11.斜边、直角边定理(HL)
直角边斜边定理hl证明

直角边斜边定理hl证明直角边斜边定理是一个简单而重要的几何原理,它可以帮助我们计算和理解直角三角形的性质。
在本文中,我将详细介绍直角边斜边定理的概念和证明过程,希望能帮助读者更好地理解该定理的原理和应用。
1. 何为直角边斜边定理直角边斜边定理又被称为毕达哥拉斯定理,它阐述了直角三角形的边长关系。
直角三角形是一种具有一个内角为90度的三角形,其中包括一个直角,即一个内角等于90度的角。
根据直角边斜边定理,直角三角形的两个直角边的平方和等于斜边的平方。
2. 直角边斜边定理的证明过程为了证明直角边斜边定理,我们可以利用几何知识和代数运算。
假设直角三角形的两个直角边分别为 a 和 b,斜边为 c。
我们可以通过以下证明过程来得到直角边斜边定理。
证明过程:(1)根据勾股定理,我们知道在任何三角形中,两直角边的平方和等于斜边的平方。
即 a^2 + b^2 = c^2。
(2)我们可以通过几何推导来证明这一点。
假设直角边 a 为底边,在直角三角形中构造一个以 a 为底边,长度为 b 的线段 perpendicular bisector。
这个线段将底边 a 平分,并且与斜边 c 相交于直角点和直角边 b 的中点。
(3)根据几何性质,我们知道这个线段将直角三角形分成了两个全等的直角三角形。
我们可以得到两个全等三角形中的对应边长关系,即 a = b 和直角边 a 的上半部分长度为 b/2。
(4)使用平行线性质,我们还可以得出斜边 c 分成的两条线段之间的关系。
即 c = a + b/2。
(5)将这些等式代入勾股定理的公式中,我们有 a^2 + b^2 = (a + b/2)^2,然后展开和化简这个方程,我们可以得到 a^2 + b^2 =c^2。
(6)根据这个推导过程,我们证明了直角边斜边定理,即直角三角形的两个直角边的平方和等于斜边的平方。
3. 直角边斜边定理的应用直角边斜边定理在几何学和实际生活中具有广泛的应用。
对于任何给定两条直角边的长度,我们可以利用直角边斜边定理来计算斜边的长度。
专题1-8 HL判定三角形全等-重难点题型(举一反三)(苏科版)(解析版)

专题1.8 HL判定三角形全等-重难点题型【苏科版】【题型1 HL判定三角形全等的条件】【例1】(2020秋•秦淮区期末)结合图,用符号语言表达定理“斜边和一条直角边分别相等的两个直角三角形全等”的推理形式:在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF∴Rt△ABC≌Rt△DEF.【分析】根据条件可知,少一组斜边,所以可添加为:AB=DE.【解答】解:∵∠C=∠F=90°,∴在Rt△ABC和Rt△DEF中,{AC=DFAB=DE,∴Rt△ABC≌Rt△DEF(HL),故答案为:AB=DE.【点评】本题考查了直角三角形全等的判定定理,【变式1-1】(2020秋•金乡县期中)如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,若利用“HL”证明Rt△ABC≌Rt△DCB,你添加的条件是.(不添加字母和辅助线)【分析】根据:斜边与直角边对应相等的两个直角三角形全等,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.【解答】解:∵斜边与直角边对应相等的两个直角三角形全等,∴在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.故答案为:AB=DC(答案不唯一)【点评】此题主要考查了全等三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.②判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.③判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.④判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.【变式1-2】(2021春•宝安区期中)如图,∠C=∠D=90°,添加下列条件:①AC=AD;②∠ABC=∠ABD;③BC=BD,其中能判定Rt△ABC与Rt△ABD全等的条件的个数是()A.0B.1C.2D.3【分析】根据直角三角形的全等的条件进行判断,即可得出结论.【解答】解:①当AC=AD时,由∠C=∠D=90°,AC=AD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);②当∠ABC=∠ABD时,由∠C=∠D=90°,∠ABC=∠ABD且AB=AB,可得Rt△ABC≌Rt△ABD(AAS);③当BC=BD时,由∠C=∠D=90°,BC=BD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);故选:D.【点评】本题主要考查了直角三角形全等的判定,直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时直角三角形又是特殊的三角形,作为“HL”公理就是直角三角形独有的判定方法.【变式1-3】(2021春•金水区校级月考)下列说法正确的有()①两个锐角分别相等的的两个直角三角形全等;②一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等;③两边分别相等的两个直角三角形全等;④一个锐角和一条边分别相等的两个直角三角形全等.A.1B.2C.3D.4【分析】根据直角三角形全等的判定方法逐条判定即可得到结论,【解答】解:①两个锐角分别相等的的两个直角三角形不一定全等,故该说法错误;②如图,已知:∠B=∠E=90°,BC=EF,AM=BM,DN=EN,CM=FN,求证:△ABC≌△DEF,证明:∵∠B=∠E=90°,BC=EF,CM=FN,∴Rt△BCM≌Rt△EFN(HL),∴BM=EN∵AM=BM,DN=EN,∴AB=DE,∴Rt△ABC≌Rt△EFN(SAS),故一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等的说法正确;③两对应边分别相等的两个直角三角形全等,如果是一个直角三角形的两条直角边和另一个直角三角形的一条直角边和一条斜边分别相等,这两个直角三角形不全等,故该说法错误;④一个锐角和一条边分别对应相等的两个直角三角形不一定全等,如果一个直角三角形的一条直角边和另一个直角三角形的一条斜边相等,这两个直角三角形不全等,故该说法错误;故选:A.【点评】本题主要考查了直角三角形全等的判定,熟练掌握全等三角形判定方法是解决问题的关键.【题型2 直角三角形全等的判定与性质(求角的度数)】【例2】(2020秋•昌平区期末)如图,Rt△ABC中,∠ACB=90°,∠B=50°,D,F分别是BC,AC上的点,DE⊥AB,垂足为E,CF=BE,DF=DB,则∠ADE的度数为()A.40°B.50°C.70°D.71°【分析】根据已知条件得出△CDF≌△EDB,从而得出CD=DE,从而得出△ACD≌△AED,从而得出∠DAE=20°,即可得出答案.【解答】解:根据题意:在Rt△CDF和Rt△EDB中,{FC=BEDF=DB,∴Rt△CDF≌Rt△EDB(HL),∴CD=DE,∵在Rt△ACD和Rt△AED中{CD=DEAD=AD,∴Rt△ACD≌Rt△AED(HL),∴∠DAE=20°,∴∠ADE=70°.