第7章 多环芳烃和非苯芳烃-2012

合集下载

有机化学第七章(多)

有机化学第七章(多)
CH3 CH3 CH3
4 3 2 1
1
α-甲基萘 β-甲基萘 1-甲基萘 2-甲基萘
SO3H
5 4 NO2
SO3H 2 3
4 3 2 1 OH
CH3 5
4-甲基-1-萘磺酸 5-硝基-2-萘磺酸
5-甲基-1质: (1)性状:无色片状晶体,mp:80.2℃,bp:218 ℃,有特殊气味。 性状: 有特殊气味。 性状 无色片状晶体, ℃ 有特殊气味 (2)易升华,蒸气有杀菌作用。用于做卫生球,用于杀菌防虫。 易升华, 易升华 蒸气有杀菌作用。用于做卫生球,用于杀菌防虫。 萘的化学性质与苯相似,但由于离域的不太好, 萘的化学性质与苯相似,但由于离域的不太好,π电子云不是均匀 分布,所以反应活性与苯相比,不仅比苯易进行亲电取代反应, 分布,所以反应活性与苯相比,不仅比苯易进行亲电取代反应, 而且也较易进行加成和氧化反应。 而且也较易进行加成和氧化反应。 1.亲电取代反应 亲电取代反应 萘环上的π电子云不是均匀分布,据测定,它的α 萘环上的π电子云不是均匀分布,据测定,它的α位上电子云密度 最高, 位次之, 位最低, 最高,β位次之,γ位最低,所以萘的亲电取代反应一般发生在 特殊情况下也能在β位反应。 α位。特殊情况下也能在β位反应。
CH3
(2)原来取代基为第二类定位基时,则钝化芳环,主要发生异环α 原来取代基为第二类定位基时,则钝化芳环,主要发生异环α 原来取代基为第二类定位基时 位取代。 -位取代。如: NO
2
NO2
萘亲电取代的定位规律
但是,萘的亲电取代反应有的不遵循定位规律, 但是,萘的亲电取代反应有的不遵循定位规律,如:
H2 SO4 H2O
9,10-蒽醌和它的衍生物是蒽醌类染料的主要原料。 -蒽醌和它的衍生物是蒽醌类染料的主要原料。

