声控开关电路的控制部分
声光控延时开关设计

--声光控延时开关目录第一章声光控延时开关的实现 (2)1.1系统概述 (2)1.2各部分工作原理 (3)1.2.1电源电路 (3)1.2.2声光控部分 (4)1.2.3延时关断部分 (8)1.3 电路仿真 (8)1.3.1电源电路仿真 (9)1.3.2 声光控部分电路仿真 (11)1.3.3 延迟关断部分仿真 (13)第二章心得体会及建议 (15)第三章附录 (16)第四章参考文献 (17)- .第一章 声光控延时开关的实现1.1系统概述系统分为电源电路,控制部分和延迟开关部分,示意图如图1所示:图1.1 电源电路组成框图--图1.2 声光控延时开关组成框图1.2各部分工作原理1.2.1电源电路由D1~D6、R1、C1构成,如图2标注,D1~D4为整流电路,R1为限流电阻、电容C1滤去交流分量并储存一定的电能,为延时提供电压,稳压管D6起稳压作用。
- .图2 电源电路1.2.2声光控部分电路通过光信号和声音信号控制,分别使电路中的三极管处于截止放大或者饱和状态,从而控制部分特殊点的电位达到声光控的目的。
如图3所示为静态工作点示意图,三极管处于放大状态时,Ube处于0.4V~0.7V之间。
--图1 三极管静态工作点示意图模拟声光,光控由光敏电阻模拟,声控由压电陶瓷片模拟,电路中光敏电阻用RG1和RG2串联代替,压电陶瓷片由函数信号发生器代替。
如图4所示- .图4 声光控模拟白天在光线的作用下光敏电阻很小,此时即RG2被短路只剩下较小的电阻RG1,如图5所示。
此时Q2基极电位变低而处于截止状态,即使函数信号发生器发出信号(模拟有声音信号情况)也不能通过Q2向后放大。
同时PNP型管Q3也截止,电容C4错误!未找到引用源。
两端电压很小,可控硅SCR处于截止状态,灯不亮。
--图2 有光照时模拟晚上,RG1和RG2串联保持高电阻,其上端电位升高,Q2进入放大区,可以接收并放大声音信号(信号发生器发出信号模拟)。
声控开关的声控原理

声控开关的声控原理
声控开关的声控原理是利用声音传感器(如麦克风)来感知周围的声音信号,然后通过信号处理和识别算法将声音信号转化为电信号,最终控制开关的开闭状态。
具体的声控原理如下:
1. 声音传感器:声音传感器通常采用麦克风的原理,它将声音信号转化为电信号。
当周围有声音发生时,麦克风感知到声音并产生相应的电信号。
2. 信号放大:麦克风产生的电信号很弱,需要通过放大器放大电信号的幅度,以便后续的处理。
3. 信号处理:放大后的电信号需要进行处理,以滤除噪声和干扰。
常用的处理方法包括滤波、降噪等。
4. 信号识别:处理后的电信号经过信号识别算法,将声音信号与已知的语音模式进行比较,从而确定是否识别出特定的声音指令。
5. 控制开关:一旦声音信号被成功识别为特定的声音指令,开关控制器将根据指令控制开关的开闭状态。
总之,声控开关利用声音传感器感知周围的声音信号,通过信号处理和识别算法将声音信号转化为电信号,并最终控制开关的开闭状态。
单片机简易声控电路

