新人教版九年级下册数学《解直角三角形》精品教案
九年级数学下册 28.2 解直角三角形(1)精品教案 人教新课标版

● 教师给出解直角三角形定义:解直角三角形:由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形.● 例题评析例1.在ABC ∆中,C ∠为直角,A B C ∠∠∠、、所对的边分别为a b c 、、,且2b =,6a =,解这个三角形.分析:该题属于已知两边求第三边和两个锐角的情况,有多种解题方法,学生尝试独立解题,之后进行比较,选出最简便的方法,并小结“已知两边如何解直角三角形”.例2.在ABC ∆中,C ∠为直角,A B C ∠∠∠、、所对的边分别为a b c 、、,且 20b =,35B ∠=︒,解这个三角形(精确到0.1). 分析:该题属于已知一条边和一个锐角,求另外两条边和另一个锐角的情况,教师组织学生独立完成,之后比较各种方法中哪些较好,选一种板演.并引导学生小结“已知一边一角,如何解直角三角形”. 注意:计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底. 3. 在ABC ∆中,C ∠为直角,6AC =,BAC ∠的平分线43AD =,解此直角三角形.分析:如图,利用勾股定理可以求出CD 的长,过点D 作AB 边的垂线,解RT △ACD 、RT △ADE 、RT △BDE 即可求出RT △ABC 的边AB 、 BC 的长,∠CAB 、∠ABC 的度数.4.如图,在△ABC 中,AB =5,A C =7,∠B =60°.求BC 的长.分析:作BC 边上的高AD ,构造直角三角形,分别求出BD 、CD 的长即可.三、课堂训练2补充:在Rt △ABC 中,∠C =900,b=17, ∠B=450,求a, c 与∠A方法.教师逐一给出问题,学生独立思考,口述解题思路,学生比较不同方法,选出简便的方法,师生共同完善,教师板书规X 的解题过程.教师组织学生进行练习,学生独立完成,,选学生板书,之后师生评议,达成一致教师组织学生回顾一节课的学习体会,进行自我总结,梳理知识,归纳方法,教师点评并补充、完解直角三角形的方法灵活多样,学生完全可以自己解决,但例题具有示X 作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.板 书 设 计四、课堂小结1.在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2. 解决问题要结合图形。
人教版九年级数学下28.2解直角三角形教学设计

3.介绍解直角三角形的方法和步骤,如已知两边求解第三边、已知一边一角求解另一边等,并结合实际例题进行讲解。
(三)学生小组讨论(500字)
1.教师将学生分成小组,每组分配一个实际问题,如测量树的高度、建筑物的高度等。
2.小组内讨论如何运用解直角三角形的知识解决该问题,包括选择合适的测量方法、计算公式等。
3.针对本节课学习的勾股定理和三角函数,请同学们思考它们在其他学科领域的应用,例如物理、地理等。将你的思考成果以文字或图表形式展示在作业本上。
4.分组合作,共同完成一道综合性的应用题。题目如下:
某小区计划在一块空地上建造一个长方形游泳池,已知游泳池的长为30米,宽为20米,求游泳池对角线的长度。
要求:小组成员共同讨论解题思路,明确各自的职责,将解题过程和最终答案写在作业本上。
6.评价反馈,促进发展:
-采用多元化的评价方式,关注学生在学习过程中的表现,及时发现并解决问题。
-给予学生积极的评价和鼓励,激发学生的学习热情,促进学生的全面发展。
总字数:803字
四、教学内容与过程
(一)导入新课(500字)
1.教师通过展示一张包含直角三角形的图片,如金字塔、房屋屋顶等,引导学生观察并提问:“同学们,你们在生活中见到过这样的图形吗?它们有什么特点?”
