选址问题数学模型

合集下载

100个山区医疗点选址问题数学建模

100个山区医疗点选址问题数学建模

100个山区医疗点选址问题数学建模
(实用版)
目录
1.概述:介绍 100 个山区医疗点选址问题的背景和重要性
2.数学建模:解释如何使用数学模型解决选址问题
3.解决方案:详细介绍选址问题的解决方案
4.实施与效果:讨论实施选址方案的效果和影响
5.总结:总结山区医疗点选址问题的数学建模方法的重要性和未来发展方向
正文
在许多偏远山区,医疗设施的缺乏是一个严重的问题。

为了解决这个问题,有关当局需要选择适当的地点建立医疗点,以便尽可能地为山区居民提供医疗服务。

这就是 100 个山区医疗点选址问题的背景和重要性。

为了解决这个问题,数学建模被引入。

数学建模是一种通过数学方法来描述和解决实际问题的方法。

在这个问题中,数学模型可以根据人口密度、交通状况、医疗服务需求等因素来确定最佳的医疗点选址。

这样,就可以确保医疗服务能够最大程度地覆盖到山区居民。

具体的解决方案可能因地区而异。

在一些地区,可能需要在人口密集的地方建立医疗点,以便尽可能地为多的人提供服务。

在其他地区,可能需要在交通要道建立医疗点,以便病人可以方便地前往就医。

无论采取哪种方案,数学建模都可以提供科学的决策依据。

实施选址方案后,可以预期到一些效果。

比如,医疗服务的覆盖率可能会提高,病人的就医难度可能会降低,等等。

这些效果都可以通过实地考察和数据分析来验证。

总的来说,山区医疗点选址问题的数学建模方法具有重要的意义。


提供了一种科学的方法来解决实际问题,并且可以有效地提高医疗服务的覆盖率。

教师培训课件:数学建模中的选址

教师培训课件:数学建模中的选址

总结词
求解选址问题的方法可以分为两大类:解析法和启发式算法。解析法包括线性规划、整数规划等,适用于小规模问题;启发式算法包括模拟退火、遗传算法等,适用于大规模问题。选择合适的求解方法需要根据问题的规模和特点进行选择。
详细描述
解析法是一种精确求解方法,通过建立数学模型和求解方程或不等式来找到最优解。这种方法适用于小规模问题,但对于大规模问题可能会因为计算量大而变得不适用。启发式算法是一种基于经验或直观的近似求解方法,通过模拟或启发式的搜索过程来寻找近似最优解。这种方法适用于大规模问题,但可能无法找到最优解或最优解的精度不够高。在实际应用中,可以根据问题的规模和特点选择合适的求解方法,或者结合多种方法进行求解。
选址问题的数学建模
总结词
数学模型是用来描述选址问题的数学工具,通过数学模型可以将实际问题转化为数学问题,以便进行定量分析和求解。建立数学模型的过程包括问题分析、变量定义、建立方程和不等式等步骤。
详细描述
建立选址问题的数学模型需要先对问题进行深入分析,明确问题的目标、约束条件和相关因素。然后定义变量,包括决策变量和参数变量,并根据问题的实际情况建立数学方程或不等式。最后通过数学模型将实际问题转化为数学问题,为后续的求解提供基础。
明确问题、建立模型、求解模型、验证结果和改进模型。
总结词
明确问题是数学建模的第一步,需要清晰地理解问题的背景、目标和约束条件。建立模型是将问题抽象化,用数学语言进行描述。求解模型是运用数学方法和技巧进行计算的过程。验证结果是对比实际数据和模型结果的符合程度。改进模型是根据验证结果对模型进行修正和优化的过程。
课程总结与展望
案例分析
通过实际案例展示了数学建模在选址问题中的应用和效果。
模型求解与优化

数学建模仓库选址问题

数学建模仓库选址问题

数学建模仓库选址问题(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除仓库选址问题摘要随着全球经济的一体化,物资流通的范围已经不仅仅局限在国家内部,而是也走向来了世界各地。

