有机一无机纳米复合材料的制备、性能及应用

合集下载

《纳米TiO2复合材料制备及其光催化性能研究》范文

《纳米TiO2复合材料制备及其光催化性能研究》范文

《纳米TiO2复合材料制备及其光催化性能研究》篇一一、引言随着科技的不断进步和人类对环保问题的日益关注,光催化技术作为新兴的绿色技术领域受到了广泛的关注。

纳米TiO2复合材料作为一种高效的光催化剂,具有广泛的应用前景。

本文旨在研究纳米TiO2复合材料的制备方法及其光催化性能,为实际应用提供理论依据。

二、文献综述纳米TiO2复合材料因其独特的物理和化学性质,在光催化领域具有广泛的应用。

其制备方法、性能及应用已成为研究热点。

目前,制备纳米TiO2复合材料的方法主要包括溶胶-凝胶法、水热法、微乳液法等。

其中,溶胶-凝胶法因其操作简便、制备条件温和等优点备受关注。

而光催化性能的研究主要关注其对有机污染物的降解、抗菌性能及自清洁等方面的应用。

三、实验方法(一)实验材料实验中所需材料主要包括TiO2纳米粉体、表面活性剂、溶剂等。

所有材料均需符合实验要求,保证实验结果的准确性。

(二)制备方法本文采用溶胶-凝胶法制备纳米TiO2复合材料。

具体步骤包括:将TiO2纳米粉体与表面活性剂混合,加入溶剂进行搅拌,形成溶胶;然后进行凝胶化处理,得到凝胶;最后进行热处理,得到纳米TiO2复合材料。

(三)性能测试本实验通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对制备的纳米TiO2复合材料进行表征。

同时,通过光催化实验测试其光催化性能,以降解有机污染物为评价指标。

四、实验结果与分析(一)表征结果通过XRD、SEM和TEM等手段对制备的纳米TiO2复合材料进行表征。

结果表明,制备的纳米TiO2复合材料具有较高的结晶度和良好的分散性。

(二)光催化性能测试结果以降解有机污染物为评价指标,对制备的纳米TiO2复合材料进行光催化性能测试。

结果表明,该材料具有优异的光催化性能,能够有效降解有机污染物。

此外,我们还研究了不同制备条件对光催化性能的影响,为优化制备工艺提供依据。

五、讨论本实验研究了纳米TiO2复合材料的制备方法及其光催化性能。

有机/无机纳米复合材料的研究进展

有机/无机纳米复合材料的研究进展

O 引言
纳米复合材料是近年来发展起来的新型材料, 被称为“1 2
世纪最有前途 的材料 ” 一 。纳 米 复合 材 料 的概 念 最 早 是在 之
18 94年提 出的_ , 1 是指 由两种或两种 以上 的固相 至少 在一维 以 J
凝胶法、 原位聚合法、 插层法和共混法等。
11 溶 胶一 胶 法 . 凝
料学科研究 的热点 , 中有机/ 机纳米复合材料正在成 为一个 其 无 新兴 的极富生命力的研究 领域 , 吸引着众 多研究 者_ 。这种材 7 ] 胶法制备 了环氧树脂/ i2 S 纳米复合 材料 , 温 (7 ) 。 0 低 7K 时 材料 的机械性能随着 S 2 i 含量 的增 大而逐 渐 提高 , 常温 (9K 0 而 28 ) 时 的机械性能随着 S 2 量 的增 大呈现先 提高后 减弱 的变化 i 含 0 趋势 ; 随着 S z i 含量 的增 大 , O 材料的平均热膨胀系数逐渐 减小 、 逐渐升高
多、 比表面积大、 表面能高, 导致其性质既不同于单个原子、 分
子, 又不 同 于普 通 的颗 粒 材料 , 而显 示 出独特 的小 尺 寸效 因 应[ 表 面效 应[ 宏 观量子隧道 效应口 ; 、 、 同时赋 予纳米 复合材
料许多特殊性能和功能, 例如光、 磁、 电、 热及催 化等优异性 性 增大 ,v P B的杨 氏模 量为 09G aTO 含 量 为 5 t 时 的 . 5 P , i2 w 质 [ 。 用领域极为广泛 , 纳米复合材料 的研究成 为 目 材 材料对 乙醇有一定 的选择 渗透性 。Hu n 1 通过 溶胶一 6应 ] 因此 前 agC J[3 o 凝
代材料科技发展的重要方向。概述了有机/ 无机纳米复合材料的制备方法和性能特点; 介绍了有机/ 无机纳米复合材

