钻井优化布局的数学模型:—1999年全国大学生数学建模竞赛D题解答讨论
钻井优化数学建模

钻井优化数学建模
钻井优化数学建模是指利用数学方法对钻井作业进行优化设计的过程。
钻井作业是指在地下钻探井孔的过程,主要任务是获取地下资源或地质信息。
钻井优化的目标是提高钻探效率、降低成本,并确保操作的安全性。
数学建模在钻井优化中的应用可以从以下几个方面进行:1. 钻头选型优化:数学模型可以通过分析不同钻头的性能指标、井壁情况等因素,优化选择最适合的钻头类型,以充分发挥钻井作业效率。
2. 钻井参数优化:通过建立数学模型,对钻井参数(如转速、钻压、进给速度等)进行优化设计,以最大程度地提高钻探效率,同时确保井壁的稳定性和作业的安全性。
3. 钻井液优化:数学模型可以对钻井液的成分和性能进行优化分析,以提高钻井液的钻井效果和减少对地下水资源的污染。
4. 钻井路径优化:通过数学建模,可以对钻井路径进行优化设计,以确保钻井孔的质量和方向的准确性。
5. 钻井工艺优化:利用数学模型,对钻井过程中的各种工艺参数进行优化设计,以提高钻井作业的效率、降低成本,并确保作业的安全性。
以上只是钻井优化数学建模的一些应用方向,实际应用中还需要根据具体情况进行综合考虑和分析,以达到最优化的钻井效果。
数学建模竞赛钻井问题

模型的建立与求解
钻井分布
那么 Ω e I R 中的点在 Ω 中的等价点组成的集合就是 Aσ . 我们的算法就是一个找正方形 R 的过程, 当然, 我们可以采用对 R 的位置进 行搜索的方法, 但是橡皮筋法可以迅速地找到解, 并且可以亲自动手实验, 显得 饶有趣味. 另一个需要说明的事实是关于 Ω e 1] × [0,1] 中就包含了 0 的选取. 我们知道, [0,
-6-
模型的建立与求解
钻井分布
e 算几次. 我们找到 Ω e 0 中距离 M 0 中最远的点, 把它删去, 得到一个新的集合 Ω 1 , e 如果有若干个点都距离 M 0 最远, 则任意选取其一删去. 此时 L 就收紧为 Ω 1 的凸 e e 包的边界. 我们再求 Ω 1 的质心 M1 , 从 Ω 1 中删去离 M1 最远的一点. 反复上述步
(0.50,0.04 ) 和 (0.50,0.96 ) .
e 考虑 Ω e 中处于 [− 1,1] × [− 1,1] 中的点组成的集合, 记为 Ω e 0 . 我们在 Ω 0 中的每 e 一个点上插上一枚针, 再把一条橡皮筋 L 套在 Ω e 0 上, 那么 L 就收紧为 Ω 0 的凸包
的边界.
e 设Ωe 0 的质心是 M 0 . 在计算质心时, Ω 0 中重合的点应分别计算 , 有几重就
99B0108
Mathematical Modeling
for year
’99
数 学 建 模 竞 赛
B
钻井问题
一九九九年 九月廿四日
目录
摘要 第一节 第二节 第三节 第四节 第五节 第六节 附录一 附录二 参考文献 索引 问题描述及符号定义 问题分析 基本假设 模型的建立与求解 模型的评价 问题的进一步讨论和模型的推广 定理证明 源程序清单 1 2 4 5 6 24 28 32 33 38 39
历年全国数学建模试题及解法归纳

历年全国数学建模试题及解法归纳
赛题解法
93A非线性交调的频率设计拟合、规划
93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划
94B锁具装箱问题图论、组合数学
95A飞行管理问题非线性规划、线性规划
95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化
96B节水洗衣机非线性规划
97A零件的参数设计非线性规划
97B截断切割的最优排列随机模拟、图论
98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化
99A自动化车床管理随机优化、计算机模拟
99B钻井布局0-1规划、图论
00A DNA序列分类模式识别、Fisher判别、人工
神经网络
00B钢管订购和运输组合优化、运输问题
01A血管三维重建曲线拟合、曲面重建
赛题解法
01B 公交车调度问题多目标规划
02A车灯线光源的优化非线性规划
02B彩票问题单目标决策
03A SARS的传播微分方程、差分方程
03B 露天矿生产的车辆安排整数规划、运输问题
04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化
05A长江水质的评价和预测预测评价、数据处理
05B DVD在线租赁随机规划、整数规划
06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析
07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图
论、0-1规划
08A 照相机问题非线性方程组、优化
08B 大学学费问题数据收集和处理、统计分
析、回归分析。
数学模型习题参考解答

综合题目参考答案1. 赛程安排(2002年全国大学生数学建模竞赛D 题) (1)用多种方法都能给出一个达到要求的赛程.(2)用多种方法可以证明n 支球队“各队每两场比赛最小相隔场次r 的上界”(如n =5时上界为1)是⎥⎦⎤⎢⎣⎡-23n ,如: 设赛程中某场比赛是i ,j 两队, i 队参加的下一场比赛是i ,k 两队(k ≠j ),要使各队每两场比赛最小相隔场次为r ,则上述两场比赛之间必须有除i ,j ,k 以外的2r 支球队参赛,于是32+≥r n ,注意到r 为整数即得⎥⎦⎤⎢⎣⎡-≤23n r . (3)用构造性的办法可以证明这个上界是可以达到的,即对任意的n 编排出达到该上界的赛程.