸光系数,l为光程,c为物质浓度。

通过建立标准曲线,测定样品的吸光度,并根据标准曲线确定样品中特定物质的浓度。

二、标准曲线的建立标准曲线是指在已知条件下,一系列不同浓度物质对应的吸光度值所构成的曲线。

标准曲线的建立通常需要进行以下步骤:1.准备一系列不同浓度的标准溶液,通常从低浓度到高浓度逐渐增加;2.分别测定各标准溶液的吸光度,并绘制吸光度-浓度曲线;3.通过线性回归等方法,拟合出标准曲线的方程,确定吸光度与浓度的线性关系。

三、标准曲线相关系数标准曲线相关系数是用来评价标准曲线拟合程度的指标。

相关系数越接近1,表示拟合效果越好,曲线与实际数据的吻合程度越高;而相关系数接近0,则表示拟合效果较差,曲线与实际数据的吻合程度较低。

在紫外-可见分光光度法中,标准曲线相关系数的计算通常是依靠计算吸光度与浓度的线性回归方程的确定系数R^2来实现。

R^2的取值范围在0~1之间,越接近1表示拟合效果越好,常用于评价标准曲线的可靠性和稳定性。

四、标准曲线相关系数的影响因素标准曲线相关系数的大小受多种因素影响,包括仪器精度、操作技术、环境条件等。

其中,标准曲线的线性范围和斜率对其相关系数影响较大。

线性范围如果选择不当,可能导致数据偏离线性区域,造成拟合效果不佳;而斜率的大小则直接影响到吸光度与浓度的线性关系,进而影响相关系数的结果。

紫外分光光度计的使用原理和方法 PPT


这些显色反应,必须满足以下条件:
1、反应得生成物必须在紫外-可见光区有较 强得吸光能力,即摩尔吸光系数较大;
2、反应有较高得选择性,即被测组分生成得 化合物吸收曲线应与共存物质得吸收光谱有 明显得差别;
3、 反应生成得产物有足够得稳定性,以保 证测量过程中溶液得吸光度不变;
4、反应生成物得组成恒定。
按所吸收光得波长区域不同,分为紫外分 光光度法与可见分光光度法,合称为紫外-可见 分光光度法。
紫外-可见分光光度法得特点:
1 与其它光谱分析方法相比,其仪器设备与操 作都比较简单,费用少,分析速度快;
2 灵敏度高; 3 选择性好; 4 精密度与准确度较高; 5 用途广泛。
§1、 紫外-可见吸收光谱
3、 狭缝宽度得选择
为了选择合适得狭缝宽度,应以减少狭 缝宽度时试样得吸光度不再增加为准。一 般来说,狭缝宽度大约就是试样吸收峰半 宽度得十分之一。
二、显色反应条件得选择
对多种物质进行测定,常利用显色反应 将被测组分转变为在一定波长范围有吸收 得物质。常见得显色反应有配位反应、氧 化还原反应等。
参比溶液得选择视分析体系而定,具体有:
1、溶剂参比 试样简单、共存其它成分 对测定波长吸收弱,只考虑消除溶剂与吸收 池等因素;
2、试样参比 如果试样基体溶液在测定 波长有吸收,而显色剂不与试样基体显色 时,可按与显色反应相同得条件处理试样, 只就是不加入显色剂。
3、试剂参比 如果显色剂或其它试剂在 测定波长有吸收,按显色反应相同得条件, 不加入试样,同样加入试剂与溶剂作为参 比溶液。
红移与紫移
在有机化合物中,常常因取代基得变更或 溶剂得改变,使其吸收带得最大吸收波长λmax 发生移动。向长波方向移动称为红移(表3-3), 向短波方向移动称为紫移。