单片机简易声控电路单片机简易声控电路是一种基于单片机技术的电路设计,可以实现通过声音控制电器设备的开关。
它是利用单片机的模拟输入功能和数字输出功能,通过声音传感器将声音信号转换为电压信号,再由单片机进行信号处理和判断,最终控制电器设备的开关。
在单片机简易声控电路中,关键的部件是声音传感器和单片机。
声音传感器是一种能够将声音信号转换为电压信号的传感器,常见的有声音传感器模块和声音控制继电器模块。
这些传感器可以感知周围的声音,并将声音信号转换为电压信号输出。
单片机是一种集成电路芯片,拥有处理器、存储器和各种输入输出接口等功能。
在声控电路中,单片机的模拟输入接口用于接收声音传感器输出的电压信号,通过模数转换将其转换为数字信号。
然后,单片机的数字输出接口通过控制继电器或晶体管等器件,来实现对电器设备的开关控制。
在设计单片机简易声控电路时,需要注意以下几个步骤:1. 确定电路所需的声音传感器以及单片机型号。
根据实际需求选择适合的声音传感器和单片机型号,考虑到声音传感器的灵敏度、单片机的处理能力和接口数量等因素。
2. 连接声音传感器和单片机。
将声音传感器的输出引脚连接到单片机的模拟输入引脚,确保连接正确可靠。
同时,根据单片机的引脚定义,连接好其他必要的引脚,如电源和地线。
3. 编写单片机程序。
根据单片机的型号和开发环境,编写相应的程序。
程序主要包括初始化设置、声音信号采集、信号处理和控制输出等功能。
通过采集声音信号,并进行一定的处理和判断,最终控制输出口的高低电平,实现对电器设备的开关控制。
4. 进行测试和调试。
将设计好的电路进行测试和调试,确保声音传感器能够正常感知声音并输出电压信号,单片机能够正确处理信号并控制输出口。
同时,可以根据实际情况进行参数调整和功能优化,提高电路的稳定性和可靠性。
通过上述步骤,就可以设计出一个简易的声控电路。
这个电路可以应用于各种场合,例如家庭、办公室或公共场所等。
可以通过声音来控制灯光、音响、电视等电器设备的开关,提高生活和工作的便利性。
声控开关的原理是什么

声控开关的原理是什么声控开关是一种能够通过声音信号来控制电器开关的设备。
它的原理主要涉及声音传感器、信号处理和控制电路三个方面。
首先,声控开关包含一个声音传感器,该传感器能够感知周围的声音信号并将其转换为电信号。
常见的声音传感器有麦克风、声纳传感器等。
麦克风通过将声音信号转换为相应的电压或电流信号,实现对声音的传感。
声纳传感器则通过测量声波的反射时间或声波的幅度大小来感知声音。
其次,声控开关接收到声音传感器转换的电信号后,需要进行信号处理。
信号处理主要包括放大、滤波和分析三个步骤。
放大是为了增强声音信号的幅度以便后续的处理。
由于声音信号往往较弱,因此需要通过放大电路将其增强至适当的水平,以保证信号的准确性和稳定性。
滤波是为了消除声音信号中的杂波和干扰信号,使得处理后的信号更加准确可靠。
常见的滤波器有低通滤波器、高通滤波器和带通滤波器等,通过选择合适的滤波器进行滤波操作,可以去除信号中的噪声和不必要的频率成分。
分析是为了从声音信号中提取有用的特征,以便判断是否满足触发开关的条件。
分析过程中常用的技术有傅里叶变换、自相关分析和特征提取等,通过这些技术可以对声音信号进行频谱分析、音高识别和噪声检测等操作,从而判断是否符合触发条件。
最后,当声音信号经过处理后判断满足触发条件时,控制电路将会发出控制信号,驱动相关的开关操作。
控制电路可以将触发信号与电器开关连接,从而实现对电器的开关控制。
常见的声控开关还可以通过无线通信技术与其他智能设备进行连接,实现更多的功能。
总之,声控开关的原理主要涉及声音传感器、信号处理和控制电路三个方面。
声音传感器负责感知周围的声音信号并转换为电信号,信号处理则对声音信号进行放大、滤波和分析等操作,以提取有用的特征,最后通过控制电路实现对电器的开关控制。
声控开关的应用使得人们的生活更加便利与智能化。
声控开关原理