制备和表征聚合物纳米复合材料的微结构及性能研究

制备和表征聚合物纳米复合材料的微结构及性能研究

制备和表征聚合物纳米复合材料的微结构及性能研究聚合物纳米复合材料被广泛应用于许多领域,如生物医学、电子和光学等。

然而,制备和表征这些复材料的微结构以及对其性能的研究仍然是一项具有挑战性的任务。

本文将探讨这方面的最新研究成果。

一、制备方法制备聚合物纳米复合材料的常见方法包括溶液共混、自组装、热成型、浸涂、原位聚合和纳米压延等。

其中最常用的方法是溶液共混和自组装。

溶液共混通过将聚合物和纳米颗粒溶解在同一溶剂中,然后混合均匀,蒸发溶剂后得到复合材料。

自组装法则是通过离子吸附、静电相互作用、范德华力、氢键等相互作用力来组装纳米颗粒和聚合物。

二、表征方法了解聚合物纳米复合材料的微结构以及纳米颗粒和聚合物之间相互作用的特性对于解释其性能是非常重要的。

常用的表征方法包括透射电镜、扫描电子显微镜、X射线衍射、红外光谱、热重分析和动态机械分析。

其中,透射电镜和扫描电子显微镜可以在纳米尺度下观察材料的微观结构和形貌,X射线衍射可以提供晶体结构和晶格参数等信息,红外光谱可以确定材料的化学成分和官能团,热重分析可以分析材料的热稳定性和分解动力学,动态机械分析可以测定材料的力学性能。

三、性能研究聚合物纳米复合材料的性能研究包括力学性能、电学性能、热学性能等方面。

力学性能很大程度上受到纳米颗粒的尺寸、形状和聚合物基体的性质的影响。

近年来,许多研究表明,纳米颗粒的添加可以显著提高复合材料的刚度和强度。

电学性能的研究重点是探索聚合物纳米复合材料作为电极、传感器和储能材料等领域的应用潜力。

同时,热学性能的研究也逐渐受到了越来越多的关注,尤其是在制备高性能导热材料方面。

四、应用前景聚合物纳米复合材料具有广泛的应用前景,在诸如催化、药物传递、水处理、环境保护、能源储存和转化等方面都有潜在的应用。

近年来,许多研究工作已经展示出了这些复合材料在这些领域的应用潜力。

例如,聚合物基复合材料的可持续性和低毒性使其成为有前途的代替传统材料的候选材料。

PMMA无机纳米复合材料的制备及性能研究的开题报告

PMMA无机纳米复合材料的制备及性能研究的开题报告

PMMA无机纳米复合材料的制备及性能研究的开题报告一、研究背景及意义PMMA(聚甲基丙烯酸甲酯)是一种重要的工程塑料,具有透明度高、机械强度高、易加工等优点,在制造光学、电子、建筑等领域广泛应用。

但同时也存在着其脆性高、热稳定性差、阻燃性能差等问题,这些问题制约了其在某些领域中的应用。

近年来,无机纳米材料的发展与应用在材料科学领域中占据了重要地位,因其在材料性能改进、提升方面具有独特优点。

目前已有学者研究的纳米复合材料中,大部分是有机纳米复合材料,面对聚合物材料的发展,无机纳米复合材料对于克服聚合物材料在物理性能、力学性能等方面的不足越来越受到重视。