4.关注差异,分层教学:
-针对学生的个体差异,设计不同难度的题目,使每个学生都能在课堂上得到锻炼和提高。
-对学习困难的学生给予个别辅导,帮助他们克服学习难点,增强自信心。
5.课堂总结,拓展延伸:
-在课堂结束时,引导学生对所学知识进行总结,形成知识结构。
-拓展延伸,引导学生思考解直角三角形在其他学科领域的应用,提高学生的知识迁移能力。
《解直角三角形》教案

《解直角三角形》教案一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形。
(2)能够将实际问题中的数量关系转化为直角三角形中元素之间的关系,从而解决实际问题。
2、过程与方法目标(1)通过对解直角三角形的学习,培养学生分析问题和解决问题的能力。
(2)在探究解直角三角形的过程中,让学生经历观察、思考、交流等活动,提高学生的数学思维能力和创新能力。
3、情感态度与价值观目标(1)通过解决实际问题,让学生体会数学与生活的密切联系,激发学生学习数学的兴趣。
(2)培养学生的合作意识和团队精神,增强学生的自信心和成就感。
二、教学重难点1、教学重点(1)解直角三角形的概念和方法。
(2)运用解直角三角形的知识解决实际问题。
2、教学难点(1)将实际问题中的数量关系转化为直角三角形中元素之间的关系。
(2)选择合适的锐角三角函数来解决问题。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过展示一些与直角三角形相关的实际问题,如测量建筑物的高度、计算斜坡的长度等,引起学生的兴趣,从而引出本节课的主题——解直角三角形。
2、知识讲解(1)直角三角形的元素直角三角形有六个元素:三条边和三个角。
其中,斜边用 c 表示,两条直角边分别用 a 和 b 表示,两个锐角分别用∠A 和∠B 表示。
(2)直角三角形的边角关系①勾股定理:a²+ b²= c²②锐角三角函数:sin A = a/c,cos A = b/c,tan A = a/b(3)解直角三角形的概念由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。
3、例题讲解例 1:在 Rt△ABC 中,∠C = 90°,a = 3,c = 5,求∠A、∠B 和 b。
解:因为 sin A = a/c = 3/5,所以∠A ≈ 3687°因为∠A +∠B = 90°,所以∠B = 90°∠A ≈ 5313°根据勾股定理,b =√(c² a²) =√(5² 3²) = 4例 2:如图,在△ABC 中,∠B = 30°,∠C = 45°,BC = 10,求AB 和 AC 的长度。
新人教版九年级下册数学《利用方位角、坡度角解直角三角形》精品教案

28.2.2 应用举例第3课时利用方位角、坡度解直角三角形1.知道测量中方位角、坡角、坡度的概念,掌握坡度与坡角的关系;(重点)2.能够应用解直角三角形的知识解决与方位角、坡度有关的问题.(难点)一、情境导入在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.如图,坡面的铅垂高度(h)和水平长度(l)的比叫做坡面的坡度(或坡比),记作i,即i=h l.坡度通常写成1∶m的形式,如i=1∶6.坡面与水平面的夹角叫做坡角,记作α,有i=h l=tanα.显然,坡度越大,坡角α就越大,坡面就越陡.我们这节课就解决这方面的问题.二、合作探究探究点一:利用方位角解直角三角形【类型一】利用方位角求垂直距离如图所示,A、B两城市相距200km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林保护区的范围在以P点为圆心,100km为半径的圆形区域内,请问:计划修筑的这条高速公路会不会穿越保护区(参考数据:3≈1.732,2≈1.414).解析:过点P作PC⊥AB,C是垂足.AC与BC都可以根据三角函数用PC表示出来.根据AB的长得到一个关于PC的方程,求出PC的长.从而可判断出这条高速公路会不会穿越保护区.解:过点P作PC⊥AB,C是垂足.则∠APC=30°,∠BPC=45°,AC=PC·tan30°,BC=PC·tan45°.∵AC+BC=AB,∴PC·tan30°+PC·tan45°=200,即33PC+PC=200,解得PC≈126.8km>100km.答:计划修筑的这条高速公路不会穿越保护区.