故选:C.【点评】本题主要考查了全等三角形的判定及全等三角形的性质,难度适中.【变式2-1】(2021春•娄底月考)如图,已知∠C=∠F=90°,AC=DF,AE=DB,BC与EF交于点O.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=51°,求∠BOF的度数.【分析】(1)根据HL证明两个三角形全等;(2)根据三角形全等的性质和三角形外角的性质可得结论.【解答】(1)证明:∵AE=DB,∴AE+EB=DB+EB,即AB=DE,在Rt△ACB和Rt△DFE中,{AC=DFAB=DE,∴Rt△ABC≌Rt△DEF(HL);(2)解:∵∠C=90°,∠A=51°,∴∠ABC=∠C﹣∠A=90°﹣51°=39°,由(1)知Rt△ABC≌Rt△DEF,∴∠ABC=∠DEF.∴∠DEF=39°,∴∠BOF=∠ABC+∠BEF=39°+39°=78°.【点评】本题考查了全等三角形的性质和判定,尤其是掌握直角三角形特殊的全等判定:HL,在判定三角形全等时,关键是选择恰当的判定条件.【变式2-2】(2021春•姑苏区期末)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,∠BAC=45°,求∠ACF的度数.【分析】(1)由AB =CB ,∠ABC =90°,AE =CF ,即可利用HL 证得Rt △ABE ≌Rt △CBF ;(2)由AB =CB ,∠ABC =90°,即可求得∠ACB 的度数,即可得∠BAE 的度数,又由Rt △ABE ≌Rt △CBF ,即可求得∠BCF 的度数,则由∠ACF =∠BCF +∠ACB 即可求得答案.【解答】(1)证明:∵∠ABC =90°,∴∠CBF =∠ABE =90°,在Rt △ABE 和Rt △CBF 中,{AE =CF AB =BC, ∴Rt △ABE ≌Rt △CBF (HL );(2)解:∵∠ABC =90°,∠BAC =45°,∴∠ACB =45°,又∵∠BAE =∠CAB ﹣∠CAE =45°﹣30°=15°,由(1)知:Rt △ABE ≌Rt △CBF ,∴∠BCF =∠BAE =15°,∴∠ACF =∠BCF +∠ACB =45°+15°=60°.【点评】此题考查了直角三角形全等的判定与性质.此题难度不大,解题的关键是注意数形结合思想的应用.【变式2-3】(2020秋•鹿城区校级月考)如图,已知BC =ED ,∠B =∠E =Rt ∠,∠ACD =∠ADC .(1)求证:△ABC ≌△AED ;(2)当∠BAE =140°时,求∠BCD 的度数.【分析】(1)由∠ACD =∠ADC 知AC =AD ,再利用“HL ”即可证明△ABC ≌△AED ;(2)由Rt △ABC ≌Rt △AED 可设∠BAC =∠EAD =x ,∠CAD =y ,根据∠BAE =140°知2x +y =140°,由∠B =90°得∠ACB =90°﹣x 、AC =AD 知∠ACD =∠ADC =90°−12y ,再根据∠BCD =∠ACB +∠ACD 求解可得.【解答】证明:(1)∵∠ACD =∠ADC ,∴AC =AD ,在Rt △ABC 和Rt △AED 中,∵{BC =ED AC =AD, ∴Rt △ABC ≌Rt △AED (HL );(2)∵Rt △ABC ≌Rt △AED ,∴可设∠BAC =∠EAD =x ,∠CAD =y ,∵∠BAE =140°,∴2x +y =140°,∵∠B =90°,∴∠ACB =90°﹣x ,又∵AC =AD ,∴∠ACD =∠ADC =180°−∠CAD 2=90°−12y , 则∠BCD =∠ACB +∠ACD=90°﹣x +90°−12y=180°−12(2x +y )=180°﹣70°=110°.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握直角三角形全等的判定与性质、等腰三角形的性质.【题型3 直角三角形全等的判定与性质(求线段长度)】【例3】(2020秋•西城区校级期中)如图,已知Rt △ABC 中,∠ACB =90°,CA =CB ,D 是AC 上一点,E 在BC 的延长线上,且AE =BD ,BD 的延长线与AE 交于点F .若CD =3,则求CE 的长.【分析】证明△BDC≌△AEC得出:CD=CE.【解答】(1)解:∵∠ACB=90°,∴∠ACE=∠BCD=90°.在Rt△BDC与Rt△AEC中,{BC=ACBD=AE,∴Rt△BDC≌Rt△AEC(HL).∴CD=CE=3;【点评】本题考查了直角三角形全等的判定及性质的运用,解答时证明三角形全等是关键.【变式3-1】(2020秋•承德校级期中)在Rt△ABC中,∠ACB=90°,E是AB上一点,且BE=BC,过E 作DE⊥AB交AC于D,如果AC=5cm,则AD+DE等于()A.3 cm B.4 cm C.5 cm D.6 cm【分析】根据HL证Rt△BED≌Rt△BCD,推出DE=DC,得出AD+DE=AD+DC=AC,代入求出即可.【解答】解:∵DE⊥AB,∴∠DEB=90°=∠C,在Rt△BED和Rt△BCD中{BD=BDBE=BC,∴Rt△BED≌Rt△BCD(HL),∴DE=DC,∴AD+DE=AD+CD=AC=5cm,故选:C.【点评】本题考查了直角三角形全等的性质和判定,注意:全等三角形的对应边相等,判断直角三角形全等的方法有SAS,ASA,AAS,SSS,HL.【变式3-2】(2020秋•平谷区期末)如图,在Rt△ABC中,∠C=90°,D为BC上一点,连接AD,过D 点作DE⊥AB,且DE=DC.若AB=5,AC=3,则EB=.【分析】由“HL”可证Rt△ADE≌Rt△ADC,可得AC=AE=3,即可求BE.【解答】解:在Rt△ADE和Rt△ADC中,{AD=ADDE=DC,∴Rt△ADE≌Rt△ADC(HL),∴AC=AE=3,∴BE=AB﹣AE=2,故答案为2.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.【变式3-3】(2020秋•兰山区期末)在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=时,△ABC和△APQ全等.【分析】分情况讨论:①AP=BC=8cm时,Rt△ABC≌Rt△QP A(HL);②当P运动到与C点重合时,Rt△ABC≌Rt△PQA(HL),此时AP=AC=15cm.【解答】解:①当P运动到AP=BC时,如图1所示:在Rt △ABC 和Rt △QP A 中,{AB =QP BC =PA, ∴Rt △ABC ≌Rt △QP A (HL ),即AP =B =8cm ;②当P 运动到与C 点重合时,如图2所示:在Rt △ABC 和Rt △PQA 中,{AB =PQ AC =PA, ∴Rt △ABC ≌Rt △PQA (HL ),即AP =AC =15cm .综上所述,AP 的长度是8cm 或15cm .故答案为:8cm 或15cm .【点评】本题考查了三角形全等的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键,注意分类讨论,以免漏解.【题型4 直角三角形全等的判定与性质(证垂直)】【例4】(2021春•万柏林区校级月考)如图,AC ∥BD ,∠C =90°,AC =BE ,AB =DE ,求证:DE ⊥AB .【分析】先根据平行线的性质求出∠DBE=∠C=90°,再由HL定理可判定△ACB≌△EBD,由全等三角形的性质解答即可.