第七章 多环芳烃和非苯芳烃

第七章 多环芳烃和非苯芳烃

第七章? 多环芳烃和非苯芳烃
1. 环戊二烯为什么可以与Na反应?
解答:环戊二烯负离子具有芳性,稳定;故环戊二烯的氢酸性较强,可与Na反应。

2. 环庚三烯中的CH2上的H的酸性要比典型烯丙基H 的酸性小
解答:
无芳性,不稳定。

负离子较稳定。

3. 蓝烃的结构式为,判断其是否有芳性;如有,亲电取代反应发生在几元环上?
解答:为偶极分子:,有芳性。

亲电取代反应发生在电子云密度大的五元环上。

4. 下列化合物有芳香性的是()。

解答:A 、E 、F。

芳香性的判断: 休克尔规则,Π电子数满足4n+2,适用于单环、平面、共轭多烯体系。

对于多环体系,
处理如下:
5. 分子式为C8H14的A,能被高锰酸钾氧化,并能使溴的四氯化碳溶液褪色,但在汞盐催化
下不与稀硫酸作用。

A经臭氧化,再还原水解只得到一种分子式为C8H14O2的不带支链的
开链化合物。

推测A的结构,并用反应式加简要说明表示推断过程。

解答:
即环辛烯及环烯双键碳上含非支链取代基的分子式为C8H14O2的各种异构体,例如以上各种异构体。

第七章 芳烃

第七章  芳烃

5. 苯环的亲电取代反应历程
(1) 首先亲电试剂E⊕进攻苯环,生成π络合物。
(2) 紧接着,E⊕从苯环中获得两个电子,与苯环 碳原子形成σ键,生成σ络合物。 (3) σ络合物从SP3杂化碳原子上失去一个质子, 从而恢复苯环的结构,形成取代产物。 σ络合物的生成是苯环亲电取代反应的关键一步。
(二)加成反应
2. 第二类:间位定位基,使反应难于进行,并使新
导入基进入苯环的间位。
―N+(CH3)3 > ―NO2 > ―CN > ―SO3 > ―CHO > ―CO2H > ―CO2R
3. 第三类定位基:既使反应难于进行,又使新导入
基进入苯环的邻位和对位。
―X
二、定位基的解释
1. 间位定位基的定位效应
(1) 吸电子效应
(二)书写极限式时有一定的规则,不能随意书写。
1. 必须遵守价键理论,氢原子的外层电子数不能超
过2个,第二周期的元素最外层电子数不能超过8个,
碳为四价。
2. 原子核的相对位置不能改变,只允许电子的排 布不同。
但不能写成:
3. 所有极限式中,未共用电子数必须相等。
(三)极限式对共振杂化体的贡献大小
四、从氢化热看苯的稳定性
共轭能(离域能):共轭体系的内能与 具有相同双键数目的孤立烯烃的内能之差, 这部分能量称为共轭能(离域能)。
苯的共轭能: 152 kJ/mol
五、苯的共振式和共振论的简介
共振论的基本要点: (一) 当一个分子、离子或自由基按照价键理 论可以写出两个以上的经典结构式时,这些结 构式构成一个共振杂化体,只有共振杂化体才 能反映分子的真实结构。
三、苯分子结构的价键观点
按照轨道杂化理论,苯分子中六个碳原子都

ch7_多环芳烃和非苯芳烃

ch7_多环芳烃和非苯芳烃

CrO3, HOAc 25 C O O O2 , V 2 O5 400--500 C O O
NO2 [O]
NO2 COOH COOH
NH2 [O] HOOC HOOC
电子云密度高 的环易被氧化
4 萘环的取代规律 p149

G(o,p)

热 热
G(o,p)
次 主
从动力学考虑 活化基团使反应在同 环发生。钝化基团使 反应在异环发生。 -位优于-位。
H H
HH HH
H H HH
H
H HH H
H
10-轮烯因环内 氢的相互作用, 使C不能同处 在同一平面内, 无芳香性。
14-轮烯 有芳香性 环内氢 0 ppm 环外氢7.6 ppm
16-轮烯 无芳香性
18-轮烯 有芳香性
1,1,4-三甲基-5-乙基环庚烷
1-甲基-3-异丙基-1-环己烯
3,7,7-三甲基双环[4.1.0] 庚烷

3 2


环戊烷多氢菲本身不存在于自 然界中,但它的衍生物(胆固 醇、胆酸、维生素D、性激素 等)广泛分布在动植物体内, 它被称为甾族化合物骨架。
环戊烷多氢菲
蒽的伯齐还原
Na/NH3(液) C2H5OH Na/NH3(液) C2H5OH Na/NH3(液) C2H5OH
菲的氧化
KMnO4
COOH COOH
5 6 7
C2H5
CH3
1,3-二甲基萘
H3C 1 8 2-甲基-6-乙基萘
化学反应
亲电取代反应最易在萘的位 1.亲电取代反应 (p146) 萘的卤代、硝化主要发生在位上,磺化反应根据温 度不同,反应产物可为-萘磺酸或-萘磺酸。