面对多种多样的物资运输方案,就需要我们从中选择一种最节约费用的方案来实施。

基于此,本文针对美国超级医疗设备公司选址问题给出了两种数学模型。

全文首先对给出的题目进行数学分析,分析数据之间的直观联系和潜在联系,把数据从现实问题中抽离出来转化为纯粹的数学符号,然后借助于数学分析中求解重心坐标的公式(Dix--第i个地点的x坐标;Diy--第i个地点的y坐标;Vi--运到第i个地点或从第i个地点运出的货物量)两点间距离公式和数理统计中求解加权平均值的方法对数据进一步整合。

在此基础上,将之转化为MATLAB计算语言进行数据操作,一方面,借助于MAYLAB绘图工具将题中给出的数据再现于图中,直观明了,便于从图中发现些隐含信息;另一方面,利用MATLAB程序设计中的循环结构进行必要的编程和计算。

由于每种方案的均相等,所以只需比较一下每种方案的总成本(外向运输成本和内向运输成本)即可,总成本最低的城市即为最佳选址点,利用方案比较法最终得出结论。

关键词:重心法、加权平均值法一、问题重述美国超级医疗设备公司在亚利桑那州的菲尼克斯和墨西哥的蒙特雷生产零部件,然后由位于堪萨斯州堪萨斯城的一家仓库接受生产出来的零件,随后在分拨给位于美国和加拿大的客户。

但由于某些原因,公司要考虑仓库选址的最优化。

现已知若继续租赁原仓库,租金为每年每平方英尺美元,仓库面积为20万平方英尺,若在其他城市租同等规模的仓库,租金为每平方英尺美元,并且新租约或续租的期限均为5年。

假如转移仓库,则需一次性支付30万美元的搬迁费及其他选址费。

从工厂到堪萨斯仓库的运输费为2162535美元,从仓库到客户的运输费为4519569美元,仓库租赁费为每年100万美元。

应急中心的选址问题数学建模

应急中心的选址问题数学建模

救护中心建立问题的研究摘要本文对某小镇建立两个救护中心,使应对突发事件总的响应时间最少的问题进行了分析,并建立了数学模型进行了求解。

在假设(I)的前提下,即需要救护的事件集中在每个街区的中心。

考虑到街区数目不是很多,本文采用穷举法进行了最优解的搜索。

即先任意选取两点作为救护中心的位置,然后计算其他街区到这两个救护中心的总响应时间,总响应时间最少的旧最优的方案。

同时为了考虑障碍区域和水塘,本文首先对那些设置救护中心需要穿越障碍区域和水塘的点进行了剔除,然后在利用计算机一一穷举。

在假设(Ⅱ)的前提下,需要救护的事件均匀分布在街道上,在计算总响应时间时,本文把整个街道的事件发生频率集中在街道的中心位置处进行计算。

同时本文证明了当救护中心仍设立在街角处时所需的总响应时间是最少的,这样仍可以按照假设(I)中的穷举方法求出救护中心设立的最优位置。

关键词:穷举法;剔除;街道中心;街角一.问题的重述某小镇开始计划建立两个救护中心,把救护站、消防队和派出所结合在一起。

图1指出每个长方形街区所发生的需要救护事件的次数,北边的L形区域是障碍,而南边的长方形区域是浅水池,救护车辆驶过一条南北向的街道平均花15秒,而救护车辆驶过一条东西向的街道平均花20秒,请确定这两个救护中心的位置,使得总响应时间最少。