【解答】证明:设AB与DE相交于点M,∵AC∥BD,∴∠C+∠DBE=180°,∵∠C=90°,∴∠DBE=90°,在Rt△ACB与Rt△EBD中,{AC=BE,AB=DE∴Rt△ACB≌Rt△EBD(HL),∴∠ABC=∠D,∵∠D+∠MEB=90°,∴∠ABC+∠MEB=90°,∴∠EMB=180°﹣∠ABC﹣∠MEB=90°,∴DE⊥AB.【点评】此题考查了全等三角形的判定与性质,根据HL判定Rt△ACB≌Rt△EBD是解题的关键.【变式4-1】(2021•三水区一模)如图,AB=AC,直线l过点A,BM⊥直线l,CN⊥直线l,垂足分别为M、N,且BM=AN.(1)求证△AMB≌△CNA;(2)求证∠BAC=90°.【分析】(1)由HL证明△AMB≌△CNA即可;(2)先由全等三角形的性质得∠BAM=∠ACN,再由∠CAN+∠ACN=90°,得∠CAN+∠BAM=90°,即可得出结论.【解答】证明:(1)∵BM⊥直线l,CN⊥直线l,∴∠AMB=∠CNA=90°,在Rt△AMB和Rt△CNA中,{AB=CABM=AN,∴Rt△AMB≌Rt△CNA(HL);(2)由(1)得:Rt△AMB≌Rt△CNA,∴∠BAM=∠ACN,∵∠CAN+∠ACN=90°,∴∠CAN+∠BAM=90°,∴∠BAC=180°﹣90°=90°.【点评】本题考查的是全等三角形的判定和性质以及直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.【变式4-2】(2020秋•西湖区校级月考)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)试判断CE和DE的关系,并说明理由.【分析】(1)由∠1=∠2,可得DE=CE,根据证明直角三角形全等的“HL”定理,证明即可;(2)由∠1=∠2,可得DE=CE,再根据题意,∠AED+∠ADE=90°,∠BEC+∠BCE=90°,又∠AED =∠BCE,∠ADE=∠BEC,所以,∠AED+∠BEC=90°,即可证得∠DEC=90°,即可得出.【解答】解:(1)结论:Rt△ADE≌Rt△BEC;理由如下:∵∠1=∠2,∴DE=CE,而∠A=∠B=90°,AE=BC∴在Rt△ADE和Rt△BEC中,DE=CE,AE=BC,∴Rt△ADE≌Rt△BEC(HL);(2)结论:DE=CE且DE⊥CE,理由如下:∵∠1=∠2∴DE=CE,∵Rt△ADE≌Rt△BEC,∴∠AED=∠BCE,∠ADE=∠BEC,又∵∠AED+∠ADE=90°,∠BEC+∠BCE=90°,∴2(∠AED+∠BEC)=180°,∴∠AED+∠BEC=90°,∴∠DEC=90°,∴DE⊥CE.【点评】本题主要考查了直角三角形的判定与性质,证明三角形全等时,关键是根据题意选取适当的条件.【变式4-3】(2020秋•城北区校级月考)如图,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并说明你猜想的正确性.【分析】猜想:BF⊥AE,先证明△BDC≌△AEC得出∠CBD=∠CAE,从而得出∠BFE=90°,即BF⊥AE.【解答】解:猜想:BF⊥AE.理由:∵∠ACB=90°,∴∠ACE=∠BCD=90°.∴在Rt△BDC与Rt△AEC中{BC=ACBD=AE,∴Rt△BDC≌Rt△AEC(HL).∴∠CBD=∠CAE.又∴∠CAE+∠E=90°.∴∠EBF+∠E=90°.∴∠BFE=90°,即BF⊥AE.【点评】主要考查全等三角形的判定方法,以及全等三角形的性质.猜想问题一定要认真观察图形,根据图形先猜后证.。
三角形全等的判定方法6种

三角形全等的判定方法6种
1、SSS(Side-Side-Side)(边边边):三边对应相等的三角形是全等三角形。
2、SAS(Side-Angle-Side)(边角边):两边及其夹角对应相等的三角形是全等三角形。
3、ASA(Angle-Side-Angle)(角边角):两角及其夹边对应相等的三角形全等。
4、AAS(Angle-Angle-Side)(角角边):两角及其一角的对边对应相等的三角形全等。
5、RHS(Rightangle-Hypotenuse-Side)(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。
(它的证明是用SSS原理)
下列两种方法不能验证为全等三角形:
1、AAA(Angle-Angle-Angle)(角角角):三角相等,不能证全等,但能证相似三角形。
2、SSA(Side-Side-Angle)(边边角):其中一角相等,且非夹角的两边相等。
八年级数学上学期全等三角形全章复习与巩固(基础)知识讲解——含课后作业与答案

全等三角形全章复习与巩固(基础)责编:杜少波【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质进行证明.【知识网络】【要点梳理】【高清课堂:388614 全等三角形单元复习,知识要点】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASAAAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边 要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等. 一般三角形 直角三角形 判定 边角边(SAS ) 角边角(ASA ) 角角边(AAS ) 边边边(SSS ) 两直角边对应相等 一边一锐角对应相等 斜边、直角边定理(HL ) 性质 对应边相等,对应角相等 (其他对应元素也相等,如对应边上的高相等) 备注 判定三角形全等必须有一组对应边相等2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的性质和判定1、(2015•西城区模拟)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【思路点拨】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.【答案与解析】证明:(1)在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为 EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,,∴△ABE≌△A DG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.【总结升华】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA )∴BD =CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:2、 如图:在四边形ABCD 中,AD ∥CB ,AB ∥CD.求证:∠B =∠ D.【思路点拨】∠B 与∠D 不包含在任何两个三角形中,只有添加辅助线AC ,根据平行线的性质,可构造出全等三角形.【答案与解析】证明:连接AC ,∵AD ∥CB ,AB ∥CD.∴∠1=∠2,∠3=∠4在△ABC 与△CDA 中1243AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDA (ASA )∴∠B =∠D【总结升华】添加公共边作为辅助线的时候不能割裂所给的条件,如果证∠A =∠C ,则连接对角线BD.