如对于n =8, n =9可以得到:1A 2A 3A 4A 5A 6A 7A 8A每两场比赛相隔场次数相隔场次总数 1A × 1 5 9 13 17 21 25 3,3,3,3,3,3 18 2A 1 × 20 6 23 11 26 16 4,4,4,3,2,2 19 3A5 20 × 24 10 27 15 2 2,4,4,4,3,2 19 4A 96 24 × 28 24 3 19 2,2,4,4,4,3 19 5A 13 23 10 28 × 4 187 2,2,2,4,4,4 18 6A 17 11 27 14 4 × 8 22 3,2,2,2,4,4 17 7A 21 26 15 3 18 8 × 12 4,3,2,2,2,4 17 8A25 1621972212×4,4,3,2,2,2171A2A3A 4A5A 6A 7A 8A 9A每两场比赛相隔场次数 相隔场 次总数1A × 36 6 31 11 26 16 21 1 4,4,4,4,4,4,4, 28 2A 36 × 2 27 7 22 12 17 32 4,4,4,4,4,4,3 27 3A6 2 × 35 15 30 20 25 10 3,3,4,4,4,4,4 26 4A 31 27 35 × 3 18 8 13 23 4,4,4,4,3,3,3 25 5A 11 7 15 3 × 34 24 29 19 3,3,3,3,4,4,4 24 6A 26 22 30 18 34 × 4 9 14 4,4,3,3,3,3 23 7A 16 12 20 8 24 4 × 33 28 3,3,3,3,3,3,4 22 8A 21 17 25 13 29 9 33 × 5 3,3,3,3,3,3,3, 21 9A13210231914285×3,4,3,4,3,4,324可以看到, n =8时每两场比赛相隔场次数只有2,3,4, n =9时每两场比赛相隔场次数只有3,4,以上结果可以推广,即n 为偶数时每两场比赛相隔场次数只有22-n ,12-n ,2n,n 为奇数时只有23-n ,21-n . (4)衡量赛程优劣的其他指标如平均相隔场次 记第i 队第j 个间隔场次数为ij c ,2,2,1,,,2,1-==n j n i ,则平均相隔场次为∑∑=-=-=n i n j ij c n n r 121)2(1r 是赛程整体意义下的指标,它越大越好.可以计算n =8,n =9的r ,并讨论它是否达到上界.相隔场次的最大偏差 定义||,r c Max f ij j i -=∑-=--=21|)2(|n j ij r n c Max gf 为整个赛程相隔场次的最大偏差,g 为球队之间相隔场次的最大偏差,它们都是越小越好.可以计算n =8,n =9的f ,g ,并讨论它是否达到上界.参考文献工程数学学报第20卷第5期2003 2. 影院座位设计建立满意度函数),(βαf ,可以认为α和β无关, ()()βαβαh g f -=),(,g ,h 取尽量简单的形式,如αα=)(g ;0)(=βh (030≤β),0)(h h =β)30(0>β. (1)可030≤β将作为必要条件,以α最大为最佳座位的标准.在上图中以第1排座位为坐标原点建立坐标轴x ,可以得到⎪⎭⎫⎝⎛+----⎪⎭⎫ ⎝⎛+--=⎪⎭⎫⎝⎛+--=d x x h c H d x x c H d x x c H θθαθβtan arctan tan arctan ,tan arctan β是x 的减函数.可得x ≈1.7m,即第3(或4)排处030=β.又通过计算或分析可知α也是x 的减函数,所以第3(或4)排处是最佳座位.(2)设定一个座位间隔l (如0.5m), x 从0(或030≤β处)到d D -按l 离散,对于)20~0(00θ计算α的平均值,得020=θ时其值最大.(3)可设地板线是x 的二次曲线2bx ax +,寻求a ,b 使α的平均值最大. 实际上,还应考虑前排不应挡住后排的视线.3.节水洗衣机(1996年全国大学生数学建模竞赛B 题)该问题不要求对洗衣机的微观机制(物理、化学方面)深入研究,只需要从宏观层次去把握.宏观上洗衣的基本原理是用洗涤剂通过漂洗把吸附在衣物上的污物溶于水中,再脱去污水带走污物;洗衣的过程是通过“加水——漂洗——脱水”程序的反复运行,使残留在衣物的污物越来越少,直到满意的程度;洗涤剂也是不希望留在衣物上的东西,可将“污物”定义为衣物上原有污物与洗涤剂的总和.假设每轮漂洗后污物均匀地溶于水中;每轮脱水后衣物含水量为常数c .0x ~初始污水量,~k u 第k 轮加水量,k x ~第k 轮脱水量),,2,1( =k .设每轮脱水前后污物在水中的浓度不变.于是cx c u x c xc u x c x u x n n n =+=+=--11221110,,, , 得到)()(210c u c u u c x x n n n ++=. 在最终污物量与初始污物量之比0/x x n 小于给定的清洁度条件下,求各轮加水量k u ),,1(n k =,使总用水量最小,即∑=nk k u u Min k 1()ε<++)(..21c u c u u c t s n n等价于)()(21c u c u u Min n u k +++++α=++)()(..21c u c u u t s na 为常数可得c u c u u n +==+= 21,即第n ~2轮加水量u u k =(常数),第1轮加水量c u u +=1.令cx u =,问题简化为nx Min u n ,ε<⎪⎭⎫ ⎝⎛+nx t s 11.. 其解为0→x ,即0→u ,而∞→n .这与实际上是不合理的.应该加上对u 的限制:21v u v ≤≤.则得max min n n n ≤≤,其中 max min n n n ≤≤,1)/1ln(2min +⎥⎦⎤⎢⎣⎡+=c v n α这样,n为有限的几个数,可一一比较,具体数据计算从略.参考文献:《数学的实践与认识》第27卷第1期,19974.教师工资调整方案(1995年美国大学生数学建模竞赛B 题)题目对职称提升年限表述得不甚清楚(如未提及助理教授的提升),教龄也未区分是什么职称下工作的年限,所以应该作出一些相应的简化假设.