紫外可见分光光度计的结构、工作原理与应用

紫外可见分光光度计紫外可见分光光度计原理是:分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。

它是带状光谱,反映了分子中某些基团的信息。

可以用标准光谱图再结合其它手段进行定性分析。

根据Lambert-Beer定律:A=εbc,(A为吸光度,ε为摩尔吸光系数b为液池厚度,c为溶液浓度)可以对溶液进行定量分析。

你可以用紫外可见分光光度计测定定三种农药的波长在某溶液中的最大、最小吸收波长。

配制溶液-在光谱检测项下进行-调整检测光谱范围及速度--扫描光谱图--吸光度最大处对应波长为最大吸收波长,吸光度最小处对应的波长为最小吸收波长。

1.光源灯;2.滤光片;3.球面反射镜;4.入射狭缝;5.保护玻璃;6.平面反射镜;7.准直镜;8.光栅;9.保护玻璃;10.出射狭缝; 11.聚光镜;12.试样室; 13.光门;14.光电管.分光光度计工作原理:由光源灯(1)发出连续辐射光线,经滤光片(2)和球面反射镜(3)至单色器的入射狭缝(4)聚焦成像,光束通过入射狭缝(4)经平面反射镜(6)到准直镜(7)产生平行光,射至光栅(8)上色散后又以准直镜(7)聚焦在出射狭缝(10)上形成一连续光谱,由出射狭缝选择射出一定波长的单色光,经聚光镜(11)聚光后,通过试样室(12)中的测试溶液部分吸收后,光经光门(13)再照射到光电管(14)上.调整仪器,使透光度为100%,再移动试样架拉手,使同一单色光通过测试溶液后照射到光电管上.如果被测样品有光吸收现象,光量减弱放大器处理,将光能的变化程度通过数字显示器显示出来.可根据需要直接在数字显示器上读取透光度(T),吸光度(A)或浓度(C).基本操作:(1)通电---仪器自检----预热20min;(2)用键设置测试方式:透射比(T),吸光度(A),已知标样浓度方式(C)和已知标样浓度斜率(K)方式;(3)波长选择:用波长调节旋钮设置所需的单色光波长;(4)放样顺序:打开样品室盖,在1~4号放置比色皿槽中,依次放入%T校具(黑体),参比液,样品液1和样品液2.(5)校具(黑体)校"0.000":将%T校具(黑体)置入光路,在T方式下按"%T"键,此时仪器自动校正后显示"0.000"(6)参比液校"100"%T或"0.000"A:将参比液拉入光路中,按"0A/100%T"键调0A/100%T,此时仪器显示"BLA",表示仪器正在自动校正,校正完毕后显示"100"%T 或"0.000"A后,表示校正完毕,可以进行样品测定.(7)样品测定:将两样品液分别拉入光路中,此时若在"T"方式下则可依次显示样品的透射比(透光度)若在"A"方式下,则显示测得的样品吸光度.7200型光栅分光光度计的使用注意事项(1)(1) 预热是保证仪器准确稳定的重要步骤.(2) 比色皿的清洁程度,直接影响实验结果.因此,特别要将比色皿清洗干净.先用自来水将用过的比色皿反复冲洗,然后用蒸馏水淋洗,倒立于滤纸片上,待干后再收回比色皿盒中.必要时,还要对比色皿进行更精细的处理,如用浓硝酸或铬酸洗液浸泡,冲洗.(3) 比色皿与分光光度计应配套使用,否则会引起较大的实验误差. 比色皿不能单个调换 1.3 7200型光栅分光光度计的使用注意事项(2)(4) 比色皿内盛液应为其容量的2/3,过少会影响实验结果,过多易在测量过程中外溢,污染仪器. 比色皿中试样装入量应为2/3~3/4之间(5) 拿放比色皿时,应持其"毛面",杜绝接触光路通过的"光面".如比色皿外表面有液体,应用绸布拭干,以保证光路通过时不受影响.(6) 若待测液浓度过大,应选用短光径的比色皿,一般应使吸光度读数处于0.1~0.8范围内为宜.由于测定空白,标准和待测溶液时使用同样光径的比色皿,故不必考虑因光径变化而引起的影响.UV-754型紫外-可见分光光度计正确使用方法2.1 紫外分光光度计法概述(1)2.1.1定义用紫外光源通过分光光度技术对物质进行测定的方法叫作紫外分光光度法.所使用的仪器叫作紫外分光光度计.2.1.2原理因为许多化合物的分子结构中存在共轭双键,在200~400nm的紫外光区具有吸收光的特性,所以无需进行显色反应便能直接测定.2.1.3应用常用于对蛋白质和核酸进行定性,定量测定.蛋白质分子中所含酪氨酸,色氨酸和苯丙氨酸等芳香族氨基酸残基在波长280nm处具有最大吸收峰.故常用波长280nm处的吸光度测定蛋白质的浓度.2.1.4特点(1) 组成核酸的碱基也含有共轭双键,其最大吸收峰的波长在260nm处.但在280nm处也有一定的光吸收,对蛋白质的测定有一定的干扰作用.若分别测定280nm和260nm处的吸光度,可通过经验公式消除核酸对蛋白质测定的影响. (2)可对微量蛋白质(1~10g/L)不需显色,进行直接定量测定.