举一反三:【变式】在ΔABC 中,AB =AC.求证:∠B =∠ C【答案】证明:过点A 作AD ⊥BC在Rt △ABD 与Rt △ACD 中AB AC AD AD=⎧⎨=⎩∴Rt △ABD ≌Rt △ACD (HL )∴∠B =∠C.(2).倍长中线法:【高清课堂:388614 全等三角形单元复习,例8】3、己知:在ΔABC 中,AD 为中线.求证:AD <()12AB AC +【答案与解析】证明:延长AD 至E ,使DE =AD ,∵AD 为中线,∴BD =CD在△ADC 与△EDB 中DC DB ADC BDE AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS )∴AC =BE在△ABE 中,AB +BE >AE ,即AB +AC >2AD∴AD <()12AB AC +. 【总结升华】用倍长中线法可将线段AC ,2AD ,AB 转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D 旋转180°.举一反三:【变式】若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )A.1 <x< 6B.5 <x< 7C.2 <x< 12D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x<7+5,所以选A选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:4、(2016秋•诸暨市期中)如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.【思路点拨】过点P作PE⊥BA于E,根据角平分线上的点到角的两边距离相等可得PE=PF,然后利用HL证明Rt△PEA与Rt△PFC全等,根据全等三角形对应角相等可得∠PAE=∠PCB,再根据平角的定义解答.【答案与解析】证明:如图,过点P作PE⊥BA于E,∵∠1=∠2,PF⊥BC于F,∴PE=PF,∠PEA=∠PFB=90°,在Rt△PEA与Rt△PFC中,∴Rt△PEA≌Rt△PFC(HL),∴∠PAE=∠PCB,∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.举一反三:【变式】(2015•开县二模)如图,已知,∠BAC=90°,AB=AC,BD是∠ABC的平分线,且CE⊥BD 交BD延长线于点E.求证:BD=2CE.【答案】解:如图2,延长CE、BA相交于点F,∵∠EBF+∠F=90°,∠ACF+∠F=90°,∴∠EBF=∠ACF,在△ABD和△ACF中∴△ABD≌△ACF(ASA),∴BD=CF,在△BCE和△BFE中,∴△BCE≌△BFE(ASA),∴CE=EF,∴BD=2CE.(4).利用截长(或补短)法构造全等三角形:5、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.【思路点拨】因为AB>AC,所以可在AB上截取线段AE=AC,这时BE=AB-AC,如果连接EM,在△BME中,显然有MB-ME<BE.这表明只要证明ME=MC,则结论成立.【答案与解析】证明:∵AB>AC,则在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边, ∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .【总结升华】充分利用角平分线的对称性,截长补短是关键.类型三、全等三角形动态型问题6、如图(1),AB ⊥BD 于点B ,ED ⊥BD 于点D ,点C 是BD 上一点.且BC =DE ,CD =AB .(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置关系还成立吗?(注意字母的变化)【答案与解析】证明:(1)AC ⊥CE .理由如下:在△ABC 和△CDE 中,,90,,BC DE B D AB CD =⎧⎪∠=∠=︒⎨⎪=⎩∴ △ABC ≌△CDE (SAS ).∴ ∠ACB =∠E .又∵ ∠E +∠ECD =90°,∴ ∠ACB +∠ECD =90°.∴ AC ⊥CE .(2)∵ △ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC =DE ,∠ABC =∠EDC =90°,∴ 也一直有△ABC ≌△C DE '(SAS).∴ ∠ACB =∠E .而∠E +∠EC D '=90°,∴ ∠ACB +∠EC D '=90°.故有AC ⊥C E ',即AC 与BE 的位置关系仍成立.【总结升华】变还是不变,就看在运动的过程中,本质条件(本题中的两三角形全等)变还是没变.本质条件变了,结论就会变;本质条件不变,仅仅是图形的位置变了.结论仍然不变.举一反三:【变式】如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?【答案】证明:∵∠BCA =∠ECD ,∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS)∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.【巩固练习】一.选择题1. 如图所示,若△ABE≌△ACF,且AB =5,AE =2,则EC 的长为( )A .2B .3C .5D . 2.52.(2015春•平顶山期末)请仔细观察用直尺和圆规作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是( )A.SAS B.A SA C.A AS D.SSS3. (2016•新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF4. 在下列结论中, 正确的是( )A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C. 一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等5. 如图,点C、D分别在∠AOB的边OA、OB上,若在线段CD上求一点P,使它到OA,OB的距离相等,则P点是().A. 线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点6.在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,BC=EF,AC=DF;(2)AB=DE,∠B=∠E,BC=EF;(3)∠B=∠E,BC=EF,∠C=∠F;(4)AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()组.A.1组 B.2组 C.3组 D.4组7. 如果两个锐角三角形有两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A. 相等B.不相等C.互补D.相等或互补8. △ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( )A.45°B.20°C.、30°D.15°二.填空题9. 