按所给信息,工资仅取决于职称和教龄.建立新方案的一种办法是将职称折合成教龄,如定义x=教龄t+7×k (对于讲师、助理教授、副教授、教授,k 分别取值0,1,2,3),然后寻求工资函数I(x),使之满足题目的要求,如I(0)=27000,I(7)=32000等,以及x 较大时022<dxId .另一种办法是职称、教龄分别对待,工资函数J(k,t)从多种函数中选择,如最简单的线性函数J(k,t)=k k k k b a t b a ,,+(k=0,1,2,3)根据一定条件确定.按照第一种办法得到的新工资方案,以职称和教龄综合指标为x 的教师的工资都应为I(x),而人们的目前工资会低于或高于它.根据题目要求,高工资不应降低,低工资则应逐渐提高,尽快达到理想值I(x).需要做的只是根据每人(目前)工资与(理想值的)差额,制定学校提供的提薪资金的分配方案.它应该是简单、合理、容易被人接受的.按以上原则可以建立不同的模型,应通过检验比较其恶劣.检验可基于题目所给数据,按照提薪计划运行若干年,考察接近理想方案的情况,即用过渡时期的情况检验模型;也可进行随机模拟,按照一定规则随机产生数据(可以包括聘用、提职、解聘、退休的人数和时间等),再按照提薪计划运行,考察接近理想方案的情况.参考文献:叶其孝,《大学生数学建模竞赛辅导教材》(四),湖南教育出版社,2001 5. 一个飞行管理问题(1995年全国大学生数学建模竞赛A 题) 设ij a 为第i 架飞机与第j 架飞机的碰撞角(即)8arcsin(ijij r a =其中ij r 为这两架飞机连线的长度),ij β为第i 架飞机相对于第j 架飞机的相对速度(矢量)与这两架飞机连线(从i 指向j 的矢量)的夹角(以连线矢量为基准,逆时针方向为正,顺时针方向为负),i θ为第架飞机飞行方向角调整量.本问题中的优化目标函数可以有不同的形式:如使所有飞机的最大调整量最小;所有飞机的调整量绝对值之和最小等.以所有飞机的调整量绝对值之和最小,可以得到如下的数学规划模型:∑=61i i Min θs.t. ,)(21ij j i ij a >++θθβ j i j i ≠=,6,,1,30≤i θ , 6,,1 =i为了利用LINGO 求解这个数学规划模型,可以首先采用其他数学软件计算出ij α和ij β.其实,ij α和ij β也是可以直接使用LINGO 来计算的,这相当于解关于ij α和ij β的方程,只是解方程并非LINDO 软件的特长,这里我们作为一个例子,看看如何利用LINGO 计算ij α,可输入如下模型到LINGO 求解ij α:MIDEL : 1]SETS:2] PLANE/1..6/:x0,y0; 3] link(plane,plane):alpha,sin2: 4]ENDSETS5] @FOR(LINK(I,J)|I#NE#J:6] sin2(I,J)=64/((X0(I)-X0(J))*(X0(I)-X0(J))+ 7] (Y0(I)-Y0(J))*(Y0(I)-Y0(J))); 8] );9] @FOR(LINK(I,J)|I#NE#J:10] (@SIN(alpha*3./180.0))^2=SIN2; 11] ); 12]DATA:13] X0=150,85,150,145,130,0; 14] Y0=140,85,155,50,150,0; 15]endata END 计算结果如下:ija j=1 2 3 4 5 6i =1 0.000 0 5.391232.2315.091820.96342.23452 5.391 2 0.0000 4.804 0 6.61355.807 9 3.81593 32.2310 4.8040.000 0 4.364722.83372.12554 5.091 8 6.6135 4.364 7 0.0004.4.537 2.98985 20.9634 5.807922.83374.53770.000 0 2.30986 2.234 5 3.8159 2.125 5 2.98982.309 8 0.000ijβ也可类似地利用LINGO求得,计算结果如下:ijβj=1 2 3 4 5 6i =1 0.000109.263 6-128.250 024.179 8173.065 114.474 92 109.263 60.000 0-88.871 1-42.243 6-92.304 89.000 03 -128.250 0-88.871 10.00012.476 3-58.786 20.310 84 24.179 8-42.243 612.476 30.000 05.969 2-3.525.65 173.065 1-92.304 8-58.786 25.969 20.000 01.914 46 14.479.000.310 -3.5 1.910.04 9 0 0 8 256 4 4 00 0于是,该飞机管理的数学规划模型可如下输入LINGO求解:MODEL:1]SETS2] plane/1..6/:cita:3] link(plane,plane):alpha,beta;4]ENDSETS5] min=@sum(plane:@abs(cita));6] @for(plane(I):7] @bnd(-30,cita(I),30);8] );9] @fpr(link(I,j)|I#NE#J:10] @ABS(beta(I,J)+0.5*cit(I)+0.5*cita(J))11] >alpha(I,J);12] );13]DATA:14] A;[JA=0.000 0 5.391.2…..…2.309 8 0.000 020] ;21] BETA=0.000 010 9.263 6………1.914 4 0.000 027] ;28]enddataEND[注] alpha,beta中数据略去,见上面表格.