声控开关原理声控开关是一种能够通过声音信号来控制电路开关的装置,它在现代生活中得到了广泛的应用。
声控开关的原理是利用声音信号的变化来控制电路的通断,其工作原理主要包括声音传感器、信号处理电路和执行电路三部分。
首先,声音传感器是声控开关的核心部件之一,它能够将声音信号转换成电信号。
声音传感器一般采用压电传感器或者电容传感器,当有声音发生时,传感器会产生相应的电信号输出。
这个电信号的大小和频率会随着声音的强弱和频率而变化,为后续的信号处理提供了基础数据。
其次,信号处理电路是将声音传感器输出的电信号进行处理,使其能够被执行电路所识别和控制。
信号处理电路一般包括放大电路、滤波电路和比较电路等部分。
放大电路能够放大传感器输出的微弱信号,使其能够被后续电路准确识别;滤波电路能够滤除掉无用的噪声信号,提高信号的稳定性和准确性;比较电路则能够将处理后的信号与预设的阈值进行比较,以确定是否触发执行电路的动作。
最后,执行电路是根据信号处理电路输出的控制信号来控制电路的通断。
当信号处理电路输出的控制信号满足一定条件时,执行电路将会使电路通断,从而实现对电器的控制。
执行电路一般采用继电器、晶闸管或者场效应管等器件,根据不同的需求来选择合适的执行器件。
总的来说,声控开关的原理是通过声音传感器将声音信号转换成电信号,经过信号处理电路的处理后,控制执行电路实现对电路的控制。
声控开关的工作原理简单而又实用,能够方便人们的生活,提高生活的便利性。
在实际应用中,声控开关广泛应用于一些需要手动操作不便的场合,例如厨房、卫生间等地方,能够有效地减少人们的操作负担,提高生活的舒适度。
同时,声控开关也在一些特殊场合得到了应用,例如一些特殊环境下的控制系统,能够方便人们的操作,提高工作的效率。
总之,声控开关作为一种智能化的控制装置,通过声音信号的识别和处理,能够实现对电路的智能控制,为人们的生活和工作带来了极大的便利。
随着科技的不断发展,声控开关的应用范围将会更加广泛,为人们的生活带来更多的便利和舒适。
声控开关电路图及工作原理

声控开关电路图及工作原理
以下为声控开关电路图及其工作原理:
电路图如下所示:
```
+12V DC Power Supply
|
[R1]
|
+-------+--------+
| |
[MIC] [Transistor]
| |
[C1] [R2] [LED]
| |
[R3] [R4] [RL]
| |
+--------+-------+
|
[R5]
|
GND
```
工作原理:
1. 声控开关电路的主要组成部分包括麦克风(MIC)、电容(C1)、电阻(R1、R2、R3、R4、R5)、晶体管(Transistor)、LED灯和负载(RL)。
2. 声控开关电路利用麦克风感应环境声音,并将声音信号转化为电信号。
3. 麦克风(MIC)将声音信号转化为电信号,并将其传递到电
容(C1)中。
4. 电容(C1)通过电阻(R2)和晶体管(Transistor)将声音
信号放大。
5. 放大后的信号通过晶体管(Transistor)控制LED灯的亮灭,从而实现开关的控制。
6. 当环境中的声音达到一定的强度时,电路中的晶体管(Transistor)将导通,使LED灯点亮。
7. 当环境中的声音强度下降到一定的程度时,电路中的晶体管(Transistor)将截断,使LED灯熄灭。
8. 电阻(R3、R4、R5)用于限制电流和稳定电路工作。
注意:以上为经典的声控开关电路工作原理,具体设计还需要根据实际需求和元器件参数进行调整。
CD4011声光控开关电原理图

CD4011声光控开关电原理图它由驻极体话筒BM、三极管VT(β≥200)等组成话筒传感放大电路,集成电路IC、单向晶闸管VS1等组成控制开关电路,VD2~VD5组成全波桥式整流电路,还有负载照明灯EL和IC工作电源电路。
在话筒传感放大电路中,C1电容量取值较小,对击掌脉冲音频信号敏感,输入的负脉冲信号使VT集电极上升到高电位。
在控制电路中,IC—1输入端连接有负载电阻器R3与光敏电阻器RG组成的分压图为实用声控照明灯的电路。
它由驻极体话筒BM、三极管VT、R1、R2、R3、C1等组成话筒传感放大电路,集成电路IC、单向晶闸管VS1等组成控制开关电路,VD2~VD5组成全波桥式整流电路,还有负载照明灯EL和IC工作电源电路。
在话筒传感放大电路中,C1电容量取值较小,对击掌脉冲音频信号敏感,输入的负脉冲信号使VT集电极上升到高电位。
在控制电路中,IC—1输入端连接有负载电阻器R3与光敏电阻器RG组成的分压电路,当环境光线较暗时,RG呈现出较高电阻值,使输入端第1、2脚电位上升,但达不到门开启电压,只有声控信号使VT集电极呈现高电位,IC-1输入端电平才上升到门开启电压,通过控制开关电路使晶闸管导通,照明灯点亮,延迟一定时间EL自动熄灭。
当环境光线较强时,RG呈现出较低电阻值,尽管有声控信号使VT截止,也达不到IC1门开启电压,EL不能被点亮,即白天声控作用被禁止,傍晚声控才起作用,这就是声控楼道灯的工作原理。
R3取值关系到声控灯的可靠性,当R3取值为33KΩ时,声控灵敏度提高(声控距离≥5m),光控灵敏度下降。
当R3*为可调电阻,取值为33K-680KΩ范围,阻值大光控灵敏度提高,可在很弱环境光线下就能开启声控灯。
注意R3电阻值大小使负载电流变化,影响其工作电压,可以微调分压电阻器R7,使VDD工作电压不要超过18V。
声控开关电路图