已知'''ABC A B C △≌△,若△ABC 的面积为10 2cm ,则'''A B C △的面积为________2cm ,若'''A B C △的周长为16cm ,则△ABC 的周长为________cm .10. △ABC 和△ADC 中,下列三个论断:①AB =AD ;②∠BAC =∠DAC ;③BC =DC .将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:__________.11.(2015春•成都校级期末)如图,在△ABC 中,∠C=90°,∠B=30°,AD 平分∠BAC ,CD=2cm ,则BD 的长是 .12. 下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是_____.13. 如右图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .14.(2016秋•扬中市月考)如图,AC ⊥AB ,AC ⊥CD ,要使得△ABC ≌△CDA .(1)若以“SAS ”为依据,需添加条件 ;(2)若以“HL ”为依据,需添加条件 .15. 如图,△ABC 中,H 是高AD 、BE 的交点,且BH =AC ,则∠ABC =________.16. 在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC ,DE ⊥AB 于E.若AB =20cm ,则△DBE的周长为_________.三.解答题17. 已知:如图,CB=DE,∠B=∠E,∠BAE=∠CAD.求证:∠ACD=∠ADC.18.已知:△ABC中,AC⊥BC,CE⊥AB于E,AF平分∠CAB交CE于F,过F作FD∥BC交AB 于D.求证: AC=AD19. 已知:如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且BD=CD.求证:BE=CF.20.(2015•北京校级模拟)感受理解如图①,△ABC是等边三角形,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,则线段FE与FD之间的数量关系是自主学习事实上,在解决几何线段相等问题中,当条件中遇到角平分线时,经常采用下面构造全等三角形的解决思路如:在图②中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,从而得到线段CA与CB相等学以致用参考上述学到的知识,解答下列问题:如图③,△ABC不是等边三角形,但∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.求证:FE=FD.【答案与解析】一.选择题1. 【答案】B;【解析】根据全等三角形对应边相等,EC=AC-AE=5-2=3;2. 【答案】D;【解析】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.3. 【答案】D;【解析】∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC ≌△DEF;故选D.4. 【答案】D;【解析】A项应为全等三角形对应边上的高相等;B项如果腰不相等不能证明全等;C项直角三角形至少要有一边相等.5. 【答案】D;【解析】角平分线上的点到角两边的距离相等.6. 【答案】C;【解析】(1)(2)(3)能使两个三角形全等.7. 【答案】A;【解析】高线可以看成为直角三角形的一条直角边,进而用HL定理判定全等.8. 【答案】D;【解析】由题意可得∠B=∠DAC=60°,∠C=30°,所以∠DAE=60°-45°=15°.二.填空题9. 【答案】10,16;【解析】全等三角形面积相等,周长相等.10.【答案】①②③;11.【答案】4cm;【解析】解:∵∠C=90°,∠B=30°,∴∠BAC=90°﹣30°=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=×60°=30°,∴AD=2CD=2×2=4cm,又∵∠B=∠ABD=30°,∴AD=BD=4cm .故答案为:4cm.12.【答案】①③【解析】②不正确是因为存在两个全等的三角形与某一个三角形不全等的情况.13.【答案】ab 21; 【解析】由角平分线的性质,D 点到AB 的距离等于CD =b ,所以△ADB 的面积为ab 21. 14.【答案】AB=CD ;AD=BC【解析】(1)若以“SAS ”为依据,需添加条件:AB=CD ;△ABC ≌△CDA (SAS );(2)若以“HL ”为依据,需添加条件:AD=BC ;Rt △ABC ≌Rt △CDA (HL ).15.【答案】45°;【解析】Rt △BDH ≌Rt △ADC ,BD =AD.16.【答案】20cm ;【解析】BC =AC =AE ,△DBE 的周长等于AB.三.解答题17.【解析】证明:∵∠BAE =∠CAD ,∴∠BAE -∠CAE =∠CAD -∠CAE ,即∠BAC =∠EAD .在△ABC 和△AED 中,BAC EAD B E BC ED ∠∠⎧⎪∠∠⎨⎪⎩=,=,=, ∴△ABC ≌△AED . (AAS )∴AC =AD .∴∠ACD =∠ADC .18.【解析】证明:∵AC⊥BC,CE⊥AB∴∠CAB +∠1=∠CAB +∠3=90°,∴∠1=∠3又∵FD∥BC∴∠2=∠3,∴∠1=∠2在△CAF 与△DAF 中CAF=DAF 1=2AF=AF ∠∠⎧⎪∠∠⎨⎪⎩∴△CAF 与△DAF (AAS )∴AC =AD.19.【解析】证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,(已知)∴DE=DF(角平分线上的点到角两边距离相等)又∵BD=CD∴△BDE≌△CDF(HL)∴BE=CF20.【解析】解:感受理解EF=FD.理由如下:∵△ABC是等边三角形,∴∠BAC=∠BCA,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠DAC=∠ECA,∠BAD=∠BCE,∴FA=FC.∴在△EFA和△DFC中,,∴△EFA≌△DFC,∴EF=FD;学以致用:证明:如图1,在AC上截取AG=AE,连接FG.∵AD是∠BAC的平分线,∴∠1=∠2,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,FE=FG,∵∠B=60°,∴∠BAC+∠ACB=180°﹣60°=120°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠2=∠BAC,∠3=∠ACB,∴∠2+∠3=(∠BAC+∠ACB)=×120°=60°,∴∠AFE=∠CFD=∠AFG=60°.∴∠CFG=180°﹣∠AFG﹣∠CFD=180°﹣60°﹣60°=60°,∴∠CFG=∠CFD,∵CE是∠BCA的平分线,∴∠3=∠4,在△CFG和△CFD中,,∴△CFG≌△CFD(ASA),∴FG=FD,∴FE=FD.。
hl定理是证明两个直角三角形全等的定理,

hl定理是证明两个直角三角形全等的定理, 是的,HL定理是证明两个直角三角形全等的定理。
HL定理的内容是:如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。
HL定理的简写是“Hypotenuse-Leg”,其中H是斜边(Hypotenuse),L是直角边(Leg)。