因此,研究制备PMMA无机纳米复合材料,提高其力学强度、热稳定性和阻燃性能,有着重要的科学意义和应用价值。

二、研究内容1.通过化学合成方法获得具有不同形貌、尺寸和组成的分散均匀的纳米无机材料。

2.利用溶液混合法、原位聚合等方法制备PMMA无机纳米复合材料。

3.对比纳米材料和PMMA无机纳米复合材料的性能差异,分析PMMA无机纳米复合材料的力学性能、热稳定性和阻燃性能。

三、研究方法1.合成纳米无机材料,并通过扫描电镜、透射电镜、X射线衍射仪等方法分析其物理和化学特性。

2.制备PMMA/纳米复合材料并表征物理和化学特性。

分析纳米材料在复合材料中的分散度、存在方式等。

3.测试PMMA/纳米复合材料的力学性能、热稳定性和阻燃性能。

采用万能试验机、热重分析仪、热解气相色谱仪等测试仪器进行分析。

四、预期成果1、成功制备出分散均匀、形貌多样的纳米无机材料。

2、成功制备PMMA无机纳米复合材料,并获得物理和化学特性的表征数据。

3、PMMA无机纳米复合材料的性能得到有效提升,其力学性能、热稳定性和阻燃性能均得到了改善。

四、研究意义1、为不同领域研究PMMA/纳米复合材料提供了新思路和方法。

2、为材料科学领域的普遍规律提供了新的实验依据和数据。

3、探究PMMA/纳米复合材料的结构和性能关系,增强对聚合物材料性能控制的理解。

有机无机纳米复合材料的合成及性能表征

有机无机纳米复合材料的合成及性能表征

有机无机纳米复合材料的合成及性能表征纳米材料的出现和应用,是人类材料科学领域的一次伟大革命。

其中有机无机纳米复合材料因其优异的性能备受关注。

本文将介绍有机无机纳米复合材料的合成方法及其性能表征。

一、有机无机纳米复合材料的合成方法1. 溶胶-凝胶法溶胶凝胶法是合成无机有机纳米复合材料最重要的方法之一。

这种方法利用无机某些物质,例如硅酸三乙酯、钛酸酯等,在溶剂中制备出乳状溶胶,然后通过退火、焙烧等处理方式,最终获得相关纳米复合材料。

溶胶凝胶方法具有操作简便、成本低廉、制备周期短等优点。

2. 真空旋转涂布法真空旋转涂布法(VAC method)是复合材料制备的一种快速、简单、成本低廉的方法。

该方法利用真空吸附技术将有机材料温度控制在50~200℃,然后通过旋转混合的方式制备出有机无机复合薄膜。

VAC方法对于制备微纳米薄膜有很好的应用价值。

3. 热解法热解法是一种高温方式制备无机有机纳米复合材料。

通常采用两步加工,首先在常温下将有机物质与无机物质在某些溶剂中混合,形成溶胶。

然后在高温条件下热解,得到有机无机复合材料。

这种方法制备出的纳米复合材料晶体纯度高,晶粒大小均匀,但需要较高的制备技术。

4. 电沉积法电沉积法基于电化学原理设计的一种制备纳米复合材料的方法。

在外加电场作用下,金属离子在电极表面还原,同时有机分子在电场下定向积聚形成有机无机复合材料。

电沉积法可以制备出非常规形态的有机无机纳米复合材料,并且具有高度的可控性。

二、有机无机纳米复合材料的性能表征1. 感光性能如何增强复合材料的感光性能是当前研究的热点之一。

有机无机纳米复合材料具有较高的紫外吸收能力,同时对于光子的感应性能也比较高,还可以通过分子工程等方法进行增强。

这种材料可以被用作开关、存储、感测器等领域。

2. 光催化性能有机无机纳米复合材料的催化性能也受到了广泛的研究。

复合材料的光催化性能主要由金属氧化物、活性小分子、有机分子等组成,其中的能带结构和光吸收特性会影响催化反应。

无机纳米复合材料的制备及性能研究

无机纳米复合材料的制备及性能研究

无机纳米复合材料的制备及性能研究引言随着科学技术的不断进步,无机纳米复合材料在各个领域都得到了广泛的应用和研究。

无机纳米复合材料具备独特的物理、化学和力学性能,以及广泛的潜在应用价值。

本文将对无机纳米复合材料的制备方法和性能研究进行综述。