方法总结:解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】利用方位角求水平距离“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C村村民欲修建一条水泥公路,将C村与区级公路相连.在公路A处测得C村在北偏东60°方向,沿区级公路前进500m,在B处测得C村在北偏东30°方向.为节约资源,要求所修公路长度最短.画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解析:作CD⊥AB于D,在Rt△ACD中,据题意有∠CAD=30°,求得AD.在Rt△CBD 中,据题意有∠CBD=60°,求得BD.又由AD-BD=500,从而解得CD.解:如图,过点C作CD⊥AB,垂足落在AB的延长线上,CD即为所修公路,CD的长度即为公路长度.在Rt△ACD中,据题意有∠CAD=30°,∵tan∠CAD=CDAD,∴AD=CDtan30°=3CD.在Rt△CBD中,据题意有∠CBD=60°,∵tan∠CBD=CDBD,∴BD=CDtan60°=33CD.又∵AD-BD=500,∴3CD-33CD=500,解得CD≈433(m).答:所修公路长度约为433m.方法总结:在解决有关方位角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方位角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.变式训练:见《学练优》本课时练习“课后巩固提升”第4题探究点二:利用坡角、坡度解直角三角形【类型一】利用坡角、坡度解决梯形问题如图,某水库大坝的横截面为梯形ABCD,坝顶宽BC=3米,坝高为2米,背水坡AB的坡度i=1∶1,迎水坡CD的坡角∠ADC为30°.求坝底AD的长度.解析:首先过B、C作BE⊥AD、CF⊥AD,可得四边形BEFC是矩形,又由背水坡AB 的坡度i=1∶1,迎水坡CD的坡角∠ADC为30°,根据坡度的定义,即可求解.解:分别过B、C作BE⊥AD、CF⊥AD,垂足为E、F,可得BE∥CF,又∵BC∥AD,∴BC=EF,BE=CF.由题意,得EF=BC=3,BE=CE=2.∵背水坡AB的坡度i=1∶1,∴∠BAE=45°,∴AE=BEtan45°=2,DF=CFtan30°=23,∴AD=AE+EF+DF=2+3+23=5+23(m).答:坝底AD的长度为(5+23)m.方法总结:解决此类问题一般要构造直角三角形,并借助于解直角三角形的知识求解.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】利用坡角、坡度解决三角形问题如图,某地下车库的入口处有斜坡AB,它的坡度为i=1∶2,斜坡AB的长为65m,斜坡的高度为AH(AH⊥BC),为了让行车更安全,现将斜坡的坡角改造为14°(图中的∠ACB =14°).(1)求车库的高度AH;(2)求点B与点C之间的距离(结果精确到1m,参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25).解析:(1)利用坡度为i=1∶2,得出AH∶BH=1∶2,进而利用勾股定理求出AH的长;(2)利用tan14°=6BC+12,求出BC的长即可.解:(1)由题意可得AH∶BH=1∶2,设AH=x,则BH=2x,故x2+(2x)2=(65)2,解得x=6,故车库的高度AH为6m;(2)∵AH=6m,∴BH=2AH=12m,∴CH=BC+BH=BC+12m.在Rt△AHC中,∠AHC=90°,故tan∠ACB=AHCH,又∵∠ACB=14°,∴tan14°=6BC+12,即0.25=6BC+12,解得BC=12m.答:点B与点C之间的距离是12m.方法总结:本题考查了解直角三角形的应用中坡度、坡角问题,明确坡度等于坡角的正切值是解题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计1.方位角的意义;2.坡度、坡比的意义;3.应用方位角、坡度、坡比解决实际问题.将解直角三角形应用到实际生活中,有利于培养学生的空间想象能力,即要求学生通过对实物的观察或根据文字语言中的某些条件,画出适合他们的图形.这一方面在教学过程应由学生展开,并留给学生思考的时间,给学生充分的自主思考空间和时间,让学生积极主动地学习.学生励志寄语:人生,想要闯出一片广阔的天地,就要你们努力去为自己的目标奋斗、勤奋刻苦、充满自信的过好每一天,雏鹰总会凌空翱翔。