求解结果如下:OPTIMUM FOUND AT STEP 197SOLUTION OBJECTIVE VALUE= 3.630V ARIABLE V ALUE REDUCED COSTCITA(1) 0.E-06 -1.000 000 CITA(2) -0.E-05 -0.715 033 4CITA(3) 2.557 866 1.000 000 CITA(4) -0.E-04 0.E+00 CITA(5) 0.E-05 -1.000 000 CITA(6) 1.071 594 0.E+00 ………. (以下略)由此可知最优解为:︒︒≈≈07.1,56.263θθ (其它调整角度为0).评注:如果将目标改为最大调整量最小,则可进一步化简得到线形规划模型,也可用LINDO 或LINGO 求解.参考文献:《数学的实践与认识》第26卷第1期,1996 6. 降落伞的选择这个优化问题的决策变量是降落伞数量n 和每一个伞的半径r ,可先将n 和r 看作连续变量,建立优化模型,求得最优解后,再按题目要求作适当调整.目标函数之降落伞的费用,可以根据表1数据拟合伞面费用1C 与伞的半径r 的关系。
全国大学生数学建模竞赛D题解析

汇报人:
CONTENTS
PRT ONE
PRT TWO
竞赛名称:全国大学生数学建模竞 赛
竞赛目的:培养大学生数学建模能 力提高解决实际问题的能力
添加标题
添加标题
竞赛级别:国家级
添加标题
添加标题
竞赛影响:促进大学生数学建模技 术的发展选拔优秀人才
竞赛起始于XXXX年 每年举办一次 参赛对象为全国大学生 竞赛目的是提高大学生数学建模能力和科技创新能力
组建合适的团队分工明确
制定详细的计划合理安排时间
充分准备所需的知识和技能
准备阶段:研究 题目收集资料建 立模型
实施阶段:编程 实现模拟实验优 化模型
总结阶段:撰写 论文整理思路提 炼经验
反思阶段:总结 得失分析原因改 进策略
赛题分析:对竞赛题目进行深入剖析明确解题思路和要点 经验教训:总结竞赛过程中遇到的问题和不足提出改进措施 团队协作:评估团队成员在竞赛中的表现和贡献提出优化建议 未来规划:根据竞赛经验和教训制定个人和团队未来的学习和发展计划
模型验证:通过对比实际数据和模型预测结果对模型的准确性和可靠性进行评估和改进
数据清洗:去除异常值、缺失值和重复值 数据筛选:根据需求筛选有效数据 数据转换:对数据进行必要的转换以适应分析需求 数据可视化:通过图表、图像等形式直观展示数据
确定问题类型和目 标函数
确定算法的输入和 输出
设计算法的流程图 和伪代码
培养团队协作精神 提升大学生数学应用能力
促进学科交叉融合
为国家和社会培养创新型人 才
PRT THREE
题目背景:全国大学生数学建模竞赛D题 题目要求:分析D题所涉及的数学建模方法和技巧 题目内容:对D题进行解析包括问题分析、模型建立、求解过程等 题目难度:对D题的难度进行评估并给出解题建议
数学建模竞赛钻井布局PPT课件

钻井布局的优化方法
方法多样,各有优劣
钻井布局的优化方法主要包括数学建模、仿真模拟和经验判断。数学建模是通过 建立数学模型来描述钻井布局问题,并运用优化算法求解。仿真模拟是通过计算 机模拟来评估不同布局方案的优劣。经验判断则是基于实践经验进行判断。
钻井布局的数学模型
模型准确,应用广泛
钻井布局的数学模型是根据地质、工程和生产等实际情况,建立描述钻井布局问题的数学方程或不等 式。常见的数学模型包括线性规划、整数规划、非线性规划等。这些模型能够准确描述钻井布局问题 ,并且在实际应用中取得了良好的效果。
团队合作
强调了团队合作在数学建模竞赛中的重要 性,并提出了如何提高团队效率和协作能 力的建议。
06 参考文献
参考文献
直接引用
01
在文中直接引用他人的观点、数据或结论,需要使用引号将原
文内容标明,并在文末的参考文献中注明详细出处。
间接引用
02
在文中转述他人的观点、数据或结论,不需要使用引号,但需
要在文末的参考文献中注明详细出处。
05 总结与展望
总结
内容概述
总结了钻井布局问题的核心内容,包括问题的定义、数学模型的建立、 求解方法的选择以及最终结果的呈现。
方法评价
对所采用的数学建模方法和求解技术进行了评估,指出了其优点和局 限性,并提出了改进建议。
经验教训
总结了在解决该问题过程中遇到的主要困难和挑战,以及如何克服这 些困难的策略和技巧。
案例三:实际生产中的钻井布局问题解决
总结词
该案例重点介绍了如何运用数学建模方 法解决实际生产中的钻井布局问题。
VS
详细描述
首先,对实际生产中的钻井布局问题进行 了分析和总结,找出了问题的关键点和难 点。然后,基于数学模型,采用混合整数 规划、遗传算法等算法,对钻井数量、位 置、生产能力等进行了优化设计。最后, 通过实际应用验证了优化方案的有效性和 可行性,提高了钻井效率和安全性。
钻井布局的数学模型

第30卷第1期2000年1月数学的实践与认识M A TH EM A T I CS I N PRA CT I CE AND TH EO R YV o l130 N o11 Jan.2000 p rob lem,the ob jective functi om is bu ilt.W e p resen t the m app ing p rinci p le,to m ap the locati on s of the o riginalw ells in to a un ique un it b lock of the m esh,so as to si m p lify the so lu ti on of the model.U sing the m app ing algo rithm and the ergodic algo rithm,w e so lve the p rob lem under the directi on con strain t.T hen w e generalize the algo rithm s to the so lu ti on w ithou t the directi on con strain t.W e studied the sufficien t conditi on s and give som e criteria of the availab ility on th ree particu lar condi2 ti on s.T he m ethod of b isecti on on perpendicu lar at m idpo in t is p resen ted.