一、无机纳米复合材料制备方法1. 溶胶-凝胶法溶胶-凝胶法是一种常用的无机纳米复合材料制备方法。

该方法可以通过控制溶胶的成分、浓度和处理条件,合成出具有特定形状和尺寸的无机纳米复合材料。

此外,利用溶胶-凝胶方法还可以制备具有特殊形态结构的无机纳米复合材料,如纳米管、纳米棒等。

2. 化学沉积法化学沉积法是一种通过控制反应条件,在溶液中通过化学反应形成沉淀物从而制备无机纳米复合材料的方法。

这种方法具有简单、可控和可扩展性好的特点。

通过调整沉积溶液的成分和pH值,可以控制无机纳米复合材料的形貌和尺寸。

3. 气相沉积法气相沉积法是一种通过在气相中控制反应条件,直接在衬底上制备无机纳米复合材料的方法。

常用的气相沉积方法包括化学气相沉积法、物理气相沉积法和分子束外延法。

气相沉积法能够制备大面积、高质量的无机纳米复合材料,广泛应用于纳电子学、光电子学和生物医学等领域。

二、无机纳米复合材料的性能研究1. 光学性能无机纳米复合材料具有多样的光学性能,如吸收光谱、荧光性能和非线性光学特性。

对这些光学性能进行研究,可以帮助我们了解和优化无机纳米复合材料的光学性能。

2. 电学性能无机纳米复合材料的电学性能在能源领域有着重要的应用。

研究无机纳米复合材料的导电性、电子迁移率和电容性能等,可以优化材料的电学性能,提高电池、传感器和电子器件的性能。

3. 磁学性能无机纳米复合材料中的磁性纳米颗粒对于磁学性能的研究具有重要意义。

研究无机纳米复合材料的磁滞回线、磁化强度和磁导率等,可以帮助我们理解其磁学行为和磁性机制,为磁性材料的设计和应用提供理论基础。

4. 力学性能无机纳米复合材料的力学性能研究对于材料的应用和加工具有重要意义。

有机无机杂化材料的合成和应用

有机无机杂化材料的合成和应用

有机无机杂化材料的合成和应用一、引言有机无机杂化材料是指含有有机和无机组分的化合物或复合材料,利用他们两者的优点相互补充,形成一种新型的材料,具有多种应用。

本文将首先介绍有机无机杂化材料的合成方法,然后探讨它们在不同领域中的应用。

二、有机无机杂化材料的合成方法有机无机杂化材料的合成方法主要分为三种:溶胶-凝胶法、水热法和自组装法。

(一)溶胶-凝胶法溶胶-凝胶法是一种重要的制备有机无机杂化材料的方法。

该方法通过将固体物质分散在液体中形成溶胶,进一步通过加热或蒸发使物质凝胶化,并辅以后处理工序(如煅烧)来制备杂化材料。

溶胶-凝胶法有很高的控制性和可重复性,可以保证得到均匀的杂化材料。

(二)水热法水热法是制备有机无机杂化材料的一种绿色方法。

在水热反应的条件下,可以通过控制反应时间、 pH 值、金属源浓度等条件来调节纳米杂化材料的形貌和结构。

另外,水热法由于无需特殊的设备,易于实现大规模制备,因此在工业化生产中具有应用前景。

(三)自组装法自组装法是通过引导分子间的相互作用力而自组装成杂化材料的一种方法。

常见的自组装法有几何膜自组装法、电吸附法和层层自组装法等。

这种方法可以制备出高度有序、结构稳定、具有特殊功能的杂化材料。

三、有机无机杂化材料的应用1.光电学领域有机无机杂化材料因其独特的光电性质而在光电学领域得到广泛应用。

例如,将金属卟啉等有机物与二氧化硅等亲水性无机材料结合形成的有机无机复合材料,具有优良的荧光性能,可用于化学传感、图像传感和药物生物探测等领域。

2.催化领域有机无机杂化材料的吸附性能和空间结构可用于催化剂制备,成为新型催化剂的研究热点。

例如,将金属离子与有机物自组装形成的金属有机骨架材料,具有高效的催化活性和选择性,可用于多种反应催化。

3.传感器和储能器领域有机无机杂化材料在传感器和储能器领域具有潜在的应用。

例如,将纳米二氧化钛与稳定的有机分子结合形成的有机无机杂化材料,可用于高性能锂离子电池制备。

有机—无机纳米复合材料研究进展

有机—无机纳米复合材料研究进展