最新人教版九年级数学下册《解直角三角形》教案 (精品教学设计)

《解直角三角形》教案一、素质教育目标(一)知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)德育渗透点渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.三、教学步骤(一)明确目标1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?(1)边角之间关系(2)三边之间关系a2+b2=c2(勾股定理)(3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.(三)重点、难点的学习与目标完成过程1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解:(1)∠A=90°-∠B=90°-42°6′=47°54′,∴a=c.cosB=28.74×0.7420≈213.3.∴b=c·sinB=287.4×0.6704≈192.7.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.在学生独立完成之后,选出最好方法,教师板书.查表得A=78°51′;(2)∠B=90°-78°51′=11°9′注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些.但先后要查两次表,并作一次加法(或减法).4.巩固练习解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习P.35中1、2.练习1针对各种条件,使学生熟练解直角三角形;练习2代入数据,培养学生运算能力.参考答案:1.(1)∠B=90°-∠A,a=c·sinA,b=c·cosA;(3)∠B=90°-∠A,a=b·tgA,说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.(四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.幻灯片出示图表,请学生完成四、布置作业教材P.46习题6.3A组3.五、课后记解直角三角形是前面一段时间学习四个三角函数的综合应用,因此要求学生对前面知识要十分熟悉,学生表现出对知识连贯性不太好。
人教版九年级下册《28.2解直角三角形》教学设计

a.直角三角形,其中两条直角边分别为3cm和4cm。
b.直角三角形,其中一条直角边为5cm,斜边为13cm。
c.直角三角形,其中一个锐角为30°,斜边为10cm。
2.提高作业:
(1)在实际生活中找一个直角三角形的例子,如测量窗户玻璃的尺寸、计算楼梯的倾斜角度等,运用解直角三角形的知识解决问题,并写下解题过程。
3.遇到问题,及时与同学或老师沟通交流,共同解决。
3.合作探究,交流分享:组织学生进行小组合作,共同探究解直角三角形的方法和应用。在合作过程中,引导学生学会倾听、交流、分享,培养团队合作意识。
4.精讲精练,总结规律:在教学过程中,教师要精讲重点、难点,让学生掌握解题方法。同时,设计针对性的练习题,让学生在练习中总结解题规律,提高解题效率。
5.适时反馈,调整教学:在教学过程中,教师要关注学生的反馈,了解他们在学习中的困惑和问题。根据学生的反馈,及时调整教学策略,确保教学效果。
1.如何运用勾股定理、正弦、余弦和正切解决直角三角形问题?
2.这四种方法在实际问题中的应用有何异同?
3.遇到复杂的直角三角形问题,如何选择合适的解题方法?
(四)课堂练习
在小组讨论之后,我会安排课堂练习环节。根据学生的实际情况,设计不同难度的练习题,让学生巩固所学知识。
课堂练习包括以下类型:
1.基础题:主要考察学生对解直角三角形四种方法的掌握。
二、学情分析
九年级下册的学生已经具备了一定的数学基础和逻辑思维能力,对于三角形的知识有初步的了解,特别是在之前的课程中学习了勾股定理,为解直角三角形打下了基础。在此基础上,学生对于解直角三角形的四种方法(勾股定理、正弦、余弦、正切)已有一定的认识,但可能在实际应用中还不够熟练,需要通过本章节的学习来巩固和提升。
人教版九年级数学下册第二十八章28.2解直角三角形优秀教学案例

(二)讲授新知
1.回顾锐角三角函数的知识,引导学生理解解直角三角形的概念。
2.通过PPT展示直角三角形的图像,引导学生观察并提出问题:“如何求解直角三角形的边长和角度?”
