第10讲 对数与对数函数(课件)
人教A版高中数学必修一课件 《对数》指数函数与对数函数PPT(第一课时对数的概念)

【解】 (1)loge16=a,即 ln16=a. (2)log6414=-13. (3)32=9. (4)xz=y.
将下列指数式与对数式互化:
(1)log216=4;
(2)log127=-3; 3
(3)43=64; (4)14-2=16. 解:(1)由 log216=4 可得 24=16.
(2)由
1.对数的概念 一 般 地 , 如 果 ax = N(a>0 , 且 a≠1) , 那 么 数 x 叫 做 _以___a_为___底__N__的__对__数____ , 记 作 _x_=___lo_g_a_N__ , 其 中 a 叫 做 ___对__数__的__底__数____,N 叫做真 __数___.
把对数式 loga49=2 写成指数式为( )
A.a49=2
B.2a=49
C.492=a
D.a2=49
答案:D
log32x- 5 1=0,则 x=________.
答案:3
指数式与对数式的互化
将下列指数式与对数式互化: (1)ea=16; (2)64-13=14; (3)log39=2; (4)logxy=z(x>0 且 x≠1,y>0).
log127=-3 3
可得13-3=27.
(3)由 43=64 可得 log464=3.
(4)由14-2=16
可得
log116=-2. 4源自利用对数式与指数式的关系求值
求下列各式中 x 的值: (1)log27x=-23; (2)logx16=-4; (3)lg10100=x; (4)-lne-3=x.
4.3对数 第一课时 对数
的概念
第四章 指数函数与对数函数
考点
学习目标
人教高中数学必修二B版《对数与对数函数》指数函数、对数函数与幂函数说课教学课件复习(对数运算)

课件
(1)将下列指数式化成对数式:
①54=625;②2-6=614;③3a=27;④13m=5.73. (2)将下列对数式化成指数式并求 x 的值:
①log64x=-23;②logx8=6;③lg 100=x.
栏目 导引
第四章 指数函数、对数函数与幂函数
【解】
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
栏目 导引
第四章 指数函数、对数函数与幂函数
求 f(x)=logx11- +xx的定义域.
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
x>0,
解:要使函数式 f(x)有意义,需x11≠ -+1xx,>0,
【答案】 D
栏目 导引
第四章 指数函数、对数函数与幂函数
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
由于对数式中的底数 a 就是指数式中的底数 a,所以 a 的取值 范围为 a>0,且 a≠1;由于在指数式中 ax=N,而 ax>0,所以 N>0.
所以 x=8-32=2-2=14,故选 A.
高中数学 第四章 对数运算和对数函数 1 对数的概念课件 必修第一册高一第一册数学课件

2
D.4 =x
(2)D
2021/12/12
第七页,共二十二页。
激趣诱思
知识(zhī shi)点
拨
二、对数的基本性质
1.负数和零没有(méi yǒu)对数.
2.对于任意的a>0,且a≠1,都有
1
loga1=0,logaa=1,loga =-1.
a
3.对数恒等式aa =
N
.
名师点析1.loga1=0,logaa=1可简述为“1的对数等于0,底的对数等于1”.
4
(3)log3(lg x)=1.
2
解:(1)由 log8x=- ,得 x=8
3
3
3
4
2
3
-
2
=(23)-3 =2-2,故
3
4
1
x= .
4
(2)由 logx27=4,得 =27,即 =33,
4
3 3
故 x=(3 ) =34=81.
(3)由 log3(lg x)=1,得 lg x=3,故 x=103=1 000.
3
-1 1
(3)e = ;
e
(4)10-3=0.001.
分析利用当a>0,且a≠1时,logaN=b⇔ab=N进行互化.
解:(1)
1
1 -3
3
(3)ln =-1.
e
=27.
(2)log464=3.
(4)lg 0.001=-3.
2021/12/12
第十页,共二十二页。
当堂检测
探究(tànjiū)一
探究(tànjiū)二
§1
对数(duìshù)的概念
2021/12/12
对数的概念课件

