定积分的概念讲课稿

合集下载

定积分的概念 公开课一等奖课件

定积分的概念  公开课一等奖课件

1.5.1 曲边梯形的面积
y
f b
f a
y f x
o
a
图1.5 1
b
x
思考 图1.5 1 中,阴影部分类似于一个梯 形, 但有一 边是曲线 y f x 的一段,我们把由直线 x a, x b a b , y 0和曲线 y f x 所围成的图形称为曲边 梯形,如何计算这个曲边梯形 的面积呢?
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
北京市理科状元杨蕙心
在学习过的函数中 , 许多函数(例如 y x, y x 2, y x等) 的图形都是某个区间 I上 的一条连续不断的曲线 .一般地, 如果函数 不断的曲线 , 那么我们就把它称为区 间 I上 的连续函数. 如不加说明 ,下面研究的都是连续函 数.
y f x 在某个区间I上的图象是一条连续

o
1x o
1x o
1x
o
1x
图1.5 5
图1 .5 5的演变过程, 也可以用几何画板演示 .
4取极限 分别将区间 0,1等分成 4,8,,20, 等份 图1.5 5,可以看到,当n趋向于无穷大 ,即Δx趋向
1 1 1 于0时, Sn 1 1 趋向于 S, 从而有 S 3 n 2n n 1 i 1 1 1 1 1 lim Sn lim f lim 1 1 . n n n 3 n 2n 3 i1 n n
2
1 n 1n2n 1 1 1 1 3 1 1 . n 6 3 n 2n
1 1 1 从而可得 S的近似值 S Sn 1 1 . 3 n 2n

《定积分的定义》课件

《定积分的定义》课件

总结词:定积分具有线性性质、可加性、可减性、可 乘性和可除性。
详细描述:定积分具有一系列的性质,其中最重要的是 线性性质,即两个函数的和或差的积分等于它们各自积 分的和或差;其次,定积分具有可加性和可减性,即函 数在一个区间上的积分等于该区间左端点处的函数值与 区间长度乘积的一半减去右端点处的函数值与区间长度 乘积的一半;此外,定积分还具有可乘性和可除性,即 函数与常数的乘积的积分等于该常数乘以函数的积分, 函数除以常数的积分等于函数乘以该常数的倒数。这些 性质在求解定积分时非常有用。
功的计算
定积分可用于计算力在空间上所做的功,通过将力在空间上进行积 分得到总功。
电磁学中的应用
在电磁学中,电场强度和磁场强度是空间的函数,通过定积分可以 计算电场强度和磁场强度在空间上的分布。
THANKS
感谢观看

微积分基本定理的应用
总结词
微积分基本定理的应用非常广泛,它 为解决各种实际问题提供了重要的数 学工具。
详细描述
通过微积分基本定理,我们可以计算 各种函数的定积分,从而解决诸如面 积、体积、长度、平均值、极值等问 题。此外,它也是微分方程求解的重 要基础。
微积分基本定理的证明
总结词
微积分基本定理的证明涉及到了极限理论、实数性质等深奥的数学知识,是数学严谨性的一个典范。
详细描述
证明微积分基本定理需要利用极限的运算性质和实数完备性等数学知识。其证明过程体现了数学的严 谨性和逻辑性,是数学教学中的重要内容。同时,对于理解微积分的本质和深化数学素养具有重要意 义。
03
定积分的计算方法
直接法
总结词
直接计算定积分的基本方法
详细描述
直接法是计算定积分最基本的方法,它基于定积分的定义,通过将被积函数进行微分和 积分,然后进行计算。这种方法适用于一些简单的定积分计算,但对于一些复杂的定积

定积分的概念 课件

定积分的概念 课件
a
若 f(x)≤0,则在[a,b]上曲边梯形的面积 S=-bf(x)dx;
a
若在[a,c]上,f(x)≤0,在[c,b]上,f(x)≥0,则在[a,
b]上曲边梯形的面积 S=-cf(x)dx+bf(x)dx.
a
c
【正解】 05(x-2)dx=S2-S1=12×32-12×22=52,故502(x -2)dx=5.
∴05(x-2)dx=S1+S2=12×22+12×32=123,
∴052(x-2)dx=2×123=13.
【错因分析】 在应用定积分的几何意义求定积分时,
错解中没有考虑在 x 轴下方的面积取负号,x 轴上方的面积取
正号,导致错误. 【防范措施】 若 f(x)≥0,则在[a,b]上曲边梯形的面
积 S=bf(x)dx;
间[xi-1,xi]上任取一点 ξi(i=1,2,…,n),作和式 f(ξi)Δx