11 . .溶胶 一凝 胶 法
度和折射率稍有降低,但是增加 的弹性却为加工和机械处理
提供 了方便。 1 .. . 4 有机相与无机相 同步形成互穿网络 1 No a 等【发明了一种有趣 的方法来形成有机. vk 8 】 无机互穿
聚合物可 以在缩合和干燥的过程中,均匀地包 埋于通过溶胶 网络 。除 了传统的 自由基路线,他 以溶液开环复合分解聚合 凝 胶过程得到的二氧化硅网络 中。带有碱 性官能团的聚合 物作为有机聚合 的方法 。该反应 同溶胶—凝胶反应所 限制 的
11 .合成 不收缩 的胶体 .. 5
11 .无机溶胶与有机聚合物共混 .2 . 这种方法首先采用金属醇盐水解 ,再对水解 产物进行胶 会引起收缩,从而 引进 了相当大的应 力,阻碍材料在某些方
以上各种方法 都存在一个共 同的特点 ,就是在制凝胶 的 干燥过程 中,因无机溶胶 形成 中释放 出的水和醇类等的蒸发
物如胺类和吡啶类等物质,在酸 的催化下 ,可 以溶于形成 凝 乙烯基吡啶) 、聚丙烯 氰在用有机酸作共溶剂 的条件 下可 以
反应条件 一致 。电子显微镜 的研 究显示 ,与预先形成 的聚合 胶前的溶胶— 凝胶溶液 中。聚 (一 乙烯基吡啶 ) 2 、聚 (一 物组成到无机相中而得到的复合物相 比,形成有机一无机互 4
成 的,且两相界面存在着较 强或较弱化学键。其 中有机相可
早 在1 8 年 ,S h d就用 三乙氧基硅烷R S( R) 94 cmit /i 3 O 作为 以是塑料 、尼龙、有机玻璃或橡 胶等 ;无机相可 以是金属、 反 应前体 ( 中 是 可 以聚 合的有机 官能 团,如环氧 官能 其 氧化物 、陶瓷或半导体等 。复合后将 会获得集无机 、有机及 团) ,通过光化 学处 理或 热处理 ,使有机 网络在 已形成 的无 纳米粒子的诸多特 性于一身 的具有许 多特异性质的新材料 。 机 网络 中形成,从而得到有机—无机复合物【。Sh d首先 cmi t 1 . 有机一 无机纳 米复合材料的制备方法 通过3 —缩水甘油丙基醚三 甲氧基硅烷 与5 %~2 % ( o%) O t1 o 的钛醇盐共缩合合成  ̄TO2 i2 ' i / O 环氧化物 复合材料 。 S 该复合 溶胶一 凝胶法 除 了制 备氧化物 I—-l 半导体 纳米材 材料具有优异的透 明性 、硬度和 可润湿性 ,但 也表现 出了相 I V族 料及无机纳米 复合材料外 ,还可用来制备有机—无机纳米复 对低的强度 ( 拉伸 强度约为2 MP )及脆性 (  ̄3 a 弹性模量约 合材料【 。此法可具体归纳为五个方面 。 3 , 们 为3 0 MP ) 0 0 a 。为 了提 高物质 的机械性能 , 通过 甲基 丙烯酸酯 1 .. . 1 有机聚合物存在下形成 无机相 1 单体在 已形成 的无机 网络中聚合而被引入到复合物 中。有机 有机一 无 机纳米 复合材料 最直接 的合成路 线就是将 有 相 与无机相 间 的交联键通 过具有 三 甲氧基 硅烷基 的甲基 丙 机聚合物溶解于合适的共溶剂 中,由此制备溶胶 ,以进一步 烯酸酯单体而 引入 。该复合物 的拉伸强度 比不含有P MMA的 凝胶化形成无机相 ,制得有机一 无机纳米复合材料 。在复合 TO2 i2 i / O 复合物提 高了4 %,弹性模 量没什么变化。虽然 强 S 0 材料 中,聚合物与无机网络间既可以是简单 的包埋 ,也可 以 是化学键搭接。 用此 法进 行材料 的合成 过程 中 ,关键 是选择共 溶剂 。 Noa 等人 已经找到一些可溶性聚合物 ( vk 如聚丙烯氰 ). 此类
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机一无机纳米复合材料的制备、性能及应用引言纳米复合材料是一类新型复合材料,它是指1种或多种组分以纳米量级的微粒即接近分子水平的微粒复合于基质中所构成的一种复合材料。