3.引导学生尝试解决直角三角形的边长和角度问题,总结解题方法:
此外,本节课还将结合学情,设计富有挑战性的拓展练习,让学生在探索中发现问题、分析问题、解决问题,提升学生的数学素养。通过小组讨论、交流分享,让学生体验合作学习的乐趣,培养团队精神。
二、教学目标
(一)知识与技能
1.理解解直角三角形的概念及意义,掌握解直角三角形的方法和技巧。
2.熟练运用锐角三角函数求解直角三角形中的边长和角度问题。
2.问题导向的教学策略:教师以问题为导向,引导学生主动探究、积极思考。通过提出具有启发性的问题,如“如何利用锐角三角函数求解直角三角形的边长?”“在实际问题中,如何运用解直角三角形的方法?”等,激发学生的求知欲,培养学生的思维能力。
3.小组合作的学习方式:本节课设计小组合作活动,让学生在讨论、交流中共同解决问题。通过分组完成一道关于直角三角形的实际问题,要求学生合作探讨、共享成果,培养了学生的团队合作精神和沟通能力。
3.设计富有挑战性的拓展练习,激发学生的创新思维,培养学生的探究精神。
4.采用小组讨论、交流分享的形式,培养学生团队合作意识,提高沟通与协作能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的内在动机。
2.培养学生勇于挑战、不怕困难的意志品质,增强学生面对问题的自信心。
3.引导学生感受数学与生活的紧密联系,提高学生运用数学知识解决实际问题的能力。
人教版数学九年级下册28.2《解直角三角形(2)》教案

人教版数学九年级下册28.2《解直角三角形(2)》教案一. 教材分析人教版数学九年级下册28.2《解直角三角形(2)》这一节主要让学生掌握解直角三角形的知识和方法,能灵活运用勾股定理和锐角三角函数解决实际问题。
教材通过实例引入,引导学生探究直角三角形的性质,从而掌握解直角三角形的方法。
二. 学情分析学生在学习本节内容前,已经掌握了直角三角形的定义、性质,以及锐角三角函数的知识。
但解直角三角形的实际应用可能对学生来说较为困难,因此需要通过实例引导学生理解解直角三角形的原理,培养学生的动手操作能力和解决问题的能力。
三. 教学目标1.了解解直角三角形的概念和方法,能熟练运用勾股定理和锐角三角函数解直角三角形。
2.能运用解直角三角形的知识解决实际问题,提高学生的应用能力。
3.培养学生的合作交流能力和解决问题的能力。
四. 教学重难点1.重难点:解直角三角形的方法和应用。
2.难点:如何引导学生将实际问题转化为解直角三角形的问题。
五. 教学方法1.采用问题驱动法,引导学生探究直角三角形的性质,发现解直角三角形的方法。
2.用实例讲解,让学生在实际问题中体会解直角三角形的重要性。
3.利用小组合作交流,培养学生的团队协作能力。
4.用练习巩固所学知识,提高学生的应用能力。
六. 教学准备1.准备相关的实例和练习题,以便引导学生进行探究和练习。
2.准备课件,用于展示解直角三角形的原理和实例。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如:一个房间的长为6米,宽为4米,求房间对角线的长度。
让学生思考如何解决这个问题,引出解直角三角形的需要。
2.呈现(10分钟)呈现直角三角形的定义和性质,引导学生回顾已学的知识。
然后讲解解直角三角形的方法,如:利用勾股定理和锐角三角函数。
通过示例,让学生理解解直角三角形的原理。
3.操练(10分钟)让学生分组进行练习,每组选择一个实例,运用解直角三角形的方法解决问题。
教师巡回指导,解答学生的疑问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28.2.1 解直角三角形
1.理解解直角三角形的意义和条件;(重点)
2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点)
一、情境导入
世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A ,过点B 向垂直中心线引垂线,垂足为点C .在Rt △ABC 中,∠C =90°,BC =5.2m ,AB =54.5m ,求∠A 的度数.
在上述的Rt △ABC 中,你还能求其他未知的边和角吗?
二、合作探究
探究点一:解直角三角形
【类型一】 利用解直角三角形求边或角
已知在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,按下列条件解直角三角形.
(1)若a =36,∠B =30°,求∠A 的度数和边b 、c 的长;
(2)若a =62,b =66,求∠A 、∠B 的度数和边c 的长.
解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.
解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,∵cos B =a c ,
即c =a cos B =363
2
=243,∴b =sin B ·c =12×243=123; (2)在Rt △ABC 中,∵a =62,b =66,∴tan A =a b =33,∴∠A =30°,∴∠B =60°,
∴c =2a
=
12 2.
方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与
两个已知元素的关系式求解.
变式训练:见《学练优》本课时练习“课堂达标训练” 第4题
【类型二】 构造直角三角形解决长度问题
一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,试求CD 的长.
解析:过点B 作BM ⊥FD 于点M ,求出BM 与CM 的长度,然后在△EFD 中可求出∠EDF =60°,利用解直角三角形解答即可.
解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =122,
∴BC =AC =12 2.∵AB ∥CF ,∴BM =sin45°BC =122×22=12,CM =BM =12.在△EFD
中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM tan60°
=43,∴CD =CM -MD =12-4 3.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
变式训练:见《学练优》本课时练习“课后巩固提升” 第4题
【类型三】 运用解直角三角形解决面积问题
如图,在△ABC 中,已知∠C =90°,sin A =37,D 为边AC 上一点,∠BDC =45°,
DC =6.求△ABC 的面积.