,当 n→∞时,上述和式无限接近某个常
数,这个常数叫做函数 f(x)在区间[a,b]上的 定积分 ,记作
bf(x)dx,
a
即bf(x)dx=

a
其中 a 与 b 分别叫做 积分下限 与 积分上限 ,区间 [a,b]叫做 积分区间 ,函数 f(x)叫做 被积函数 ,x 叫做 积分变量 ,f(x)dx 叫做 被积式 .
定积分的概念
定积分的概念 【问题导思】 分析求曲边梯形的面积和求变速直线运动的路程的步 骤,试找出它们的共同点. 【提示】 两个问题均可通过“分割、近似代替、求和、 取极限”解决.都可以归结为一个特定形式和的极限.
如果函数 f(x)在区间[a,b]上连续,用分点 a=x0<x1<…<xi -1<xi<…<xn=b 将区间[a,b]等分成 n 个小区间,在每个小区

《定积分的概念》ppt课件

《定积分的概念》ppt课件

f
()(ba)
(ab).
性质7的几何意义:
在[a,b]上至少有 ,一使得 [a,以 b]为底边,以曲
y f (x)为曲边的曲A边a梯 B的 b形 面积等于同一
而高f为 ()的矩形的. 面积
假如函数f〔x〕在闭区间[a,b]上连续,我们
称b1aabf (x)dx
如已知某为地函某数时f自〔0x至〕2在4时[a,天b]上气的温平度均曲值线.为f(t),
曲线 f(x)f((x)0 )、x轴及两条直线x=a,x=b所围 成的曲边梯形面积A等于函数f(x)在区间[a,b]上的定积 分,即
Aabf(x)dx.
质点在变力F(s)作用下作直线运动,由起始位置a 移动到b,变力对质点所做之功等于函数F(s)在[a,b] 上的定积分,即
WabF(s)ds
假如函数f〔x〕在区间[a,b]上的定积分存在, 那么称函数f〔x〕在区间[a,b]上可积.
如果在[a,b]上 f(x)0,此时由曲线y=f(x),直线 x=a,x=b及x轴所围成的曲边梯形位于x轴的下方,则
定积分ab f (x)dx在几何上表示上述曲边梯形的面积A的
相反数.
假如在[a,b]上f〔x〕既可取正值又可取负值,那
么定积ab分f (x)dx 在几何上表示介于曲线y=f〔x〕,
直线x=a,x=b及x轴之间的各部分面积的代数和.
[x0,x1],[x1,x2],,[xi1,xi],,[xn1,xn]
各个小区间的长度为
xi xi xi1
在每一个小[x区 i1,x间 i]上任取一i(点 xi 1ixi),
n
作和 (简式 称积 ) 分 f和 (i)x式 i
i1
记max{xi,x2,...,xn},如果对[a区 ,b]间 任一分法 和小区[x间 i1,xi]上点 i任意取法,只 要0时 当,上

定积分定义-说课稿公开课一等奖课件省赛课获奖课件

定积分定义-说课稿公开课一等奖课件省赛课获奖课件
0
i 1
f
(i )xi
实例2 (求变速直线运动的路程)
设某物体作直线运动,已知速度v v(t ) 是 时 间 间 隔[T1 ,T2 ] 上t 的 一 个 连 续 函 数 , 且 v(t ) 0,求物体在这段时间内所经过的路程.
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
bx
解决环节:
1) 分割. 在区间 [a, b] 内插入若干个分点,
a x0 x1 x2 xn1 xn b,
把区间 [a,b] 分成 n y
个小区间 [ xi1, xi ], 长度为 xi xi xi1;
在每个小区间 [ xi1, xi ]
上任取一点

i
o a x1
b xi1i xi xn1
(i 1, 2,, n)

f
(i )xi
i2xi
i2 n3
o
y x2
i 1x
n
n
i1
f
(i )xi
1 n3
n
i2
i1
1 n3
1 n(n 6
1)(2n
1)
1 (1 1)(2 1) 6n n
1 0
x2
dx
lim
0
n
i 1
i
2xi
y
y x2
lim 1 (1 1)(2 1)
n 6 n n
1
lim
n
n i 1
sin
i
n
n
1
sin xdx.
0
i xi
[a ,
b]上的定积分,

【最新】定积分说课word版本 (12页)

【最新】定积分说课word版本 (12页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==定积分说课篇一:定积分的概念说课稿定积分的概念说课稿xxxx各位专家:大家好!我今天说课的题目是定积分的概念。