纳米复合材料因其分散相尺寸介于宏观与微观之间的过渡区域,将给材料的物理和化学性质带来特殊的变化,正日益受到关注。

纳米材料被誉为“21世纪最有前途的材料”,该类材料研究的种类已经涉及到无机物、有机物和非晶态材料等。

有机-=无机纳米复合材料因其综合了有机物和无机物各自的优点,并且可以在力学、热学、光学、电磁学和生物学等方面赋予材料许多优异的性能,正在成为材料科学研究的热点之一。

目前,国内外在这方面的研究成果正不断见诸报道。

本文拟对有机一无机纳米复合材料的制备、性能及应用作一个综述。

有机一无机纳米复合技术最先制得的纳米复合材料是无机纳米复合材料,如金属、非金属、陶瓷和石英玻璃等。

目前,纳米复合材料研究的种类已涉及到有机物和非晶态材料等。

各国首先着重于纳米复合材料制备方法的研究,特别是薄膜制备法的研究。

纳米复合方法常用的有3种:溶胶一凝胶法、嵌入法和纳米微粒填充法。

其中溶胶一凝胶法较早用于制备有机一无机分子杂化材料或纳米复合材料;嵌入法在分子材料领域表现出很好的前景,特别是将不同的性能综合到单一的材料中去。

把具有有机/无机纳米复合材料的性能和特点的纳米颗粒材料添加到其他材料中,可以根据不同的需要选择适当的材料和添加量达到材料改性的目的,因为复合材料中增强体的尺寸降到纳米数量级会给复合材料引入新的材料性能。

首先,纳米颗粒本身具有量子尺寸效应、小尺寸效应、表面界面效应和宏观量子隧道效应等特殊的材料特性,这会给复合材料带来光、电、热、力学等方面的奇异特性;其次,纳米颗粒增强复合材料所具有的特殊结构,如高浓度界面、特殊界面结构、巨大的表面能等等必然会大大影响复合材料的宏观性能。

由无机纳米材料与有机聚合物复合而成的有机/无机纳米复合材料具有无机材料、无机纳米材料、有机聚合物材料、无机填料增强聚合物复合材料、碳纤维增强聚合物复合材料等所不具备的一些性能。

1)同步增韧增强效应:无机材料具有刚性,有机材料具有韧性,无机材料对有机材料的复合改性,会提高有机材料的刚性,但会降低有机材料的韧性。

2)强度大、模量高:普通无机粉体材料对有机聚合物复合材料有较高的强度、模量,而纳米材料增强的有机聚合物复合材料却有更高的强度、模量,加入量很小(3 ~5 质量分数)即可使聚合物的强度、刚度、韧性及阻隔性能明显提高。

:论是拉伸强度或弯曲强度,还是拉伸模量或弯曲模量均具有一致的变化率。

3)阻隔性能:对于插层纳米复合材料,由于聚合物分子链进入到层状无机纳米材料片层之问,分子链段的运动受到限制,从而显著提高了复合材料的耐热性及材料的尺寸稳定性;层状无机纳米材料在二维方向阻碍各种气体的渗透,从而达到良好的阻热、气密的作用。

4)电学性能:纳米颗粒尺寸越小,电子平:啕自由程越短,偏离理想周期场越严重,使得导电性特殊当晶粒尺寸达到纳米量级时,金属会显示非金属特性。

纳米材料添加到塑料中使其抗老化能力增强,寿命提高,添加到橡胶中可以提高介电和耐磨特性。

5)磁学性能:纳米材料与常规材料在磁结构方面的巨大差异必然在磁学性能上表现出来。

当晶粒尺寸减小到临界尺寸时,常规的铁磁性材料会转变为顺磁性,甚至处于超:顺磁状态。

6)光学性能:由于量子尺寸效应和表面效应的影响,使纳米材料对某种波长的光吸收带有蓝移现象和各种波长光的吸收带有宽化现象。

金属材料的屈服强度和硬度随着晶粒尺寸效应对纳米材料的光学特性有很大的影响,如它的红外吸收谱带展宽,吸收谱中的精细结构消失,中红外有很强的光吸收能力。

纳米氧化物粒子与高聚物或其他材料复合有良好的微波吸收系数。

制备方法:1模板法模板法合成纳米复合粒子是从粒子外部进行原位反应,从而形成有机/无机纳米复合粒子,有在无机粒子外包覆聚合物和在聚合物胶粒外包覆无机物两种具体方法。