有机化学第七章 芳烃

有机化学第七章 芳烃

H
H
H
H
H
H
可以解释:为什么苯分子特别稳定? 为什么苯分子中碳碳键长完全等同? 为什么邻位二取代物只有一种?
(b)分子轨道理论 分子轨道理论认为:苯分子形成σ键后,苯的
六个碳原子上的六个P 轨道经线性组合可以形成六 个分子轨道,其中ψ1 、ψ2 和ψ3 是成键轨道,ψ4、 ψ5和 ψ6是反键轨道。当苯分子处于基态时六个电 子填满三个成键轨道,反键轨道则是空的。
-络合物
(b)硝化反应
2 H2SO4 HNO3
NO2
HNO3 H2SO4,45℃
CH3
HNO3 H2SO4,30℃
NO2
CH3 NO2
CH3
NO2
HNO3 H2SO4,95℃
NO2
NO2
NO2
H3O 2 HSO4
反应比苯容易 反应比苯困难
硝化反应机理
硝化反应中进攻试剂是NO2+,浓硫酸的作 用促进NO2+的生成:
苯环的特殊稳定性可以从它具有较低的氢化热 得到证明:
环己三烯氢化热=360kj/mol(假想值) 苯环氢化热=208kj/mol 相差152kj/mol
氢化热简图:
环己三烯+3H2
环己二烯+2H2
苯+3H2
环己烯+H2
231kj/mol
120kj/mol
208kj/mol
360kj/mol
环己烷
苯分子的近代概念
ቤተ መጻሕፍቲ ባይዱ
(1)煤的干馏
煤隔绝空气加热至1000~1300℃时分解所得到的 液态产物——煤焦油,其中含有大量芳烃化合物。 再经分馏得到各类芳烃。
馏分名称 轻油 酚油 萘油 洗油 蒽油

高教第二版(徐寿昌)有机化学课后习题答案第7章

高教第二版(徐寿昌)有机化学课后习题答案第7章

第七章 多环芳烃和非苯芳烃一、 写出下列化合物的构造式。

1、α-萘磺酸2、 β-萘胺3、β-蒽醌磺酸SO 3HNH 2C C OO SO 3H4、9-溴菲5、三苯甲烷6、联苯胺BrCHNH 2二、 命名下列化合物。

1.2.C COO 3.SO 3HNO 24.CH 25.6.CH 3CH 3OHNO 2二苯甲烷 对联三苯 1,7-二甲基萘三、 推测下列各化合物发生一元硝化的主要产物。

SO 3HSO 3H1.HNO 3H 2SO 4O 2NSO 3HNO 2+2.CH 3H 2SO 4HNO CH 3NO 23.OCH HNO 3H 2SO 4NO 2OCH4.CNCNNO 2HNO 3H 2SO 4NO 2CN四、 回答下列问题:1,环丁烯只在较低温度下才能生成,高于350K 即(如分子间发生双烯合成)转变为二聚体什么?写出二苯环丁烯三种异构体的构造式。

解:环丁二烯π-电子为四个,具有反芳香性,很不稳定,电子云不离域。

三种二苯基环丁二烯结构如下:2,1,3,5,7-环辛四烯能使高锰酸钾水溶液迅速褪色,和溴的四氯,已知它的衍生物二苯基环丁二烯,有三种异构体。

上述现象3 3化碳溶液作用得到C 8H8Br8。

(a),它具有什么样结构?这两个共振结构式表示?解:不可以,因为1,3,5,7-辛环四烯不具有离域键,不能用共振结构式表示。

(c),用金属钾和环辛四烯作用即得到一个稳定的化合物2K+C8H8(环辛四烯二负离子),这种盐的形成说明了什么?预期环辛四烯二负离子将具有怎样的结构?解:环辛四烯二负离子具有芳香性,热力学稳定,其结构为:五、写出萘与下列化合物反应所生成的主要产物的构造式和名称。

1,CrO3, CH3COOH 2,O2,V2O5 3, Na,C2H5OHOO C O CO O解:具有右式结构,不是平面的(b),π-电子云是离域的。

1,4-萘醌邻苯二甲酸酐 1,2-二氢萘4,浓硫酸,800C 5,HNO3,H2SO4 6,Br2α-萘磺酸α-硝基萘 1-溴萘7,H2,Pd-C加热,加压 8,浓硫酸,1650C四氢萘β-萘磺酸六、用苯、甲苯、萘以及其它必要试剂合成下列化合物:1.CH 2CH 3Cl ,hvCH 2ClAlCl 3CH 2ClCl 2FeCH 2Cl2.(C 6H 5)3CHCH 3Cl ,hvCHCl2AlCl 3(C 6H 5)3CH3.NO 2Br23H 2SO 424.NO 2SO 3HSO 3H NO 2SO 3HH 2SO 4165C3H 2SO 45.C C OOCO O COAlCl 3O 2,V 2O 5450CC COOHO 97%H 2SO 4C C OO七、 写出下列化合物中那些具有芳香性? 解:1.2.3..4.+5.6.7.8.9.10.H HH HHH11.CH 2=CHCH=CHCH=CH 2代表有芳香性代表无芳香性。