这个定理是证明两个直角三角形全等的一种特殊判定方法,可以通过证明两个三角形的斜边和一条直角边对应相等来证明两个三角形全等。
它可以通过SSS (Side-Side-Side)或者SAS(Side-Angle-Side)等其他全等判定定理进行转换。
在证明两个直角三角形全等时,HL定理可以提供一种简单而有效的方法。
前提是一定要确保所比较的两个三角形都是直角三角形,否则这个定理不适用。
人教版数学八上第8讲直角三角形全等判定(提高)知识讲解

直角三角形全等判定(提高)【学习目标】1.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL”). 2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等.【要点梳理】要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理. 要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”1、判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”. 【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS、ASA、AAS、SSS、HL.举一反三:【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()【答案】(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,2、已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.【思路点拨】从已知条件只能先证出Rt △ADE ≌Rt △CBF ,从结论又需证Rt △CDE ≌Rt △ABF. 【答案与解析】证明:∵DE ⊥AC ,BF ⊥AC ,∴在Rt △ADE 与Rt △CBF 中.AD BC DE BF ⎧⎨⎩=,=∴Rt △ADE ≌Rt △CBF (HL )∴AE =CF ,DE =BF∴AE +EF =CF +EF ,即AF =CE 在Rt △CDE 与Rt △ABF 中,DE BF DEC BFA EC FA =⎧⎪∠=∠⎨⎪=⎩∴Rt △CDE ≌Rt △ABF (SAS ) ∴∠DCE =∠BAF ∴AB ∥DC.【总结升华】我们分析已知能推证出什么,再看要证到这个结论,我们还需要哪些条件,这样从已知和结论向中间推进,从而证出题目.3、如图 AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 相交于F .求证:AF 平分∠BAC .【思路点拨】若能证得AD =AE ,由于∠ADB 、∠AEC 都是直角,可证得Rt △ADF ≌Rt △AEF ,而要证AD =AE ,就应先考虑Rt △ABD 与Rt △AEC ,由题意已知AB =AC ,∠BAC 是公共角,可证得Rt △ABD ≌Rt △ACE . 【答案与解析】证明: 在Rt △ABD 与Rt △ACE 中∴Rt △ABD ≌Rt △ACE(AAS)∴AD =AE(全等三角形对应边相等) 在Rt △ADF 与Rt △AEF 中∴Rt △ADF ≌Rt △AEF(HL)∴∠DAF =∠EAF(全等三角形对应角相等) ∴AF 平分∠BAC(角平分线的定义)【总结升华】条件和结论相互转化,有时需要通过多次三角形全等得出待求的结论. 举一反三:【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形 在Rt △ABD 和Rt △BAC 中AB BABD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL) ∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS) ∴OD =OC .4、如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D. (1)求证:AE =CD ;(2)若AC =12cm ,求BD 的长.【答案与解析】(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°. ∴∠D =∠AEC .又∵∠DBC =∠ECA =90°, 且BC =CA ,∴△DBC ≌△ECA (AAS ). ∴AE =CD .(2)解:由(1)得AE =CD ,AC =BC , ∴△CDB ≌△AEC (HL ) ∴BD =EC =12BC =12AC ,且AC =12. ∴BD =6cm .【总结升华】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件 【巩固练习】 一、选择题1.下列命题中,不正确的是( )A.斜边对应相等的两个等腰直角三角形全等B.两条直角边对应相等的两个直角三角形全等C.有一条边相等的两个等腰直角三角形全等D.有一条直角边和斜边上的中线对应相等的两个直角三角形全等2. 如图,△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( ) A. 3对 B. 4对 C. 5对 D. 6对3. 如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1B.2C.3D.44. 在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A. △ABE≌△ACFB. 点D在∠BAC的平分线上C. △BDF≌△CDED. 点D是BE的中点5.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是().A.相等 B.不相等C.互余或相等 D.互补或相等6. 已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A. 1B. 2C. 5D. 无法确定二、填空题7. 如图,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.8. 如图,已知AB⊥BD于B,ED⊥BD于D,EC⊥AC,AC=EC,若DE=2,AB=4,则DB=______.9. 判定两直角三角形全等的各种条件:(1)一锐角和一边;(2)两边对应相等;(3)两锐角对应相等.其中能得到两个直角三角形全等的条件是_________.10. 如图,△ABC中,AM平分∠CAB,CM=20cm,那么M到AB的距离是_________cm.11. 如图,已知AD是△ABC的高,E为AC上一点,BE交AD于F,且BF=AC,FD=CD.则∠BAD=_______.12. 如图所示的网格中(4×4的正方形),∠1+∠2+∠3+∠4+∠5+∠6=________.三、解答题13.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON (如图),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.14. 求证:有两边和其中一边上的高对应相等的两个锐角三角形全等.15. 