为了增加有机/无机间的亲和力,偶联剂在此类制备过程中被广泛应用,如在硅胶体颗粒外包覆聚丙烯酸丁脂时发现接枝到无机粒子表面的聚合物的量与偶联剂甲基丙烯酸-3-三甲基硅丙烯(MPs)吸附在粒子表面的浓度成正比。

通过表面活性剂的吸附作用,也可制备有机/无机纳米复合材料。

表面活性剂可通过静电吸引作用、氢键作用、憎水缔结作用吸附在无机粒子表面,形成一层憎水层,单体溶解于其中,进行聚合形成有机/无机结构。

还可利用与无机粒子表面电荷相反的引发剂进行吸附,然后引发聚合。

利用溶胶一凝胶反应,在聚合物胶粒外通过无机物的烷基氧化合物的水解一缩合反应可制备有机/无机纳米复合材料。

由于水解缩合反应的动力学因素,最终可以应用的无机物仅局限于钛和硅。

2 溶胶一凝胶法溶胶一凝胶法是制备有机/无机纳米复合材料的种重要的方法。

溶胶一凝胶法是指金属有机(或无机)化合物经溶胶一凝胶过程和热处理工艺形成固体氧化物或其他化合物的方法,其具体做法可以分成两种:一是把前驱物溶解在预形成的聚合物溶液中,在酸、碱或某些盐的催化下,使前驱化合物水解,形成半互穿网络;二是把前驱物和单体溶解在溶剂中,让水解和单体聚合同时进行,使生成的聚合物均匀进入无机网络,如果单体交联则形成全互穿网络,未交联则形成半互穿网络。

在纳米材料以微粒形式与聚合物或聚合物前驱体形成纳米复合材料时,可能会产生纳米材料本身的相分离,进而影响复合材料的物理性能,而通过溶胶一凝胶法形成复合材料则克服了纳米微粒相分离的可能性,在材料的结构上具有纳米杂化的微观构造,真正能够将无机物与有机物混杂在一起,是性质上具有新型的热力学稳定的复合材料。

尚修勇等选取可溶性聚酰亚胺(P I)作为高聚物基体,将正硅酸乙酯(TEOS)在聚酰胺酸(PAA)的N一甲基2吡咯烷酮(N M P)溶液中进行溶胶一凝胶反应,制备出新型的聚酰亚胺/二氧化硅(PI/SiO,)纳米复合材料。

溶胶一凝胶法反应条件温和,可以在反应的早期控制材料的表面和界面,通过控制金属烷基氧化物的水解一缩聚反应来控制溶胶一凝胶化过程,产生极其精细尺度的分散相,而且分散相的化学成分及结构、尺寸及分布、面特性等均可控制;通过调节两相的成分可以改变材料的结构及孔径大小等。

此法存在的主要问题是在于凝胶的干燥过程中由于溶剂、小分子、水的挥发而导致材料收缩脆裂,此外前驱物价格昂贵造成成本高,不适合大规模生产。

18世纪中叶,wen J Y等就在对二氧化硅凝胶的研究中产生了用溶胶一凝胶工艺制备无机陶瓷和玻璃的兴趣。

溶胶—凝胶产品最早出现在2O世纪5O年代,除了粉末材料外,多孔固体、纤维、涂层和薄膜也相继被制备。

溶胶—凝胶工艺的基本过程是液体金属烷氧化物M(0R)t(M 为si、Ti等元素,R为CH。

、C2 H。

等烷基)与醇和水混合,在催化剂作用下发生如下水解一缩合反应:水解反应:TEOS+4H2o=Si(OH)4+4Et0H缩合反应:Si(OH)4+Si(OH)4一(H0)3Si-o-Si(0H )3+ H2当另外的=Si-OH 四配位体互相链接时,则发生如下缩聚反应,并最终形成三维的Si02凝胶网络。