C7 多环芳烃和非苯芳烃


HOOC
(3) 加成反应 萘比苯容易发生加氢反应,在不同条件下可以发生部分加
氢或全部加氢,当用金属钠在液氨和乙醇的混合物中进行还
原时,得到1,4-二氢萘。
Na,液NH3,乙醇
在剧烈条件下加氢时,可生成四氢化萘或十氢化萘
H2 / Pd—C, ,加压 或Na—Hg,C2H5OH 四氢化萘
H2 ,Rh—C或Pd—C ,加压 十氢化萘
第七章多环芳烃和非苯芳烃
7-1联苯及其衍生物:制备、化性、重要的化合物 7-2稠环芳烃 7-3非苯芳烃
多环芳香烃命名
(1)联苯类:苯环间以一单键线的,例如:
3 2 1 1' 5 6 6' 2' 3' 4' 5' 2 3 4 6 5 1 2 6 5 4 3
H3C
4
CH3
1
4,4'-二 甲 基 联苯
1,4- 联三 苯
OCH3 NHCOCH3
若萘环上有一个间位定位基时, 由于其致钝作用, 第二个取代基进入到异环的5或8位。例如:
NO2 SO3H
萘环二元取代反应比苯环复杂得多,上述规则只 是一般情况,有些反应并不遵循上述规则,如2甲基萘的磺化反应:
CH3 浓H2SO4 90~100℃ HO3S CH3
(2) 氧化反应 萘比苯容易氧化。若在高温下,以五氧化二钒作催化剂,萘 的蒸气可被空气氧化生成邻苯二甲酸酐。
结论: 环多烯烃具有芳香性的条件 A、共轭体系为环状不间断共轭体系 B、环的所有碳原子都在同一平面上
C、∏电子数符合4n+2规则
注意: 对于奇数碳的环多烯不可能存在连续双键。 可以看成这个SP3杂化的碳和双键发生P-共轭,可 把它也看成一个轨道重叠单元(一个P轨道)来计算。

有机化学第七章 芳烃


1
一、教学目的和要求 通过对本章的学习,掌握芳烃的定义、分类、苯的结构、 闭合共轭体系、芳香性及苯的同系物的命名,掌握苯环上 的亲电取代反应及定位规则,侧链卤代和氧化反应,掌握 萘的结构及命名,萘的亲电取代反应、氧化反应;熟悉休 克尔规则及非苯芳烃的芳香性判断;了解联苯、蒽、菲的 结构及命名以及苯及其同系物的主要物理性质(易燃性)。 二、教学重点内容 芳烃的结构、闭合共轭体系、命名、亲电取代反应及其定 位规律、侧链氧化、萘的结构、命名及亲电取代反应、非 苯芳烃芳香性的判断是本章的重点。
CH3 CH3 CH3
(1)单环芳烃
苯 甲苯 间二甲苯
(2)多环芳烃
连 苯 三
C H 苯 甲

(3)稠环芳烃
萘 蒽 菲
4
5.1
芳烃的构造异构和命名
5.1.1 构造异构
苯及其同系物的通式为:CnH2n-6。 例如苯有六个碳和六个氢,其六个碳和六个氢是等同的; 结构异构: 一元取代:只有一种
CH3 CH CH2 H3C CH CH3


(a)
(b) (c) (d) (e)
卤化
硝化 磺化 Friedel-Crafts反应 氯甲基化
17
(1)亲电取代反应
(a) 卤化
苯环上和卤代反应较困难,常用FeX3(Lewis酸)作催化剂。
+ Cl2
FeCl3,25oC 90%
Cl + HCl
控制苯过量,不要太激烈,避免二卤代。 因是亲电反应,所以苯的同系物(甲苯)比苯更易反应。 Cl 卤代活性: F2>Cl2>Br2>ICH CH3 CH3 CH3 2。 3
14
5.3