因此操作简便,而且可回收样品.此外,盐类在280nm处无光吸收,少量盐类也不会影响测定结果.(3)紫外分光光度法完全符合Lambert-Beer定律的基本原理.在其它条件保持一致的情况下,被测溶液的吸光度与被测溶液的浓度成正比.2.2 UV-754型分光光度计的结构和工作原理2.2.1仪器结构由光源(钨灯或氚灯),单色器,试样室,接受器(光电管),微电流放大器,A/C 转换器,打印机,键盘和显示器等部件组成.微处理机(CPU)通过输入,输出口(I/O)对微电流放大器,显示器和打印机等部件进行控制,实现仪器的整体功能.2.2.2工作原理UV-7 5 4型紫外-可见分光光度计光学系统1.氚灯;2.钨灯;3.滤光镜;4.聚光镜;5.入射狭缝;6.平面;7.准直镜;8.光栅;9.出射狭缝; 10.聚光镜; 11.试样室; 12.光门; 13.光电管2.2.2工作原理由光源氚灯或钨灯(1或2)发出连续辐射光线经滤光镜(3)和聚光镜(4)至单色器入射狭缝(5)处聚焦成像,再经平面反射镜(6)反射至准直镜(7)产生平行光射至光栅(8)在光栅上色散后又经准直镜(7)聚焦在出射狭缝(9)上成一连续光谱,经出射狭缝射出的光在聚光镜(10)聚光后分别通过试样室 (11)中的空白溶液(或对照溶液),标准溶液或样品溶液,被部分吸收后光经光门(12)再照射到光电管(13)上.被光电管接收的光信号再被转换成电信号,后者通过输入,输出口(I/O).进入微处理机进行调零,变换对数,浓度计算以及打印数据等处理,将检测结果通过显示器和打印系统显示出来.2.3 UV-754型分光光度计使用方法(外型)2.3.1 UV-754型紫外可见分光光度计1.试样架拉手;2.键盘部分;3.数据打印;4.波长刻度盘;5.波长手轮;6.电源汗关;7.氚灯触发按钮;8.光源室.2.3 UV-754型分光光度计使用方法(键盘) UV-754型紫外-可见分光光度计键盘详细内容说明如下:2.3 UV-754型分光光度计使用方法(键盘内容1) ①功能键: F1~F8,暂无功能,备扩展使用. ② T键: 具有三种透光度状态调节功能.③ A/C键:吸光度/浓度转换键,按此键可分别表示"吸光度0~3A","吸光度0~","吸光度0~0.1A"和"浓度"四种状态.④送入键:只在"A/C键"处于"浓度"状态时才起作用. ⑤打印键:手动方式时有效,每按一次,便打印一次数据.⑥控制键:在分别使用"设定+","设定一","倍率","显示方式"和"打印方式"各键时,需与控制键分别联合使用才起作用.⑦设定+键:在"A/C键"处于"浓度"状态时才能设定"标准浓度值","斜率K值"或"斜率B值"等数据.其功能是将设定数值增加.2.3 UV-754型分光光度计使用方法(键盘内容2) ⑧设定- 键:是使设定数值减小,操作与"设定+键"类同.⑨倍率键:用来设定标准溶液浓度的放大倍数.有"1","0.1"和"0.01"三档,与"控制键"同时按下,倍率便发生相应的变化.⑩显示方式键:可表示"积分","浓度"和"样品号"三种状态.(11) 打印方式键:存在"自动"(每移动一次试样架,仪器自动打印一次数据),"方式1"(手动方式,每按一次此键,仪器打印一次数据)和"方式2"(每分钟定时打印一次数据)三种状态.每与"控制键"同时按一次此键便改变一个状态.(12) 送纸键:每按一次此键,仪器移动一次打印纸. (13) TAC:数字显示器显示测定结果或输入的数据. 2.3.2 UV-754型紫外可见分光光度计使用方法(1) (1)测试准备①将盛有"空白"或"对照"溶液的比色皿处于试样室光路位置; ②选择波长旋动波长手轮选定所需波长;③确定光源波长在200~290nm时,选择氚灯为光源;波长在290~360nm时,同时以氚灯和钨灯为光源;波长在360~850nm时,选择钨灯为光源;若使用氚灯,需按氚灯触发按钮启动;④仪器自检显示器显示"754"后,数字显示出现"100.0",表明仪器通过自检程序,此时仪器进入"0~100%","连续"和"自动"状态(打印系统处于自动打印状态)⑤仪器预热30min后方可进行测试.2.3.2 UV-754型紫外可见分光光度计使用方法测试过程①数字显示透光度"100.0"(或吸光度"0.00")2~3s后,将盛有标准溶液的比色皿移至光路,打印系统便自动打印出所得数据;②将盛有样品溶液的比色皿移至光路,打印系统即自动打印出该样品的数据.待第一个样品数据打印完毕后,将第二个样品置于试样室光路………,若有多个样品,操作以此类推。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称这两种单色光为 互补色光 ,这种现象称为 光的互补 。
物质颜色和吸收光颜色的关系
物质颜色
黄绿 黄 橙 红
紫红 紫 蓝
绿蓝 蓝绿