钻井布局的数学模型胡海洋, 陈 建, 陆 鑫指导教师: 陈 晖, 姚天行(南京大学,南京 210093)摘要: 本文对钻井布局问题的研究,是从全局搜索入手,逐步深入讨论了各种算法的有效性、适用性和复杂性,得到不同条件下求最多可利用旧井数的较好算法.对问题1,我们给出了全局搜索模型、局部精化模型与图论模型,讨论了各种算法的可行性和复杂度.得到的答案为:最多可使用4口旧井,井号为2,4,5,10.对问题2,我们给出了全局搜索、局部精化和旋转矢量等模型,并对局部精化模型给出了理论证明,答案为:最多可使用6口旧井,井号为1,6,7,8,9,11,此时的网格逆时针旋转44.37度,网格原点坐标为(0.47,0.62).对问题3,给出判断n口井是否均可利用的几个充分条件、必要条件和充要条件及其有效算法.1 模型假设及符号说明(略)2 问题分析与模型准备如果一个已知点P i与某个网络结点X j距离不超过给定误差Ε(0105)单位,则认为P i 处的旧井资料可以利用.因此,在棋盘(欧氏)距离定义下,可以以P i为中心,2Ε单位为边长作一个正方形(半径为Ε的圆).若网络在平移过程中,网络中的某个结点X j落在以P i为中心的正方形(圆)内或边上,可认为X j可利用旧井P i的相应资料.同样可以以X j为中心,2Ε单位为边长作一个正方形(圆).若网络在平移过程中,P i落在以X j为中心的正方形(圆)内或边上,可认为X j可利用旧井P i的相应资料.这两种方法分别对应于网格移动和坐标平移,显然它们是等价的.以下的讨论将不明显区别这两种方法.为了简化讨论,引入以下法则.映射法则:将点i映射至以(a,b),(a+1,b+1)为对角顶点的正方形内的点i′,i′x=i x-[i x]+a; i′y=i y-[i y]+b,其中[x]为x的整数部分.覆盖法则:将所有旧井映射至(-1,-1),(0,0);(-1,0),(0,1);(0,-1),(1,0);(0,0),(1,1)为对角顶点的四个正方形上.以2Ε为边长作小正方形,该正方形形心在以(-015,-015),(015,015)为对角顶点的正方形内移动,则可被正方形所覆盖的映射点为可同时利用的点.这样的正方形称为判决正方形或判决方块.相应的,在第二问中采用一个半径为Ε的圆移动来覆盖映射点,称为判决圆.映射法则和覆盖法则是易于理解也是易于证明的.下面我们讨论时都应用了映射法则和覆盖法则,将点映射后在映射区间内判断旧井是否可利用.3 模型的建立311 对问题一的讨论11目标函数的给出设网络的起点为(a ,b ),地域中某旧井P i 坐标为(P ix ,P iy ),则该旧井可利用的条件是:a +N i -Ε≤P ix ≤a +N i +Ε 且b +N j -Ε≤P iy ≤b +N j +Ε,其中N i 和N j 为非负整数.令函数M (X i ,Y i )=1,a +N i -Ε≤X i ≤a +N i +Ε,b +N j -Ε≤Y i ≤b +N i +Ε0,其它由于问题要求寻找尽量多的可利用旧井点,因此,建立目标函数如下:F (a ,b )=m ax ∑ni =1M(X i ,Y i ).根据以上的分析,可以建立以下模型.21模型一:枚举法在本题中,由于精度的要求为0101,且网格可上下、左右平行移动.因此可按纵、横坐标方向分别平移100次(即1个单位长),用覆盖法对区域中的所有12个旧井点搜索,如覆盖旧井点,则记录覆盖数.最后比较在这100×100次平移中,哪一次覆盖数最大,则该网格位置为最优.该算法的复杂度为O n Θ2,n 为旧井数,Θ为数值的要求精度,在本题中为0101.计算结果如下:网格节点为(0136,0146),最多可利用旧井数为4,分别是2,4,5,10号井.枚举法对精度要求不高时,颇为有用,但当精度要求很高时,往往较为复杂.在模型一的基础上,我们进行了部分改进,提出模型二及其算法.31模型二:部分穷举法显然对12个旧井点中的任一个井点都存在一个网格,使得该井点可被该网格所用.因此可以在P i 已被该网格利用的情况下,再去检查其它旧井点能否被该网格所利用.因此,可将网格中一个结点放在以该点为中心,2Ε为边长的一个正方形区域中,再去测试其它旧井点是否满足条件.对于一个而言,网格某个结点,在以该点为中心,2Ε为边长的正方形区域中有(2Ε Θ)2种放置法.这样即得部分穷举法的复杂度为O (n 2(Ε Θ)2).部分穷举法抓住一个旧井点后考察其它旧井点的情况.因此,它比全部穷举法优点在于:避免了对所有旧井点均不可利用的情形的搜索.但该算法的缺点在于n 不能太大,否则可能得不偿失,使计算量度大为增加.计算结果与模型一相同.161期胡海洋等:钻井布局的数学模型41模型三:部分穷举法在模型二中我们根据至少利用一个点的原则移动判决方块.在本模型中我们在至少有两口井可用情况下,由两口井确定一个判决方块,进而进一步缩减计算量.定理1.3.1 在覆盖点数最多的判决方块中必有一个方块A满足下述两条之一:(1)有两点P i与P j分别在A的左边框和下边框上;(2)有一点P i在A的左下顶点处.该定理的证明从直观上看是显然的,若某判决方块A′覆盖的点数最多,将A′连续向右和向上移动,直至若继续移动将会有点跑出为止,此时A′的位置记为A,则A必适合定理中两条件之一,且A中点数也是最多的.