单环芳烃的物理性质

有机化学第七章 芳烃


119.5 119.5
239.0 231.6
358.5 208.2
原因:存在共轭体系,π电子高度离域使苯环特别稳定。
离域能:358.5-208.2 = 150.3 kJ·mol-1
6
Kekulè用迅速互变异构解释苯的邻位二元取代物只有一种。
Br
Br
Br
Br
但无法解释难发生加成、氧化反应;并把这些异常的性质 称为芳香性,原因归结为环状交替单双键结构。
15
1-丁烯的共振式:
-+
C H 2 C HC H 2 C H 3 C H 2 C HC H 2 C H 3
+
CH2

CH CH2CH3
×

CH2
CH2
+
CHCH3
碳酸根的共振式:
原子排列不同
· ·
O· ·
· · · O · · · -
· · · O · · · -
- · · · · O · ·C · · O · · · · -
C · · · O ·
· · O · · · · -
- · · · · O · ·C · O · · ·
16
(3) 对共振杂化体中不同经典结构式的贡献 越稳定的经典结构式在共振杂化体中占的分量越大。 经典结构式稳定性的确定: 共价键数目最多的经典结构式最稳定; 经典结构式的正负电荷越分散越稳定,即电荷分离的经 典结构式稳定性差; 经典结构式中所有原子都具有完整的价电子层的较稳定; 负电荷在电负性大的原子上的经典结构式较稳定。
B r 相同
Br
Br
Br
苯为高度不饱和的分子,却不容易发生加成反应而容易 发生取代反应;

chem-7多环芳烃和非苯芳烃

αα
β
β
Br
β
β
αα
β-溴萘
Br
α-溴萘
-NH2 ,-OH ,-CHO, -SO3H, -COOH OH
SO3H
βቤተ መጻሕፍቲ ባይዱ萘磺酸
α-萘酚
2.二取代物
8 7
6 5
1 2
3 4
C2H5
C2H5 1,6-二乙基萘
CH3
SO3H
4-甲基-1-萘磺酸
OH SO3H
C2H5 5-乙基-2-萘磺酸
NO2 4-硝基-1-萘酚
(三)萘的化学性质
1.亲电取代反应
α
α β
E+
β
EH
EH
+
+ 其它不稳定共振结构
+
+E H + 其它不稳定共振结构
⑴卤化
Cl
+ Cl2
I2 苯
Br
+ Br2 CCl4
⑵硝化
HNO3/H2SO4
N O2
⑶磺化(可逆反应)
< 80℃
浓 H2SO4
165℃
SO3H
96%
SO3H
165℃ / H2SO4
斥力较大
H SO3H
85%
H
SO3H
H
斥力较小
⑷付氏酰基化反应
AlCl3 + CH3COCl
CS2 或 C2H2Cl4 -15℃
硝基苯 200℃
COCH3 93%
COCH3 90%
⑸一取代萘的定位效应
由于邻对位定位基的致活作用,取代发生在同环,并且第 二个基团进入这个定位基的邻对位中的α位。
CH3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章多环芳烃和非苯芳烃
按照苯环相互联结方式
1.联苯、多连苯类;
2.多苯取代的脂肪烃;
3.稠环芳烃。

多苯代脂肪烃:
二苯甲烷
1,2-二苯乙烯
联苯、多联苯:
稠环芳烃:
联苯
对联三苯
7.1 联苯及其衍生物
H
+
o
2
乌尔曼反应(Ullmann Reaction)
I
+ 2 Cu
24
5 7.1.1 联苯的制备和命名
22
22次
联苯与苯相似,在两个苯环上均可发生磺化、硝化、卤代等亲电取代反应;若一个环上有活化基团,则取代反应发生在同环上;若一个环上有钝化基团,则取代反应发生在异环;4,4’-二硝基联苯
2,4’-二硝基联苯
7.1.2 联苯的化学性质
苯基(邻对位取代基)取代基,
主要进入苯基的对位。