下面我从课程标准、教材分析、教学目标、教法学法、教学过程、板书设计六方面谈一下自己的理解和认识。

一、说课程标准根据专科学校高等数学课程要求,结合我校学生实际,对定积分的概念这节课提出三点要求:1、让学生认识到学习定积分的重要性。

2、了解定积分的定义和几何意义。

3、使学生建立变量的思想。

二、说教材1、定积分的概念的地位、作用及前后联系定积分定义是从曲边梯形的面积及变速直线运动的路程引出的,抓住其数量关系上的共同本质与特征加以概括,就可以抽象出定积分的概念,进而给出可积的条件及定积分的几何意义.正确理解定积分的概念及几何意义有助于进一步讨论定积分的性质与计算方法。

2、知识结构定积分的经典背景是曲边梯形的面积,而定积分的定义是一种特定的极限模式,它分为任意分割区间、任意在各区间内取点、做和式、取极限四步,简称“四步构造法”。

3、重点、难点、关键重点是定积分的概念,难点是利用定义计算定积分,关键是理解定积分定义的“四步构造法”及定积分的几何意义。

三、说教学目标1、知识目标:理解定积分的定义与几何意义,掌握可积的条件,会用定义与几何意义求简单函数的定积分。

2、能力目标:培养学生的抽象思维能力,探索能力和高等数学语言表达能力。

3、情感、态度目标:培养学生勇于探索新知的科学态度,克服畏难心理。

四、说教法学法定积分的定义既抽象又难懂,为了克服学生学习中的畏难心理,我在教学中设计了由曲边梯形的面积引出定积分的定义的如下探索方案:教法:引导探究法与讲解法1、曲边梯形→ 若干窄曲边梯形→ 若干窄矩形。

2、曲边梯形的面积可近似用若干窄矩形的面积和来近似。

3、取和式的极限,引出定积分的定义。

高中数学 定积分的概念课件PPT课件

高中数学 定积分的概念课件PPT课件
5
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
6
7
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
8
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
9
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
14
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
15
求由连续曲线y=f(x)对应的曲边梯形面积的方法
(1)分割:在区间[0,1]上等间隔地插入n-1个点,将它等分成
n个小区间:a, x1,x1, x2,L xi1, xi ,L ,xn1,b,
每个小区间宽度⊿x b a
yf (x)
24
探究:
根据定积分的几何意义,如何用定积分表示图中阴影部分的
面积?
y
yf (x)
b
b
S S1 S2
a
f (x)dx
g(x)dx
a
b
S1
ya
fg((x))dx
b
S2
g ( x)dx
a
O aa
bx
25
三: 定积分的基本性质
性质1.
b
b
a kf ( x )dx ka f ( x )dx
1.5.3 定积分的概念
1
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
2
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
3
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
4
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.