(1)假定需要救护的事件集中在每个街区的中心,救护中心位于街角处。

(2)假定需要救护的事件沿包围每个街区的街道上均匀分布,救护中心可位于街道的任何地方。

图1 小镇的街区分布图二.问题分析对于假设(I)的情况,要建立救助站的位置,使总的响应时间最短。

在考虑障碍区域的情况下,可以首先把那些建立救护站需要穿过障碍区域的点剔除掉,然后可以考虑穷举法利用计算机求出最佳的建立救护中心的位置。

对于假设(Ⅱ)的情况,由于突发事件是均匀分布在每条街道上的,可以利用每条街道的中心点位置来作为这整条街道突发事件的频率集中点。

同时可以证明:在街角处设置救护中心是所需总响应时间最短的。

数学建模报告选址问题

数学建模报告选址问题

长沙学院数学建模课程设计说明书题目选址问题系(部) 数学与计算机科学专业(班级) 数学与应用数学姓名学号指导教师起止日期 2015、6、1——2015、6、5课程设计任务书课程名称:数学建模课程设计设计题目:选址问题已知技术参数和设计要求:选址问题(难度系数1.0)已知某地区的交通网络如下图所示,其中点代表居民小区,边代表公路,边上的数字为小区间公路距离(单位:千米),各个小区的人数如下表所示,问区中心医院应建在哪个小区,可使离医院最远的小区居民人均就诊时所走的路程最近?各阶段具体要求:1.利用已学数学方法和计算机知识进行数学建模。

2.必须熟悉设计的各项内容和要求,明确课程设计的目的、方法和步骤。

3.设计中必须努力认真,独立地按质按量地完成每一阶段的设计任务。

4.设计中绝对禁止抄袭他人的设计成果。

5.每人在设计中必须遵守各组规定的统一设计时间及有关纪律。

6.所设计的程序必须满足实际使用要求,编译出可执行的程序。

7.要求程序结构简单,功能齐全,使用方便。

设计工作量:论文:要求撰写不少于3000个文字的文档,详细说明具体要求。

1v 5工作计划:提前一周:分组、选题;明确需求分析、组内分工;第一天:与指导老师讨论,确定需求、分工,并开始设计;第二~四天:建立模型并求解;第五天:完成设计说明书,答辩;第六天:针对答辩意见修改设计说明书,打印、上交。

注意事项⏹提交文档➢长沙学院课程设计任务书(每学生1份)➢长沙学院课程设计论文(每学生1份)➢长沙学院课程设计鉴定表(每学生1份)指导教师签名:日期:教研室主任签名:日期:系主任签名:日期:长沙学院课程设计鉴定表目录第一章课程设计的目的、任务及要求 (2)1.1 目的 (2)1.2 主要任务 (2)1.3 要求 (2)摘要 (3)第二章问题重述 (4)2.1 问题背景 (4)2.2 问题重述 (4)第三章问题分析 (5)第四章假设与符号约定 (6)4.1 模型假设 (6)4.2符号说明 (6)第五章模型的建立与求解 (7)5.1.选定中心点 (7)5.1.1 模型一 (7)5.1.2 模型二 (7)5.2 题目引申 (9)第六章模型的结果分析与检验 (10)6.1 结果分析 (10)6.2 模型检验 (10)6.3 模型优缺点 (12)结论 (13)参考文献 (14)结束语 (15)附录 (16)第一章课程设计的目的、任务及要求1.1 目的1、巩固《数学建模》课程基本知识,培养运用《数学建模》理论知识和技能分析解决实际应用问题的能力;2、初步掌握数学建模的基本流程,培养科学务实的作风和团体协作精神;3、培养调查研究、查阅技术文献、资料、手册以及撰写科技论文的能力。

数学模型课程设计-工厂地址选址的数学模型 精品

数学模型课程设计-工厂地址选址的数学模型 精品

第一章 问题的描述现代工厂地址的选择,关系到工业布局及经济效益的重大决策,涉及到经济和非经济的多种因素,因此在选择时,应对几个备选的厂址各种不同因素的优劣进行综合平衡,根据各种不同的选择标准,选出最佳厂址。

设有甲、乙、丙三个厂址,估计甲厂年度总支出20001=C 万元,乙厂的年度总支出21002=C 万元,丙厂的年度总支出22003=C 万元,从而来选出最佳厂址。

数学模型(Mathematical Model ),是数学理论与实际问题相结合的一门科学。

它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。

根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。

数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。

数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方 程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。