如图,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,•若AB=CD,试证明BD平分EF.【答案与解析】一.选择题1. 【答案】C;【解析】C选项如果是一个等腰三角形的腰和另一个等腰三角形的底边对应相等,这是肯定不全等.2. 【答案】D;【解析】Rt△ABD≌Rt△ACE;Rt△BEO≌Rt△CDO;Rt△AEO≌Rt△ADO;Rt△ABF≌Rt△ACF;Rt△BEC≌Rt△CDB;Rt△BFO≌Rt△CFO.3. 【答案】A;【解析】本题可先根据AAS判定△AEH≌△CEB,可得出AE=CE,从而得出CH=CE-EH =4-3=1.4. 【答案】D;【解析】A选项:∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;B选项:∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;C选项:∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确.5. 【答案】D;【解析】如果两个三角形都是锐角三角形或钝角三角形,那么相等;如果一个是锐角三角形一个是钝角三角形,那么互补.6. 【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D 作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可二.填空题7. 【答案】△DFE ,HL ;【解析】EB +BF =FC +BF ,即EF =BC ,斜边相等; 8. 【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6; 9. 【答案】(1)(2) 10.【答案】20;【解析】过M 作MD ⊥AB 于D ,可证△ACM ≌△ADM ,所以DM =CM =20cm . 11.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形. 12.【答案】270°;【解析】∠1+∠6=∠2+∠5=∠3+∠4=90°,所以∠1+∠2+∠3+∠4+∠5+∠6=270°.三.解答题 13.【解析】证明:在Rt △OPM 和Rt △OPN 中, OP OPOM ON=⎧⎨⎩=∴Rt △OPM ≌Rt △OPN.∴∠POM =∠PON ,即OP 平分∠AOB.14.【解析】根据题意,画出图形,写出已知,求证.已知:如图,在△ABC 与△A B C '''中.AB =A B '',BC =B C '',AD ⊥BC 于D ,A D ''⊥B C '' 于D '且 AD =A D ''求证:△ABC ≌△A B C '''证明: 在Rt △ABD 与Rt △A B D '''中∵AB A B AD A D ''=⎧⎨''=⎩∴Rt △ABD ≌ Rt △A B D ''' (HL)∴∠B =∠B '(全等三角形对应角相等)在△ABC与△A B C'''中∵AB A BB B BC B C''=⎧⎪'∠=∠⎨⎪''=⎩∴△ABC≌△'''A B C (SAS)15.【解析】证明∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.∵AE=CF,AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,,, AB CD AF CE=⎧⎨=⎩∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BFG和△DEG中,,,,BFG DEGBGF DGE BF DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFG≌△DEG(AAS),∴FG=EG,即BD平分EF.。
直角三角形-的性质判定(HL)

直角三角形的性质、判定(HL )1、如果一个△ABC 有一个角是直角,则它是直角三角形,记作Rt △ABC 。
直角三角形两锐角互余。
2、直角三角形的判定定理:如果两个直角三角形的斜边和一条直角边对应相等,则这个两个直角三角形全等,简称HL 。
3、直角三角形性质定理(一):在直角三角形中,斜边上的中线等于斜边的一半.4、直角三角形性质定理(二):在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;5、直角三角形性质的逆定理(1):如果一个三角形一边上的中线,等于这条边的一半,则这个三角形式直角三角形.(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°.二、知识运用典型例题例1:已知:△ABC 中,∠ACB=90°,CD 是高, ∠A=30°.求证:BD=14AB.例2:已知:如图, △ABC 中,AB=AC,BD ⊥AC 于D 点,BD=12AC. 则∠A=_____.例3:已知:如图,AD 为△ABC 的高,E 为AC 上的一点,BE 交AD 于F,且有BF=AC,FD=CD, 求证:BE ⊥AC.例4:如图3,AD 是ΔABC 的中线,DE ⊥AB 于E ,DF ⊥AC 于F ,且BE=CF , 求证:(1)AD 是∠BAC 的平分线AD CBAE DC BF 12 A12(2)AB=AC例5:已知如图,AE ⊥ED ,AF ⊥FD ,AF=DE ,EB ⊥AD ,FC ⊥AD ,垂足分别为B 、C.试说明EB=FC.例6:如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF .请你判断AD 是△ABC 的中线还是角平分线?请说明你判断的理由.三、知识运用课堂训练1、△ABC 中各角的度数之比如下,能够说明△ABC 是直角三角形的是( ) A.1:2:3 B.2:3:4 C.3:4:5 D.3:2:52、直角三角形中,两锐角的角平分线相交所成的角的度数为 .3、等腰三角形一腰上的高等于该三角形一条边长度的一半,则其顶角为 .4、如图,CD 为△ABC 的中线,∠ACB=90°,CE ⊥AB 于E, AE=ED,则图中30°的角有 个.ABCD FEABCD E5、如图,AC=BD,AD ⊥AC,BC ⊥BD,求证:AD=BC.6、如图所示,D 是△ABC 的边BC 上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,且BF =CE 。
直角三角形八年级数学下学期重要考点精讲精练 (2)