紫 蓝 绿蓝 蓝绿 绿 黄绿 黄 绿 红
收 波
光 长(nm)
400 ~ 450 450 ~ 480 480 ~ 490 490 ~ 500 500 ~ 560 560 ~ 580 580 ~ 600 600 ~ 650 650 ~ 750
用经过分光后的不同波长的光依次透过该物质,通过测 量物质对不同波长的光的吸收程度(吸光度), 以波长为横 坐标,吸光度为纵坐标作图,就可以得到该物质在测量波长 范围内的吸收曲线。这种曲线体现了物质对不同波长的光的 吸收能力,称为吸收光谱。
吸收光谱
透射光 检测器
入射光 不同波长光
紫外-可见分光光度法的原理
2.分子吸收光谱的分类:
分子吸收光谱涉及三种跃迁能级,所需能量大小顺序
? E电 ? ? E振 ? ? E转
? E电 ? 1 ~ 20ev ? ? ? 0.06 ~ 1.25?m ? 紫外 ? 可见吸收光谱 ? E振 ? 0.05 ~ 1ev ? ? ? 25 ~ 1.25?m ? 红外吸收光谱 ? E转 ? 0.005 ~ 0.05ev ? ? ? 250 ~ 25?m ? 远红外吸收光谱
比耳定律实验
当一束平行的单色光通过液层厚度一定的溶液时,在入射光波长、
强度和溶液温度等不变时,吸光度A与溶液浓度 c 关系:A=k c
3.紫外-可见吸收光谱的产生 由于每个电子能级上耦合有许多的振-转能级,所以处
于紫外 -可见光区的电子跃迁而产生的吸收光谱具有 “带状吸收” 的特点。
图1 分子中的电子(S)、振动(V)、转动(J )能级示意图
吸收光谱: 又称吸收曲线,是以波长 λ(nm )为横 坐标,以吸光度 A为纵坐标所绘制的曲线。
紫外吸收光谱:200 ~ 400 nm 可见吸收光谱:400 ~ 800 nm
两者都属电子光谱:分子吸收紫外辐射能后引起 价电子 跃迁所产生的。只是所用光源波段不同。
σ电子
价电子 π电子
n电子
紫外光谱法与可见分光光度法和红外光谱法统称 分子吸收光谱法 。
一、分子吸收光谱 1.分子吸收光谱的产生—由能级间的跃迁引起
紫外-可见分光光度法的原理及应用
(Ultraviolet-Visible Spectrophotometry)
1. 紫外-可见吸收光谱法的基本原理 2. 紫外-可见分光光度计 3. 紫外-可见吸收光谱法的应用
紫外-可见分光光度法的原理
物质对光的 选择吸收
当一束光照射到某种物质的固态物或溶液上时,一部 分光会被吸收或被反射,不同的物质对于照射它们的光束 的吸收程度是不同的,对某个波长的光吸收强烈,对另外 波长的光吸收很小或不吸收,我们把这种现象称为 光的选 择吸收。
光谱 区域
γ 射线
χ 射线
紫外光
可 见 光
红外光
微波无线Βιβλιοθήκη 波分析 方法γ 射线光谱法
χ 射线 光谱法
紫外分 光光度法
分光 光度