解析:首先利用正弦的定义设BC =3k ,AB =7k ,利用BC =CD =3k =6,求得k 值,从而求得AB 的长,然后利用勾股定理求得AC 的长,再进一步求解.
解:∵∠C =90°,∴在Rt △ABC 中,sin A =BC AB =37,设BC =3k ,则AB =7k (k >0),在
Rt △BCD 中,∵∠BCD =90°,∴∠BDC =45°,∴∠CBD =∠BDC =45°,∴BC =CD =
3k =6,∴k =2,∴AB =14.在Rt △ABC 中,AC =AB 2-BC 2=142-62=410,∴S △ABC =12
AC ·BC =12×410×6=1210.所以△ABC 的面积是1210.
方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,列方程解答.
变式训练:见《学练优》本课时练习“课堂达标训练”第7题
探究点二:解直角三角形的综合
【类型一】 解直角三角形与等腰三角形的综合 已知等腰三角形的底边长为2,周长为2+2,求底角的度数.
解析:先求腰长,作底边上的高,利用等腰三角形的性质,求得底角的余弦,即可求得底角的度数.
解:如图,在△ABC 中,AB =AC ,BC =2,∵周长为2+2,∴AB =AC =1.过A 作
AD ⊥BC 于点D ,则BD =22,在Rt △ABD 中,cos ∠ABD =BD AB =22,∴∠ABD =45°,即
等腰三角形的底角为45°.
方法总结:求角的度数时,可考虑利用特殊角的三角函数值.
变式训练:见《学练优》本课时练习“课后巩固提升”第2题
【类型二】 解直角三角形与圆的综合
已知:如图,Rt △AOB 中,∠O =90°,以OA 为半径作⊙O ,BC 切⊙O 于点C ,连接AC 交OB 于点P .
(1)求证:BP =BC ;
(2)若sin ∠P AO =13,且PC =7,求⊙O 的半径.
解析:(1)连接OC ,由切线的性质,可得∠OCB =90°,由OA =OC ,得∠OCA =∠OAC ,再由∠AOB =90°,可得出所要求证的结论;(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 和Rt △ACE 中,根据三角函数和勾股定理,列方程解答.
解:(1)连接OC ,∵BC 是⊙O 的切线,∴∠OCB =90°,∴∠OCA +∠BCA =90°.∵OA =OC ,∴∠OCA =∠OAC ,∴∠OAC +∠BCA =90°,∵∠BOA =90°,∴∠OAC +∠APO
=90°,∵∠APO=∠BPC,∴∠BPC=∠BCA,∴BC=BP;
(2)延长AO交⊙O于点E,连接CE,在Rt△AOP中,∵sin∠P AO=1
3,设OP=x,AP
=3x,∴AO=22x.∵AO=OE,∴OE=22x,∴AE=42x.∵sin∠P AO=1
3,∴在Rt△ACE
中CE
AE=
1
3,∴
AC
AE=
22
3,∴
3x+7
42x
=
22
3,解得x=3,∴AO=22x=62,即⊙O的半径为6 2.方法总结:本题考查了切线的性质、三角函数、勾股定理等知识,解决问题的关键是根
据三角函数的定义结合勾股定理列出方程.
变式训练:见《学练优》本课时练习“课后巩固提升”第9题
三、板书设计
1.解直角三角形的基本类型及其解法;
2.解直角三角形的综合.
本节课的设计,力求体现新课程理念.给学生自主探索的时间和宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神和合作精神,激发学生学习数学的积极性和主动性.
学生励志寄语:
人生,想要闯出一片广阔的天地,就要你们努力去为自己的目标奋斗、勤奋刻苦、充满自信的过好每一天,雏鹰总会凌空翱翔。
只有一个的知识、阅历、素质、修养达到足够的积淀时,オ能真正做到不说张扬之语,不干张扬之事,处于低谷不颓废,過到困难不退缩,一帆风顺不得意,
成绩面前不炫耀,永远保持着踏踏实实,平平常常的生活态度和格调。
以成熟,豁达,自信,睿智处世做事。
就가定会拥有属于自己的一片广阔的天地。