(OH)3Si-O-Si(OH)3+ 6Si(OH)4一(H0)3Si-O-Si(OH)3+6H2凝胶的结构取决于水解反应速率kh 和缩合反应速率kz。

影响速率的因素包括:温度、溶剂的性质、烷氧化物先驱体的性质、电解质(酸、碱)的性质和浓度、R比值([H2O]/[TEOS])和压力等。

近年来,利用金属烷氧化物的溶胶_凝胶反应与聚合反应巧妙的组合,制备有机一无机纳米复合材料已成为材料科学新的热点。

通过选择不同的原料和控制合成反应,可以制备出具有不同性能和满足广泛需要的有机_无机纳米复合材料。

溶胶一凝胶法已被越来越广泛地应用到电子陶瓷、光学、热学、化学、生物学以及复合材料等领域。

3 嵌段聚合物的自组装法Zhang等制备了温度敏感型嵌段共聚物/有机硅纳米胶束,首先通过可逆加成一裂解链聚合法制备聚N一丙基丙烯酰胺一聚甲基丙烯酸3一三甲氧基硅丙酯两亲嵌段聚合物,自组装成纳米胶束,并选择性交联有机硅核,得到嵌段共聚物/有机硅纳米胶束。

但嵌段共聚物的自组装技术,目前处于基础探索阶段,一些关键问题仍需要解决,例如嵌段共聚物自组装的形态微区之间常常是无规取向的。

4 插层复合法许多无机化合物,如粘土、磷酸盐、石墨、金属氧化物、二硫化物、三硫化磷络合物等,具有典型的层状结构,层间往往具有某种活性,因而某些有机、金属有机、有机聚合物(或某个单体)可以作为客体插入无机化合物的层问,从而形成有机/无机纳米复合材料。

这些无机化合物的特点是呈层状,层间存在间隙,每层厚度和层间问距尺寸都在纳米级。

有机物的嵌入可以通过插层聚合和聚合物插层两种途径来实现。

插层聚合即先将聚合物单体分散,与经插层剂处理的层状无机物混合,然后原位复合。

利用聚合释放出的热量使其剥离成厚度、长宽尺寸为纳米级数的层状基本单元,均匀分散在聚合物基体中,实现高分子与硅酸盐在纳米尺度上的复合。

聚合物插层即将聚合物熔体或溶液与无机物混合,利用力或热力学原理,使层状无机物剥离成纳米尺度的片层,均匀分散在聚合物基体中,形成纳米杂化材料。

邱海霞,明用溶液插层法制备出剥离型羧甲基纤维素钠/蒙脱土纳米复合物,测试表明,加入蒙脱土的羧甲基纤维素钠膜的拉伸强度、热稳定性得到了提高,其水蒸汽透过系数降低了。

插层法较溶胶一凝胶法简单,制得的材料热稳定性及尺寸稳定性好,而且原料来源丰富,价廉。

有机物溶液直接嵌入法简化了复合过程,利用层状坑道使分子有规律排列,所得的结构更完整,具有各向异性,在合成功能材料方面有较大的优势。

但是,对于多数聚合物来说,有时不一定有合适的用于插层的单体和溶液,从而使得这种方法受到限制。

5 微乳液法用微乳液聚合方法制备纳米复合粒子是在无机粒子外吸附憎水物后分散于增水单体中,然后加入到含有表面活性剂的水溶液中,高速搅拌后形成单体包裹于无机粒子外的胶束,引发聚合后形成杂化纳米粒子,其关键是无机粒子在单体中的分散,有效地克服了无机粒子的聚并问题。

6 原位聚合法原位聚合法是将经过表面处理的纳米粒子加入到单体中,混合均匀,然后引发单体聚合,原位聚合法可在水相中进行,也可在油相中进行;可经自由基聚合,也可经缩合聚合,适用于大多数聚合物基有机/无机纳米复合材料的制备。

由于单体黏度低,表面有效改性后的无机纳米粒子容易均匀分散,因此保证了单体的/聚丙烯酸酯杂化材料。

均匀性及各项物理性能。

典型的代表有SiOJPMMA、Ti02原位聚合法条件温和,制备的粒子分散均匀,粒子的纳米特性完好无损。

由于只经一次聚合成型,不需热加工,避免了材料的降解,但原位聚合法仅适用于含有金属、硫化物或氢氧化物的胶体粒子,因此具有较大的局限性。

相关文档
最新文档