7.1.3 联苯衍生物的立体异构
由于两个环的邻位有取代基存在时,由于取代基的空间阻碍联苯分子的自由旋转。

产生异构体。

2
7.2 稠环芳烃
7.2.1
萘及其衍生物
(一) 萘的结构
β
β
β
α'
β
'
2
3
4
5
6
7
•萘分子结构的共振结构式:
萘分子C原子的编号:
(二) 萘的命名
3
2
1-氯萘(α-氯萘)
2-氯萘(β-氯萘)
1,5-二硝基萘
4-甲基-1-萘磺酸
对甲基萘磺酸
24
6
76
726
732
(三) 萘的性质
3傅-克酰基化反应:
热力学控制
NH4HSO3
H2O, 150 o C
NH
2
NaHSO3
布赫雷尔(Bucherer)反应
是一个可逆的反应
*(2) 萘环二取代的定位规则:
v 1-位上有活化基,第二取代基进入4-位:
v 2-位有活化基,苯二取代基进入1位:
3(主要产物
)
3
3
24
v 环上有致钝基,第二取代基进入另一环α-位。

NO
24
2
+
2
+
NO 2
NO 2
实际上影响萘环取代的因素比较复杂,许多二取代反应的定位并不完全符合上述规律
(3) 萘的还原
加氢反应(加成)
1,2-二氢化萘
(4) 萘的氧化反应
1,4-萘醌
7.2.2 蒽及其衍生物
1.370 Å
1.408 Å
1.436 Å
蒽的所有原子处于同一平面
2356
710αα
α
αβββ
βγγ
(一) 蒽的结构
(二)
蒽的性质
共振能kJ/mol: 152 255 351单个环共振能kJ/mol: 152 128 117
化学反应性

(1) 加成反应—蒽易在9,10位(γ位)
上起加成反应
二氢化蒽
+
24
2
SO4
(2) 氧化反应—重铬酸钾加硫酸可使蒽氧化成蒽醌
7.2.3

1
2
378
2
菲比蒽稳定,化学反应易发生在
9,10-3
9,10-菲醌
7.2.4
其它稠环芳烃


芘3,4-苯并芘
H3
3
1,2-甲基-5,10-亚甲基-1,2-苯并蒽10-亚甲基-1,2-
苯并蒽
1,2-苯并菲
(显著致癌性)(高度致癌性)
苯并芘
有机化合物与环境
污染
具有芳香性化合物在性质上的标志是:
1.不饱和度高,具有平面或者接近平面的环状结构,键
长平均化;
2.与苯类似,一般不具备不饱和化合物的性质,难氧
化,难加成,易亲电取代,反应中尽量保持其芳核不变;
3.氢化热和燃烧热比相应的非环体系低,而显示出特殊
的稳定性。

是不是具有芳香性的化合物一定要
有苯环
7.3 非苯芳烃
1931年Hückel在研究通式为C x H x环多烯时,假定分子中所有原子都在一个平面内,每个碳原子上都有一个p 电子组成x个分子轨道。

用简化的分子轨道法计算这些能级后发现:
当分子中有2n+1个成键或非键轨道时,若有4n+2个电子恰好能填满成键或非键轨道而使分子具有类似惰性气体的电子排布,使分子具有最大的稳定性——芳香性。

因此,有机分子不一定要有苯环,只要满足
(1)整个分子共平面;
(2)具有闭环连续共轭体系;
(3)p电子数符合Hückel规则(4n+2个p电子)。

就具有芳性。

环丙烯正离子2个p 电子
环丁二烯4个p 电子
环戊二烯负离子6个p
电子
苯6个p 电子
环庚三烯正离子6个p 电子
环辛四烯8个p
电子
有机分子是否具有芳香性的判别依据:
(1)整个分子共平面;
(2)具有闭环连续共轭体系;
(3)p电子数符合Hückel规则(4n+2个p电子)。

对于稠环烃判别是否具有芳香性,则是计算成环原
子外围p电子

10个p电子有芳香性14个p电子
有芳香性
14个p电子
有芳香性
下列化√
轮烯——通常将n ≥10的环多烯烃C n H n 叫做轮烯
[10] 轮烯
不具有芳香性,非平面结构
[18]轮烯
具有芳香
习题:
1.(1) (2) (5)
2.
3.
5. (5) (6) (7) (8)
6. (1) (3) (5)
7.。

相关文档
最新文档