在体育实践中常常提到优秀运动员的数学模型。

2.1 工厂选址的原理首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

第二、 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

数学模型课程设计-工厂地址选址的数学模型 精品

数学模型课程设计-工厂地址选址的数学模型 精品

第一章 问题的描述现代工厂地址的选择,关系到工业布局及经济效益的重大决策,涉及到经济和非经济的多种因素,因此在选择时,应对几个备选的厂址各种不同因素的优劣进行综合平衡,根据各种不同的选择标准,选出最佳厂址。

设有甲、乙、丙三个厂址,估计甲厂年度总支出20001=C 万元,乙厂的年度总支出21002=C 万元,丙厂的年度总支出22003=C 万元,从而来选出最佳厂址。

数学模型(Mathematical Model ),是数学理论与实际问题相结合的一门科学。

它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。

根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。

数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。

数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方 程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。

在体育实践中常常提到优秀运动员的数学模型。

2.1 工厂选址的原理首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

第二、 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

机场选址问题 数学建模优秀论文

机场选址问题 数学建模优秀论文

机场选址问题摘要针对机场选址问题,文章共建立了三个模型用以解决该类问题。

为了计算出任意两城市之间的距离,我们利用公式(1)将利用题目中所给的大地坐标得出了任意两点之间的距离,见附录2。

对于问题1,我们主要利用0-1变量法,从而对问题进行了简化。

我们设了第i个y以及第i个城市是否是以第j个支线机场为最近机场的()j i x,。

城市是否建支线机场的i然后将任意两点之间的距离与该城市的总人数之积,再乘以0-1变量()j i x,,最后得出每一个所有城市到最近机场的距离与该城市人口的乘积,然后利用LINGO进行编写程序,进行最优化求解,最后得出的结果见表1和表2,各大城市以及支线机场的分布见图2。