由此定理,我们只需在所有以两点确定左边框和下边框的判决方块和以一点为左下顶点确定的判决方块的覆盖数之间进行比较,最大者即为最多可利用旧井数.该方法对于n个井点,需计算约(C2n+n)n,复杂度为O(n3),是与精度无关的算法.计算结果同上.51模型四:涂层法由映射法则,P i,P j的映射点在正方形[(-Ε,-Ε);(1+Ε,1+Ε)]内为P′i,P′j,则P i,P j 可用的充要条件是d(P′i,P′j)≤2Ε,即分别以P′i,P′j为心,边长2Ε的两个正方形相交.对于n 个点,则这n个点都可用的充要条件是以这n个点为中心的正方形都相叠.以相叠部分为网格点,总可以利用这n个点.本模型即用这样的思路,计算最多有多少正方形相叠,并以相叠部分中的一点以网格结点作网格.算法思想:用矩阵A表示[(-Ε,-Ε);(1+Ε,1+Ε)],将点离散化,以精度Θ取样.则A表示为1+2ΕΘ阶零矩阵.用全1矩阵a表示以映射点P′j为中心,2Ε为边长的小方形.则将这些小矩阵加到大矩阵的相应位置上去,即相当于把小正方形“涂”到大框里.则A中某点上数字之和即表示该点被多少正方形覆盖,也即以该点为起点的网格可利用多少旧井.找出A 中数字最大者,即为最大利用旧井数,该点为最优网格的起始点.该算法复杂度为O n(Ε Θ)2.在精度不太高时计算是迅速的.精度高时,对内存和速度都有较高要求.计算结果同上.61模型五:图论模型.定理1.5.1 作一无向图G[V,E],V为旧井点的集合.若第i与第j号井可同时利用,则在i,j之间加一条边.则可同时利用的井点组成一个完全子图,即团.在棋盘距离下最多可利用旧井数等于最大团的阶数.证明 (略).此定理对欧氏距离不适用.由此定理可得到下述推论.推论 在棋盘距离下,若某些旧井两两可同时利用,则这些旧井可被同时利用.由此提出图论模型如下:按定理11511构造图G,找最大完全子图.首先,找出可同时利用的旧井对.可利用下述定理求得.定理1.5.2 P i,P j均可以在某网络中被利用的充要条件是存在非负整数N1,N2,使得:26数 学 的 实 践 与 认 识30卷d x (P i ,P j )∈[N1-2Ε,N 1+2Ε],d y (P i ,P j )∈[N 2-2Ε,N 2+2Ε],其中d x 与d y 分别表示x 方向与y 方向距离.证明 (略)1下述定理是图论中熟知的定理.定理11513 设G 是n 阶无向图,V 3为G 中极大(最大)团当且仅当V 3为G 的中的极大(最大)独立集,其中G 是G 的补图.因此,问题归结为寻找G 中的最大独立集.但寻找最大独立集为N P 问题,目前尚无好的方法.图论模型优点在于:它在理论上是完备与精确的,不受数值精度与Ε的影响.71五个模型的比较对于五个模型的比较,我们认为模型三、四、五是较优的.模型三与精度无关,复杂度为O n 3.对于大多数情况都是适用的.模型四与精度有关.复杂度为O n ,Ε Θ2,在本题中Ε Θ=5.在精度要求不太高,且点数较多时,可获得比模型三更快的速度.模型五是一个N P 问题,当点数较多时,甚至是不可能求解的.但本模型提供了一个较完美的具有理论意义的图论模型.312 对问题二的讨论11模型一:全局搜索法以某一个角度为步长转动网格,在每一角度下,固定网格方向按问题一的方法检验最多有多少旧井可以利用.再比较所有搜索过的角度下可利用的旧井数,即可得允许转动时可利用最多旧井数.两点间的棋盘距离会因转动而改变,故问题二采用欧氏距离.由于方格的对称性,只需从0°旋转到90°即可.为保证旋转小角度后,点的变动不超过精度Θ=0101,使步长∃Η≤ΘR ,R 为距离最远点到旋转中心的距离.本题中求出∃Η≤1104×10-3.需要将0,Π2分为2000份,因此本题要进行2000次问题一的计算.该模型简单可靠,易于理解,缺点是计算量较大,有很多不必要的搜索.因此有待改进.计算结果为:网格逆时针转动44137°,一个网格点在原坐标系下的坐标为(0147,0162).这时可有6个井被同时使用,井号为1,6,7,8,9,11.21模型二:旋转矢量法首先找两个可以同时利用的旧井,将这两旧井确定一个大致的方向,至多只能再转动一个极小的角度.在这个极小的角度内以步长∃Η转动,搜索最多可利用的旧井数.任意一对可同时利用的旧井都需要进行以上操作.定理21211 两旧井a ,b 可同时利用的充要条件为存在整数m ,n 使d -m 2+n 2≤2Ε,其中d =(a x -b x )2+(a y -b y )2为两旧井的欧氏距离.证明 (略)定理2.2.2 设两旧井a ,b 可同时被利用,a 点到网格原点距离d 1与b 点到结点(m ,n )距离d 2均不超过Ε.则当网格转动角度超过4Εd(其中d 为a 到b 的距离)弧度时,则d 1与d 2361期胡海洋等:钻井布局的数学模型中至少一个将超过Ε.证 因Ε<<d,以原点为旋转中心,将网格旋转∃Η弧度,b点相对结点(m,n)至少移动d∃Η,于是当∃Η>2Εd时,d2>Ε.同样以(m,n)为旋转中心,旋转∃Η2Εd时,d1>Ε.考虑最不利情形,当网格转动∃Η4Εd时,d1与d2中至少一个超过Ε.依据该定理,先将网格旋转与平移到某一位置,使a,b两旧井均被利用,在该位置,网格最多允许再旋转4Εd弧度.我们只需要在该小范围内检查其它井是否可被利用.对每一对井均作上述讨论,即可求得可利用的井数的最大值.31模型三:全局搜索 局部精化本模型的思想是先以较大步长进行全局搜索,找到一个大概范围,再在该范围内精确搜索,直至得到最优结果.将网格旋转某一角度Η(以弧度为单位),再将所有旧井按前文方法映射到原点周围四个单位网格内.现将误差扩大为Ε′=(1+∆)Ε,其中∆>0.作半径分别为Ε与Ε′的同心圆⊙与⊙′,使得⊙′内覆盖的映射点数最大,设为k′.若网格旋转角度有一个小的改变量∃Η,则各旧井在网格中的位置将移动R i∃Η,其中R i为第i号井到旋转中心的距离,此时它们的映射点也将移动R i∃Η距离.