实际应用题
题目5
例子1
例子2
例子3
在实际生活中,对数有许多 应用。请举出三个例子,并 解释它们是如何应用对数的 。
在物理学中,声速与频率的 对数之间的关系可以用对数 来描述。例如,在声音传播 的实验中,我们可以通过测 量声速和频率来计算对数值 ,进而研究声音在不同介质 中的传播特性。
在化学中,对数可以用来描 述化学反应速率与反应物浓 度的关系。例如,当我们研 究一种化学反应的速率时, 可以通过测量反应物浓度的 变化来计算对数值,进而分 析反应速率与浓度的关系。
三角函数和对数都可以用来表示复数的 幂次,例如:log(z)表示z的实部和虚 部都大于0的对数,而ln(z)表示z的实
部大于0,虚部等于0的对数。
在解决一些数学问题时,需要将三角函 数和对数结合起来使用。
对数与微积分的关系
对数在微积分中有着广泛的应用,例如在求解微分方程时,常常需要用到对数的性 质和运算规则。
对数在现代科技中的应用
01
在物理学中,对数被广 泛应用于测量和计算声 音、光、电等物理量。
02
在工程学中,对数被用 于信号处理、图像处理 、频谱分析等领域。
03
在经济学中,对数被用 于分析复利、人口增长 、股票价格等数据。
04
在天文学和气象学中, 对数被用于计算天体轨 道、预测天气等。
05
练习和思考题
在生物学中,对数可以用来 描述生物种群的增长。例如 ,当我们研究一个种群的增 长时,可以通过观察种群数 量的变化来计算对数值,进 而分析种群的增长趋势和规 律。
THANKS
感谢观看
基础练习题
题目1: 计算下列各题的对数值 $log_2(4)$
$log_3(9)$
对数函数的图像与性质

讲解范例 例2:求下列函数的定义域: ①y=logax2 ②y=loga(4-x)
解: ①要使函数有意义,则
x 0
2
x 0
∴函数的定义域是{x|x≠0} ② 要使函数有意义,则
4 x 0 x 4
∴函数的定义域是{x |x<4 }
学习函数的一般模式(方法): 解析式(定义) 图像
y
x =1
y l oga x ( a 1)
0<a<1
y
X
x =1
图 象 性
O
(1,0)
(1,0)
O
y l oga x ( 0 a 1)
X
定义域 : ( 0,+∞) 值 域 : R
质 定 点: (1 ,0), 即当x =1时,y=0
增函数 在(0,+∞)上是 减函数 在(0,+∞)上是:
log53 < log55 =1
得:log 35
>
log 53
> log 20.8 < 得:log 32 >
0 0 log 20.8
方 法
当底数不相同,真数也不相同时,
常需引入中间值 或 (各种变形式).
0 1
练习1:比较大小 ① log76
< >
1
1
② log0.53
<
1
③ log67
④ log0.60.1
列 表 描 点
连 线
X
1/4
1/2
1
2
4
…
y=log2x
-2
-1
0
1
2
…
y 2
1
0
对数与对数函数

2.已知 1<a<b<a2, 比较 logab, logba, loga a , logb a , 1 的大小. b b 2 a a 2 解: 由 1<a<b<a 可知: loga b <0, logb b <0, logab>1. ∴0<logba<1. ∵ 0>log a a>log a b, ∴logaa <logb a . b b b b 2> 1 log b= 1 , 又 logba= 1 log a 2 b 2 2 b 1 a ∴ logab>logba> 2 >logb b >loga a . b 3.已知 logm4>logn4, 比较 m, n 的大小. 解: 由已知 logm4>logn4, 可分情况讨论如下: ①当 m>1, 0<n<1 时, logm4>0, logn4<0, 原不等式成立. ∴m>1>n>0; ②当 m>1, n>1 时, 由 logm4>logn4>0 得: log4m<log4n. ∴n>m>1; ③当 0<m<1, 0<n<1 时, 由 0>logm4>logn4 得: log4m<log4n. ∴0<m<n<1. 综上所述: m, n 的大小是 m>1>n>0 或 n>m>1 或 0<m<n<1.
对数与对数函数
一、对数
如果 a(a>0, a1)的 b 次幂等于 N, 即 ab=N, 那么数 b 叫做 以 a 为底 N 的对数, 记作 logaN=b, 其中 a 叫做对数的底数, N 叫做真数, 式子 logaN 叫做对数式. 常用对数: (lgN), 自然对数: (lnN).
第10讲:指数与对数函数(教师用书)