《定积分课件》课件

《定积分课件》课件

03 定积分的应用
CHAPTER
面积与体积的计算
总结词
定积分在计算平面图形的面积和三维物体的体积方面具有广 泛应用。
详细描述
利用定积分,可以计算出由曲线围成的平面图形的面积,例 如由y=sinx和y=cosx围成的图形面积。此外,定积分还可以 用于计算三维物体的体积,例如球体、圆柱体和旋转体的体 积。
详细描述
在静水压力问题中,压力分布是深度的函数。通过定积分,我们可以计算任意 深度的压力分布,从而了解水下物体的受力情况。
引力场的强度
总结词
通过定积分计算引力场的强度,理解引 力场的分布规律。
VS
详细描述
在引力场中,场强是位置的函数。通过定 积分,我们可以计算任意位置的场强,从 而了解物体在引力场中的运动规律。
符号表示
02
定积分的符号为∫,读作“拉姆达”。
计算方法
03
定积分的计算方法是通过微积分基本定理,将定积分转化为求
原函数在某点的值。
定积分的几何意义
平面区域面积
定积分可以用来计算平面图形的面积,特别是 当面积元素与坐标轴平行时。
体积
定积分还可以用来计算三维物体的体积,例如 旋转体的体积。
曲线下面积
定积分可以用来计算曲线下在某一区间内的面积。
定积分的计算方法
要点一
总结词
定积分的计算方法包括直接法、换元法和分部积分法等。
要点二
详细描述
定积分的计算可以通过多种方法进行。直接法是根据微积 分基本定理,通过求原函数并计算其差值来得到定积分的 结果。换元法是在积分变量进行换元,使得积分简化。分 部积分法则是通过将两个函数的乘积进行积分,将一个积 分转化为另一个积分,从而简化计算。这些方法在计算定 积分时常常需要结合使用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b
a
f
( x)dx
b
a
f
(t )dt
b
a
f
(u)du
(3)定义中区间的分法和xi 的取法是任意的.
(4)当函数 f ( x)在区间[a, b]上的定积分存在时,
称 f ( x)在区间[a, b]上可积.
定理1 当函数 f ( x)在区间[a, b]上连续时,
称 f ( x)在区间[a, b]上可积.
——刘徽
当边数n无限增大时,正n边形面积无限逼近圆的面积
实例1 (求曲边梯形的面积)
y
(1) 分割:
y = f(x)
O a x1 x2
xi-1
xi
xn-1 b x
在区间 [a,b]任意插 n 个分点,
a x0 x1 x2 xi1 xi xn b,
把 [a,b] 分成 n 个小区间: xi1 , xi (i 1,2,n).
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 23
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 33
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 43
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 53
一点xi(xi xi ),作乘积 f (xi )xi (i 1,2,)
n
并作和S f (xi )xi ,
i 1
记 max{ x1 , x2 ,, xn },如果不论对[a, b]
怎样的分法,也不论在小区间[ xi1 , xi ]上
点 xi 怎样的取法,只要当 0时,和 S总趋于
确定的极限 I ,我们称这个极限 I 为函数 f ( x)
——刘徽
当边数n无限增大时,正n边形面积无限逼近圆的面积
三国时期的数学家刘徽的割圆术
“…割之弥细,所失 弥少,割之又割,以 至于不可割,则与圆 周合体而无所失矣…”
——刘徽
当边数n无限增大时,正n边形面积无限逼近圆的面积
三国时期的数学家刘徽的割圆术
“…割之弥细,所失 弥少,割之又割,以 至于不可割,则与圆 周合体而无所失矣…”
某一点处的函数值
n
n
(3)求和: A= Ai f (ξi )Δxi
iБайду номын сангаас=1
i =1
y y = f(x) ff((xxf11f()()fx(x1x2)2)f)(x2)
f(xi) f(xi) f(xi)xi
O axx1x1x21x2 x2
(4)取极限
λ = m1iaxn {Δxi },
xxxi ii-1 xi xi
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 63
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 73
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 83
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 93
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 143
y
f(x2) f(x1)
f(xi) f(xi)xi
y = f(x)
O a x1x1 x2 x2
xi-1 xi xi
xn-1 b x
(2)近似: ξi [ xi-1 , xi ], Ai f (ξi )Δxi
小曲边梯形 面积
每个小区间的长度 xi xi xi1 (i 1,2,n).
y y = f(x)
O a x1 x2
(2)近似
xi-1
xi
xn-1 b x
方案1
方案2
方案3
特例(阿基米德问题):求由抛物线y=x2
与直线x=1,y=0所围成的平面图形的面积.
3
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 13
xn-1 b x
n
A lim 0 i1
f
(xi )xi
实例2 (求变速直线运动的路程)
设物体作直线运动,已知速度 v v(t) 是时间间隔
[T1,T2 ]上的连续函数,且 v(t) 0, 计算在这段时间
内物体所经过的路程。
V(T)
A
B
(1)分割 T1 t0 t1 t2 tn1 tn T2,ti ti ti1
定理2 设函数 f ( x)在区间[a,b]上有界,
且只有有限个间断点,则 f ( x)在 区间[a, b]上可积.
三、定积分的几何意义
T1
i
T2
t0 t1 t2 ti 1 ti tn 1 tn t
(2)近似
si v( i )ti
部分路程值
某时刻的速度
(3)求和 (4)取极限
n
s v( i )ti
i 1
max{t
1 i n
i
},
n
s
lim
0
i 1
v(
i
)ti
实例1 (求曲边梯形的面积)
n
A = lim λ0 i=1
f (ξi )Δxi
实例2 (求变速直线运动的路程)
n
s
lim
0
i 1
v(
i
)ti
二、定积分的概念
定义 设函数 f ( x)在[a, b]上有界,在[a, b]中任意插入
若干个分点 a x x x x x b
0
1
2
n1
n
把区间[a, b]分成n个小区间,各小区间的长度依次为
xi xi xi1,(i 1,2,),在各小区间上任取
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 103
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 113
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 123
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 133
在区间[a, b]上的定积分,记为
积分和
积分上限 b a
f ( x)dx
I
lim 0
n i 1
f (xi )xi
积分下限
被 积 函 数


[a,b] 积分区间




达 式

注意:
(1) 定积分是积分和的极限,是一个确定 的数值.
(2)积分值仅与被积函数及积分区间有关,
而与积分变量的字母无关.
§6.1定积分的概念
这些图形的面积 该怎样计算?
一、问题引入
实例1 (求曲边梯形的面积)
y y = f(x)
曲边梯形由连续曲线
y f ( x)( f ( x) 0)、
x轴与两条直线x a 、
A?
x b所围成.
Oa
bx
三国时期的数学家刘徽的割圆术
“…割之弥细,所失 弥少,割之又割,以 至于不可割,则与圆 周合体而无所失矣…”
相关文档
最新文档