设R=m ax{R1,R2,…,R n},且R∃Η≤Ε′-Ε=∆Ε,即∃Η≤∆Ε R,(3)则原来在⊙′外的点不可能移入至⊙中(这是因为这两个同心圆边界的距离∆Ε大于映射点移动距离),于是当(3)成立时,⊙覆盖的映射点数k≤k′.基于上述分析,算法思想为:先取一适当的∆,以Ε′=(1+∆)Ε为允许误差,Θ=2∃Η=2∆Ε R为步长,从0到Π2进行搜索,求得可利用旧井数的上界M.将允许误差仍回到Ε,求得圆⊙覆盖的点数为m.若m=M,则可利用的旧井数就是M,问题已解决.若m< M,则适当减小∆,此时步长Θ也相应减小,进行精细搜索.搜索的范围可以减少很多.这是因为若对某一个角度Ηi,第一次以Ε′为允许误差求得的覆盖点数小于m,则显然旋转角度在区间[Ηi-∃Η,Ηi+∃Η]内时,可利用的点数也小于m,因此在第二次精细搜索时,该区间就不必检查了.从(3)可看出,若能减小R值,则在相同允许误差Ε′=(1+∆)Ε条件下,步长Θ=2∃Η将可增大,我们的做法是选择旋转中心,使得各旧井到旋转中心的最远距离最小,目标函数为f(x,y)=m ax1≤i≤n{(x i-x)2+(y i-y)2},s.t. m in f(x,y),其中(x,y)为新坐标原点(即旋转中心).这是非线性无约束最优规划问题,我们用SA S软件,采用单纯形法计算,结果为x= 5104,y=1170,R=f(x,y)=4155.此时R比以原坐标原点为旋转中心减少一半以上.我们取检查次数N=120,步长为90° 120=0175°.此时∆=ΠR4NΕ≈016,Ε′≈116Ε,得到可利用旧井的上界M=6.46数 学 的 实 践 与 认 识30卷另一方面,取任一步长,以半径为Ε的判决圆搜索可得到可利用旧井数的下界m .显然若上界与下界相等,则可利用的旧井数最多为m .而网格的方向就随之可确定.对于本题,步数取120,判决圆半径为Ε′=(1+∆)・Ε时,可得上界M =6.再取步数为2,判决圆半径为Ε时,步长为45度,得下界m =6.故可知最多可利用旧井数为6,旋转角度即为45度.仅需122次左右问题一的计算,可以较大的削减计算量.算法结果:可利用的旧井数的上限为6.网络逆时针旋转45°,其中一个节点坐标为(0146,0156),可利用旧井序号为(1,6,7,8,9,11).41对问题二各模型的评价模型一是直观和易于理解的,但搜索步数过多,耗时过长,模型二是先确定一个大致方向,再在该方向附近进行搜索.在n 较小时,可较大的削减计算量.但较大时,其确定的大致方向数过多,有可能得不偿失,反而增加计算复杂性.模型三我们认为是较好的,先以较大的步长搜索,再以小步长搜索,可以较大地减少计算量.313 问题三的解答在解决问题一、问题二的基础上,解决问题三.我们仅判断n 个点是否均可利用.11棋盘距离下因坐标旋转会改变两点间的棋盘距离,故只讨论网格不可旋转的情形.以某一口旧井为坐标原点建立平面直角坐标系,再将各旧井映射到以(-015,-015)与(015,015)为对角顶点的正方形内,即若旧井P i (i =1,2,…,n )的坐标为(x i ,y i ),它的映射象P ′i 的坐标(x ′i ,y ′i )满足(1)-015<x ′i ≤0.5,-0.5<y ′i ≤0.5;(2)x i -x ′i 与y i -y ′i 均为整数.显然我们有:定理3.1 记d x =m ax 1≤i <j ≤n {x i -x j },d y =m ax 1≤i <j ≤n{y i -y j },则在棋盘距离下n 口旧井均可利用的充要条件为d x ≤2Ε,d y ≤2Ε.21欧氏距离下网格不可旋转的情况同上述棋盘距离的映射方法,我们有:定理3.2.1 网络不可旋转的条件下,采用欧氏距离,n 口旧井均可利用的充要条件为它们的映射象P ′1,P ′2,…,P ′n 可被一判决圆所覆盖.适当移动判决圆,总可使该判决圆周上至少含两个映射点.据此,算法思想为:以任意两映射点确定两个半径为Ε的圆,检查是否所有的映射点均在判决圆上.最多检查2C 2n =n (n -1)次.算法的时间复杂度为O (n 3).我们还可给出欧氏距离下,不可旋转时n 口旧井均可利用的充分条件与必要条件:定理3.2.2 充分条件为任意两个映射象P ′i 与P ′j 的距离均不超过3Ε.证明 (略)定理3.2.3 必要条件为任意两个映射象P ′i 与P ′j 的距离均不超过2Ε.证明 (略)31欧氏距离下网格可旋转的情况561期胡海洋等:钻井布局的数学模型66数 学 的 实 践 与 认 识30卷选择一口旧井,使各旧井到它的最远距离最小,以这口井为坐标原点和旋转中心.设旋转了某一角度Η后,各井按旋转后的新坐标映射到以(-015,015)与(015,015)为对角顶点的正方形内,它们的映射象为P′i,i=1,2,…,n.则我们有定理3.3.1 存在一个角度Η∈[0,Π 2],使得旋转Η角后,各旧井的映射象P′1,P′2,…,P′n被一判决圆全部覆盖.计算可利用井数在问题二中已有详细讨论,我们建立的模型与算法均可用.例如由定理21211可知,若对两旧井a,b,不存在整数m,n,使得d-m2+n2≤2Ε成立,则a,b中最多只能利用一口井.因此该定理可作为判别n口井均可利用的一个必要条件.对于该问题,我们认为有效的一个充要条件是难找的,只有对实际问题进行求解计算来验证.4 模型结论改进方向及建议(略)参考文献:[1] 姜启源.数学模型1高等教育出版社,北京,1993.[2] 叶其孝1大学生数学建模竞赛辅导教材1湖南教育出版社,长沙,1997.