声控开关电路图引言声控开关电路是一种使用声音信号作为触发器的电路,它可以根据环境中的声音信号来控制电器的开关状态。
在本文中,我们将介绍一个基于声控开关电路的典型电路图。
电路结构声控开关电路通常由以下几个主要部分组成:1.麦克风(Microphone):用于接收环境中的声音信号。
2.声音信号处理电路:负责对麦克风接收到的声音信号进行放大和滤波处理。
3.比较器(Comparator):用于将处理后的声音信号与预设的阈值进行比较,确定是否触发开关操作。
4.开关电路:根据比较器的输出状态,控制电器的开关。
下图展示了一个典型的声控开关电路的电路图的示意图:+-------------+ +------+ +----------+ +-------+| 麦克风 |----| 声音信号处理电路 |----| 比较器 |----| 开关 || | | | | | | |+-------------+ +------+ +----------+ +-------+```电路说明接下来,我们将对电路图中的各个部分进行具体说明。
麦克风(Microphone)麦克风是声控开关电路的输入设备,它可以将周围环境中的声音转换为电信号。
一般来说,麦克风的输出信号较弱,需要经过后续的处理才能使用。
在电路图中,麦克风的输出信号与声音信号处理电路相连接。
声音信号处理电路声音信号处理电路负责对麦克风输出的声音信号进行放大和滤波处理。
放大可以增加信号的幅度,使其更容易被后续的比较器检测。
滤波则可以去除噪声,提取出有效的声音信号。
常见的滤波器包括低通滤波器、带通滤波器等。
比较器(Comparator)比较器是声控开关电路的核心部分,它负责将处理后的声音信号与预设的阈值进行比较。
当声音信号的幅度超过阈值时,比较器会输出高电平信号,否则输出低电平信号。
比较器的输出信号将作为开关电路控制的输入信号。
开关电路开关电路根据比较器的输出信号,控制电器的开关状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
声控开关电路的控制部分
其中B为话筒,K为继电器,控制负载开关(负载开关电路图中没有画出),SB为解除开关,试分析电路的工作原理。
话筒B的阻抗一般为K欧级(具体看哪种类型的话筒,话筒阻抗高比较好),当有声波振动时候,话筒B会产生随声音变化的交变电场。
47K的可调电阻Rp用于声控灵敏度的调整,因为调节Rp相当于调节话筒B的输出阻抗,调节阻抗就会影响信号的强度变化。
运放A1工作于比较器方式,A1的2端输入电平近似为0V,于是A1相当于一个阈值电压为0V的比较器。
当有声波振动时候,因为比较器A1的1端输入电压变化,所以A1输出端会出现高低脉冲,脉冲的高电平为运放的供电电压8V,低电平为0V。
C4、R2、C5、VD1、VD2、C6构成一个倍压储能电路(具体请看模电教材或者网上查找关于使用多个极性电容和二极管构成一个倍压电路),因为VD2的反向截止以及运放A2的输入端电阻很大,所以A1输出端的脉冲能量经VD2储存到C6电容上,只能通过R6慢慢释放,这也是为什么闭合开关SB可以起到解除功能,因为开关SB一合上就相当于给C6一个短路快速放电的通路。
A2也是一个比较器,A2的负端给定一个比较阈值电压8*(10/(10+100))V,当C6充电电压上升超过该阈值电压时候,输出端5端输出一个高电平,继电器动作。
R7和VD3是一个正反馈(相当于5端的输出高电平经过R7和VD3给C6充电,使得C6的电压下降的更慢),使得A2的5端高电平输出一直保持稳定。
解除这种状态只能通过开关SB的闭合来解除,要实现延时10秒自动熄灭,可以把SB开关用延时器替代。