对于问题2,该问题是属于多目标规划的问题,目标一是居民距离最近机场的距离最短,目标二是每个机场覆盖人口数尽可能相等。

我们在第一题的基础上,又假设了一些正、负偏差变量,对多个目标函数设立优先级,把目标函数转化为约束条件,进而求得满足题目要求的结果。

对于问题3,我们分析到影响客流量的因素是GDP跟居民人数,所以通过所搜集的资料分析我们给予这两个因素以不同的权重。

然后同样采取问题2中所给的反求机场覆盖的方法,求的各个机场所覆盖的客流量,再让其在平均客流量水平上下浮动。

通过LINGO程序的运行得到的六个机场的坐标见表6,六个机场的分布见图7。

针对论文的实际情况,对论文的优缺点做了评价,文章最后还给出了其他的改进方向,以用于指导实际应用。

关键词:选址问题;多目标规划;LINGO;0-1变量法;加权1.问题的重述近年来,随着我国经济社会的迅猛发展,公共交通基础设施日趋需要进一步完善与提高。

支线机场作为我国交通运输体系的有机组成部分,对促进欠发达地区经济社会的发展具有基础性的作用。

现某区域有30个城市,本区域计划在未来的五年里拟建6个支线机场。

任务1,确定6个支线机场的所在城市,建立居民到最近机场之间的平均距离最小的数学模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选址问题数学模型 摘要 本题是用图论与算法结合的数学模型,来解决居民各社区生活中存在三个的问题:合理的建立3个煤气缴费站的问题;如何建立合理的派出所;市领导人巡视路线最佳安排方案的问题。通过对原型进行初步分析,分清各个要素及求解目标,理出它们之间的联系.在用图论模型描述研究对象时,为了突出与求解目标息息相关的要素,降低思考的复杂度。对客观事物进行抽象、化简,并用图来描述事物特征及内在联系的过程.建立图论模型是为了简化问题,突出要点,以便更深入地研究问题 针对问题1:0-1规划的穷举法模型。该模型首先采用改善的Floyd-Warshall算法计算出城市间最短路径矩阵见附录表一;然后,用0-1规划的穷举法获得模型目标函数的最优解,其煤气缴费站设置点分别在Q、W、M社区,各社区居民缴费区域见表7-1,居民与最近的缴费点之间平均距离的最小值11.7118百米。 针对问题2:为避免资源的浪费,且满足条件,建立了以最少分组数为目标函数的单目标最优化模型,用问题一中最短路径的Floyd算法,运用LINGO软件编程计算,得到个社区之间的最短距离,再经过计算可得到本问的派出所管辖范围是2.5千米。最后采用就近归组的搜索方法,逐步优化,最终得到最少需要设置3个派出所,其所在位置有三种方案,分别是:(1)K区,W区,D区;(2)K区,W区,R区;(3)K区,W区,Q区。最后根据效率和公平性和工作负荷考虑考虑,其第三种方案为最佳方案,故选择K区,W区,Q区,其各自管辖区域路线图如图8-1。 针对问题3:建立了双目标最优化模型。首先将问题三转化为三个售货员的最佳旅行售货员问题,得到以总路程最短和路程均衡度最小的目标函数,采用最短路径Floyd算法,并用MATLAB和LINGO软件编程计算,得到最优树图,然后按每块近似有相等总路程的标准将最优树分成三块,最后根据最小环路定理,得到三组巡视路程分别为11.8km、11km和12.5km,三组巡视的总路程达到35.3km,路程均衡度为12%,具体巡视路线安排见表9-1和图9.2。

关键词Floyd-Warshall算法穷举法最小生成树最短路径 1问题重述 1.1问题背景 这是一个最优选址问题,是一种重要的长期决策,它的好坏直接影响到服务方法,服务质量,服务效率,服务成本,所以选址问题的研究有着重大的经济社会和军事意义。 1.2问题的提出 实际问题:某城市共有24个社区A,B,C、、、、、、Y,任何两个社区之间都是相通的,只是有的社区是有道路直接相连,有的是通过其他社区联系在一起,各个社区对应人口(单位:千人)如表1-1: 表1-1 编号 A B C D E F G H I J K L 人口 10 12 18 6 10 15 4 8 7 11 13 11 编号 M N P Q R S T U V W X Y 人口 11 8 9 22 14 8 7 10 15 28 18 13 各社区的的道路连接如图1.1

V

CDGUFE

I

Q

SR

A

T

WXBJYLHNKMP10158797141061112892024

16

15

182211661223

81011

81115102515199288109118

19图1.1 (注:横线上的数据表示相邻社区之间的距离,单位:百米) 1.3本文具体需要解决的问题

(1)为了方便社区居民缴纳煤气费,煤气公司现拟建三个煤气缴费站,问煤气缴费站怎样选址才能使得居民与最近煤气站之间的平均距离最小。 (2)市公安局拟在该城区建立若干个派出所,请为派出所分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有警察(警车的时速为50km/h)到达事发地,问设置多少个派出所比较合理,位置选在哪? (3)社区W是市政府所在地,市领导从W出发巡视,分三组巡视所有社区,

为了尽快完成巡视,合理的安排巡视路线 2模型假设

(1) 不考虑各社区的实际尺度,简化为点处理; (2) 每个社区的居民都去缴费站缴费; (3) 只在社区拟建三个煤气缴费站; (4) 每个社区的居民只能到离该社区最近的煤气缴费站缴费; (5) 若与某些社区最近的缴费站有若干个,即其可能与若干个缴费点的距离相同且最邻近,为保证各缴费点工作负担波动不大,该社区的居民只能到最邻近的其中一个纳税点缴税; (6) 假设路况相同,警车到达个社区途中按照规定的速度匀速行使;