[3] 朱道元1数学建模精品1东南大学出版社,南京,1999.The M athematical m odel of Borehole LayoutHU H ai2yang, CH EN J ian, LU X in(N an jing U n iversity,N an jing 210093)Abstract: In th is thesis,w e begin ou r research of m athem atical model of bo reho le layou t w ithan eye to the w ho le and then analyze step by step the effeciency,flex ib ility and comp lex ity of allk inds of calcu lating m ethods.A t last,w e get a relativity better m ethod to m ake ou t the num berof bo reho les that can be u tilized under differen t circum ferences.To the first questi on,after the demon strati on of an overall research model,p recise local model and a graph izalmodle,and after the discu ssi on of the flex ib ility and comp lex ity of vari ou scalcu lating m ethods,w e com e to the an s w er ram edy,that on ly fou r u sed bo redho les can be u ti2lized at mo st,num bered2,4,5,and10.To the second questi on,w e offer an overall research model,a p recise local model as w ell as a revo lving vecto r model.In particu lar,w e give a theo retical demon strati on of the localmod2 el.T he an s w er w e get is that on ly6u sed bo reho les can be u tilized at mo st,num bered1,6,7,8,9,and11and that the net w ill revo lve44137w ith a coo rdinate(0147,0167).To the th ird questi on,in o rder to judge w hether all of the given bo reho les can be u sed,w e enum erate the amp le requ irem en ts and the compu lso ry requ irem en ts together w ith the app ro ri2 ately effective calcu lating m ethod.。
全国大学生数学建模竞赛赛题综合评析

社会热点
叶其孝、周义仓
开放性强、社会关注性强,突出数据来源的可靠性、结论解释的合理性
数据收集与处理、问题的分析与假设,初等数学方法、一般统计方法、多目标规划、回归分析、综合评价方法、灰色预测
2009年
A题:制动器试验台的控制方法分析
工业问题
方沛辰、刘笑羽
问题具体、专业性强,要花时间读懂、理解清楚问题
出版社的资源配置
孟大志
艾滋病疗法的评价及疗效的预测
边馥萍
易拉罐形状和尺寸的最优设计(C题)
叶其孝
煤矿瓦斯和煤尘的监测与控制(D题)
韩中庚
2007年
中国人口增长预测
唐云
乘公交,看奥运
方沛辰、吴孟达
手机“套餐”优惠几何(C题)
韩中庚
体能测试时间安排(D题)
刘雨林
2008年
数码相机定位
谭永基
高等教育学费标准探讨
叶其孝、周义仓
地面搜索(C题)
肖华勇
NBA赛程的分析与评价(D题)
姜启源
2009年
制动器试验台的控制方法分析
方沛辰、刘笑羽
眼科病床的合理安排
吴孟达、毛紫阳
卫星和飞船的跟踪测控(C题)
周义仓
会议筹备(D题)
王宏健
2010年
储油罐的变位识别与罐容表标定
韩中庚
2010年上海世博会影响力的定量评估
杨力平
输油管的布置(C题)
1
6
8
付鹂
重庆大学
1
6
9
姜启源
清华大学
4
3
10
陈叔平
浙江大学、贵州大学
2
5
11
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钻井优化布局的数学模型:—1999年全国大学生数学建模竞
赛D题解答讨论
何波
【期刊名称】《阿坝师专学报》
【年(卷),期】2000(000)001
【摘要】本文对1999年全国大学生数学建模竞赛D题作出了全面的解答及讨论。
运用图论方法建立模型,对于问题一给出了所有最优解的平移范围;对于问题二利用欧氏距离不变的特点,将点与点间可同时利用关系归入图论模型,再将可同时利用关系作为元素讨论角度,得到最优解,本文对废井利用给出了最优方案,并对出题人提出的几个问题给予了正确解答。
【总页数】3页(P74-76)
【作者】何波
【作者单位】阿坝师专数学系,四川汶川623000
【正文语种】中文
【中图分类】TE21
【相关文献】
1.关于公务员招聘问题的一种数学模型(2004年高教社杯全国大学生数学建模竞赛题) [J], 曹爱华
2.悬链线模型在系泊系统设计中的应用--2016年全国大学生数学建模竞赛A题解
答评述 [J], 周义仓
3.悬链线模型在系泊系统设计中的应用——2016年全国大学生数学建模竞赛A题解答评述 [J], 周义仓
4.钻井布局问题——99年全国大学生数学建模竞赛B题的一种解法 [J], 胡明
5.从1999年全国大学生数学建模竞赛引出的思考 [J], 王建虹
因版权原因,仅展示原文概要,查看原文内容请购买。