红外光谱法
核磁共振 微波光谱法 光谱法
基于物质对 200-800 nm 光谱区辐射的吸收特性建立起 来的分析测定方法称为紫外 -可见吸收光谱法或紫外 可见分光光度法。它具有如下特点: 1. 灵敏度高。可以测定 10-7~10-4g·mL -1的微量组分。 2. 准确度较高。其相对误差一般在 1%-5% 之内。 3. 仪器价格较低,操作简便、快速。 4. 应用范围广。
一切物质都会对可见和不可见光中的某些波长的光进 行吸收。
物质呈现各种各样颜色,就是它们对可见光 中某些特定波长的光线选择吸收的结果。
物质对光的选择性吸收
●物质的颜色 由物质与光的相互作用方式决定。 ●人眼能感觉到的光称可见光,波长范围是: 400~760nm 。 ●让白光通过棱镜,能色散出红、橙、黄、绿、蓝、紫等各色光。 ●单色光:单一波长的光 ●复合光:由不同波长的光组合而成的光,如白光。 ●光的互补:若两种不同颜色的单色光按一定比例混合得到 白光,
E分 ? E电 ? E振 ? E转
能级差
? E ? h ??
?
h
?c
?
能级:电子能级、振动能级、转动能级 跃迁:电子受激发,从低能级转移到高
能级的过程
?分子选择性地吸收一定波长的光,从能量较低状 态跃迁到较高状态,使得透过的光谱中这些波长 光的强度减弱,这种光谱即称为分子吸收光谱。
?Δ E 的大小是由物质的分子结构决定的,不同的 分子结构,Δ E 是不同的,吸收光的波长不同, 反映物质分子的结构不同,所以研究物质的分子 吸收光谱可以提供物质的分子结构的信息。
紫外-可见分光光度法是利用物质对光的吸收光谱,对 物质进行定性分析或定量分析的方法。按所吸收光的波长 区域不同,分为紫外分光光度法和可见分光光度法,合称 为紫外-可见分光光度法。
波长
0.01nm 0.1nm 200nm
800nm 10μ m 500μ m 400nm 2.5μ m 25μ m
1cm 1m
物质的颜色:是由于物质对不同波长的光具有 选择性吸收而产生。 即物质的颜色是它所吸收光的互补色。
物质的本色
无色溶液:透过所有颜色的光 有色溶液:透过光的颜色 黑色: 吸收所有颜色的光 白色: 反射所有颜色的光
紫外-可见分光光度法的原理
物质的结构决定了物质在吸收光时只能吸收某些 特定波 长的光。我们可以利用测量物质对某种波长的光的吸收来了 解物质的结构特性。
厚度
一束平行
单色光
吸光
通过系数一
浓度
均匀、非散射
的吸光物质溶液时,在入
射光的波长、强度以及溶液温度等保持不变时 ,该溶液的 吸光度A
与其浓度 C及液层厚度 L的乘积 成正比。
注意! 适用范围
①入射光为单色光,适用于可见、红外、紫外光。 ②均匀、无散射溶液、固体、气体。 ③吸光度 A具有加和性。 Aa+b+c= A a + Ab + Ac
A 4
1 3
1 2
2
λ 1、吸收峰 2、谷 3、肩峰 4、末端吸收
图2 紫外吸收光谱图
4、光的吸收定律
朗伯(Lambert) 和比尔(Beer) 分别于1760年和1852年研究吸 光度A与溶液厚度L和其浓度C 的定量关系:
朗伯定律 : 比尔定律 :
A=k1 ×L A=k1 ×C
朗伯-比尔定律 : A=k C L 液层
相关文档
最新文档