3符号说明

表3-1 符号 符号意义 第j个社区的居民人口数 社区间可行的最短路径长度 社区j是否到社区i缴费 是否在社区i设置缴费站 均衡度 赋权连通图

子图kG中的最佳回路

边ie的边权 点iv的点权

kL的各边权之和

kL的各点权之和 1,2,3...24i;1,2,...24j;1,2,3k; 4问题分析 4.1问题1的分析 此题主要考虑居民平均最短距离,解决的是多源选址问题,找到三个煤气缴费站最佳选址。当考虑到社区人口数量和和各社区之间的距离时,人口量是影响平均最短距离的首要因素,尽可能把煤气缴费站建在人口密集的区域。 本问题的目标是从24个社区组成区域内中,选出一定3个社区设置煤气缴费站,建立缴费点网络,实现居民与最近的缴费点之间平均距离最小。 对于每个社区缴费点的建立与否只有两种可能,所以可以通过计算社区间的最短路径,然后充分利用社区的居民以及道路信息,采用合适的方法搜索缴费点;再确定各缴费点管辖的区域,直到求得最优解。本问题重点要解决如何选择缴费点和如何划分缴费区域,即建立合理的最优缴费点搜索和区域划分模型。

4.2问题2的分析

此问题是突发事件应急救援设施选址决策模型,首先要求派出所分配管辖范围覆盖所有的区域,在考虑具体目标时,一是从快速反应或者公平性考虑,要求派出所至需求点的最大距离最小化;二是从应急救援设施的使用效率出发,要求派出所至需求区的总加权距离为最小。最后,在建立应派出所时还要考虑相关的成本资金问题,最少的派出所能在满足所有要求的情况下覆盖所有区域。

4.3问题3的分析 要求分三组(路)巡视,得到总路程最短且各组尽可能均衡的巡视路线,可转化为三个售货员的最佳旅行售货员问题。先用MATLAB软件编程计算得到加权网络图的最小生成树,按每块近似有相等总路程的标准将最小生成树分成三块,每一块都转化为一个最佳旅行售货员问题。即在给定的加权网络图中寻找从给定点W出发,行遍所有顶点至少一次,使得总权(路程)最小.解决此类问题的一般方法是不现实的,本题可使用近似算法来求得近似最优解. 再确定总路程最短且满足各组尽可能均衡的路线的目标函数,最后对目标函数适当改进,得到最终的双目标最优化模型。 5数据的分析

根据图1.1和表1-1可以看出24个社区人口密度不同,各社区之间的距离也不同,得出如下道路信息表: 表5-1道路信息表 社区编号 从该社区出发的道路数 与该社区直接相连的社区编号及道路长度(百米) A 3 C(24),S(20),X(16) B 3 I(28),W(22),X(18) C 5 A(24),D(11),E(9),T(10),W(15) D 3 C(11),Q(9),S(8) E 4 C(9),F(8),T(6),U(9) F 6 E(8),L(10),U(14),W(11),G(11),Y(11) G 3 F(11),I(10),W(15) H 4 M(15),P(19),K(11),Y(8) I 4 B(28),P(19),G(10),Y(25) J 3 L(8),N(6),U(8) K 3 M(12),H(11),P(23) L 4 F(10),J(8),Y(10),M(9) M 4 N(6),L(9),H(15),K(12) N 2 M(6),J(6) P 3 H(19),I(19),K(23) Q 3 R(7),D(9),V(10) R 2 S(12),Q(7) S 3 A(20),D(8),R(12) T 3 C(10),E(6),V(7) U 4 E(9),F(14),J(8),V(15) V 3 Q(10),T(7),U(15) W 5 B(22),C(15),F(11),G(15),X(8) X 3 A(16),B(18),W(8) Y 4 F(11),H(8),I(25),L(10)

若将24社区个之间的的道路网络图,社区看作一个图的顶点,各社区的公路看作此图对应顶点间的边,各条公路的长度看作对应边上的权,所给各社区的的道路连接如图就转化为加权网络图(,)GVE。利用图论中的一些算法对问题一,二三进行简答。 同时根据个社区人口居住情况可以得出如下人口统计图: 图5.1

根据表5.1和图5.1可以看出W,Q两个社区人口量最多,且从该社区出发的道路数比较多,很可能是煤气缴费站的设置点,同时也是派出所设置点;K社区人口量也比较多,且连接各道路距离比较大,因此,K点可能是派出所设置点。这些是从图形和图标表面直观得出的,需要建模去验证。

6求最短路径

相关文档
最新文档