1.3直角三角形直角三角形角的性质定理与判定定理题型1:直角三角形的性质与求角度1.在一个直角三角形中,一个锐角等于56°,则另一个锐角的度数是()A.26°B.34°C.36°D.44°【变式1-1】在Rt△ABC中,∠C=90°,∠B﹣∠A=10°,则∠A的度数为()【变式1-2】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,∠B=52°,那么∠ACD=.题型2:利用互余证明直角三角形2.已知:如图,BD⊥AC,E为垂足,△ABE的中线FE的延长线交CD于点G,∠1=∠2,求证:△CGE是直角三角形.【变式2-1】如图,在△ABC中,CD⊥AB,垂足为D,∠1=∠B,求证:△ABC为直角三角形.【变式2-2】如图,已知D是线段BC的延长线上一点,∠ACD=∠ACB,∠COD=∠B,求证:△AOE是直角三角形.题型3:利用直角三角形的性质判定垂直3.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.【变式3-1】如图所示,在△ACB中,∠ACB=90°,∠1=∠B.(1)求证:CD⊥AB;(2)如果AC=8,BC=6,AB=10,求CD的长.【变式3-2】如图,在△ABC中,∠ACB=90°,∠ACD=∠B,求证:CD⊥AB.勾股定理① 3、4、5; 5、12、13; 8、15、17; 7、24、25; 9、40、41……②如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.题型4:勾股定理求线段长度4.如图,在△ABC 中,∠ACB =90°,点D 是AB 的中点.连接CD ,若AC =4,BC =3,则CD 的长度是( )A .1.5B .2C .2.5D .5【变式4-1】如图,已知CD 是△ABC 中AB 边上的高,AC =10,CD =8,BC =3AD . 求BC 的长.【变式4-2】如图,在△ABC 中,∠ACB =90°,AC =20,BC =15,CD ⊥AB 于点D . 求:(1)CD 的长; (2)BD 的长.题型5:勾股定理的证明5.如图,已知∠C =∠D =90°,D ,E ,C 三点共线,各边长如图所示,请利用面积法证明勾股定理.a b c 、、t at bt ct 、、【变式5-1】一个直立的火柴盒在桌面上倒下,启发人们发现了勾股定理的一种新的证法.如图,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连接CC′,设AB=a.BC=b,AC=c,请利用四边形BCC′C的面积证明勾股定理.【变式5-2】如图,已知:在△ABC中,∠C=90°,∠A,∠B,∠C的对边为a,b,c,求证:a2+b2=c2.题型6:勾股定理的实际应用6.如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【变式6-1】如图,某人划船横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 25m ,结果他在水中实际划了65m ,求该河流的宽度.【变式6-2】如图,一架长5米的梯子AB ,顶端B 靠在墙上,梯子底端A 到墙的距离AC =3米. (1)求BC 的长;(2)梯子滑动后停在DE 的位置,当AE 为多少时,AE 与BD 相等?勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.注意:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如).(2) 验证与是否具有相等关系.若,则△ABC 是∠C =90°的直角三角形;若,则△ABC 不是直角三角形.注意:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.题型7:利用勾股定理判定直角三角形7.如图是由边长均为1的小正方形组成的网格,点A ,B ,C 都在格点上,∠BAC 是直角吗?请说明理a b c ,,222a b c +=c 2c 22a b +222c a b =+222c a b ≠+222a b c +<222a b c +>c由.【变式7-1】如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.【变式7-2】如果△ABC的三边分别为a、b、c且满足|a﹣3|+|b﹣4|+|c﹣5|=0,判定△ABC的形状.互逆命题与互逆定理如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.注意:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.一个定理是真命题,每一个定理不一定有逆定理,如果这个定理存在着逆定理,则一定是真命题.题型8:互逆命题的改写及判定真假8.下列命题的逆命题是假命题的是()A.到线段两端距离相等的点在线段的垂直平分线上B.角的内部到角的两边距离相等的点在角的平分线上C.如果a=b,那么a2=b2D.在△ABC中,如果BC2+AC2=AB2,那么∠C=90°【变式8-1】下面各命题都成立,那么逆命题成立的是()A.邻补角互补B.全等三角形的面积相等C.如果两个实数相等,那么它们的平方相等D.两组对角分别相等的四边形是平行四边形【变式8-2】命题“三个角都相等的三角形是等边三角形”的逆命题是;该逆命题是命题(填“真”或“假”)."斜边、直角边"("HL")定理1.定理斜边和一条直角边分别相等的两个直角三角形全等(可以简写成"斜边、直角边"或"HL").2.书写格式如图,在Rt△ABC和Rt△A'B'C'中判定两个直角三角形全等常用的思路方法题型9:“斜边,直角边(HL)”判定三角形全等9.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,若利用“HL”证明Rt△ABC≌Rt△DCB,你添加的条件是.(不添加字母和辅助线)【变式9-1】如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.【变式9-2】如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.题型10:化整为零求线段长度10.如图,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.【变式10-1】如图,CD是Rt△ABC斜边上的高.(1)求证:∠ACD=∠B;(2)若AC=3,BC=4,AB=5,则求CD的长.【变式10-2】如图,在Rt△ABC中,∠B=90°,AB=4,BC=3,AD=CD,求CD的长.题型11:割补法求面积11.如图,一块铁皮(图中阴影部分),测得AB=3,BC=4,CD=12,AD=13,∠B=90°.求阴影部分的面积.【变式11-1】如图,在边长均为1的5×5正方形网格中,A,B,C,D均在格点上.(1)求∠ADC的度数.(2)求四边形ABCD的面积.【变式11-2】如图所示,在四边形ABCD中,∠B=90°,AB=2,BC=CD=1,AD=,试求四边形ABCD的面积.题型12:折叠问题12.如图,长方形纸片ABCD中,BC=,DC=1,将它沿对角线BD折叠,使点C落在点F处,则图中阴影部分的面积是多少?【变式12-1】长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.【变式12-2】如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=3cm,AB =8cm,求图中阴影部分的面积.题型13:立体图形中的最短距离13.如图,圆柱的高为10cm,底面半径为4cm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径、问:蚂蚁至少要爬行多少路程才能食到食物?【变式13-1】如图,一个长方体盒子的长、宽、高分别为9cm,7cm,12cm,一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点B,那么它爬行的最短路程是多少?【变式13-2】(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?。