(聚焦2008)第10讲:指数函数与对数函数一、知识梳理 (一)知识框图(二)重点难点 重点:(1)指数与对数的概念以及运算;(2)指数函数的性质及其应用;(3)对数函数的性质及其应用。
难点:(1)对数式的化简与计算;(2)指数与对数函数性质的应用。
二、考点解读与例题分析(一)指数式 (1)根式式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。
根式的性质:①n 为任意正整数,(n a )n=a ;②当n 为奇数时,n n a =a ;当n 为偶数时,n na =|a|。
(2)分数指数幂正分数指数幂的意义:nm a =n ma (a >0,m ,n ∈N *且n >1)。
负分数指数幂的意义:n ma-=nma 1(a >0,m ,n ∈N *且n >1)。
(3)幂的运算性质①a m ·a n = a m + a n ;②(a m )n = a mn ;③(ab )n =a n b n,其中a >0,b >0,指数与对数函数 根式 指数函数 图像性质 指数与指数函数 分数指数幂 对数与对数函数 定义:a b =N ⇔log a N=b (a >0且a ≠1) 图像性质 对数函数性质: log a 1=0;log a a=1;Na a log =N 两正数和差的对数 运算法则 两正数积商的对数正数乘方与开方的对数m ,n ∈Q 。
【例1】化简:21)41(-·2133231)()1.0()4(---b a ab 。
【例2】(2003年上海高考试题)已知函数f (x )=53131--xx ,g (x )=53131-+x x 。
(1)证明f (x )是奇函数,并求其单调区间;(2)分别计算f (4)-5f (2)g (2)和f (9)-5f (3)g (3)的值,由此概括出涉及函数f (x )和g (x )的对所有不等于零的实数x 都成立的一个等式,并加以证明。
(二)对数式 (1)对数若a b =N (a >0且a ≠1),则数b 叫做以a 为底N 的对数,记作: log a N=b 。
对数函数的图像和性质 课件-高一上学期数学人教A版必修第一册

a<1.
x-4<x-2
解集为(4,+∞)
3.对数型函数的奇偶性和单调性
例 4.函数 f(x)=log1 (x2-3x-10)的单调递增区间为( )
2
A.(-∞,-2)
B.(-∞,32)
C.(-2,3) 2
D.(5,+∞)
[解析] 由题意,得x2-3x-10>0,∴(x-5)(x+2)>0,∴x<-2或x>5.
∴函数f(x)为奇函数
若函数y=loga(2-ax)在x∈[0,1]上是减函数,则a的取值范围是( B )
A.(0,1)
B.(1,2)
C.(0,2)
D.(1,+∞)
令u=2-ax,由于a>0且a≠1,所以u=2-ax为减函数, 又根据对数函数定义域要求u=2-ax在[0,1] 上恒大于零,当x∈[0,1]时,umin=2-a>0,解得a<2.
1
o1
x
最后把y=lg(x-1)的图象在x轴下方的部分 对称翻折到x轴上方
类型2 对数函数的性质
1.比较大小 例2.比较下列各组中两个值的大小:
(1) log25.3 , log24.7 y=log2x在( 0,+∞) 是增 函数.log25.3 > log24.7
(2) log0.27 , logo.29 y=log0.2x在( 0,+∞) 是减 函数.log0.27 > logo.29
②当 0<a<1 时,有12<a,从而12< a<1.
∴a 的取值范围是( 1
2
,1).
a<(14. ).解不等式:loga(x-4)>loga(x-2).
①当 a①>当1 时a>,1有时xx--a,<有4212>>,00a<此12时,无此解时无解 x-4>x-2