辉绿岩与玄武岩的区别

辉绿岩与玄武岩的区别
辉绿岩与玄武岩的区别

辉绿岩与玄武岩的区别

辉绿岩(diabase)

辉绿岩(又名福建青、大湖青、青石),花岗岩的一种,成分相当于辉长岩的基性浅成岩。显晶质,细-中粒,暗灰-灰黑色,常具辉绿结构或次辉绿结构。深灰、灰黑色。主要由辉石和基性长石(与辉长岩成分相当的浅成岩类)组成,含少量橄榄石、黑云母、石英、磷灰石、磁铁矿、钛铁矿等。基性斜长石常蚀变为钠长石、黝帘石、绿帘石和高岭石;辉石常蚀变为绿泥石、角闪石和碳酸盐类矿物。因绿泥石的颜色而整体常呈灰绿色。辉绿岩跟辉长岩的成分差不多,但它形成得比较浅,不像辉长岩那样深。根据含有的不同成分,有多种。如含石英多的叫作石英辉绿岩;含沸石、正长石等的,称碱性辉绿岩等。辉绿岩是上等建筑材料。

辉绿岩为深源玄武质岩浆向地壳浅部侵入结晶形成,常呈岩脉、岩墙、岩床或充填于玄武岩火山口中的岩株状产出。按次要矿物的不同,可分为橄榄辉绿岩、石英辉绿岩等。可做建筑石材或工艺石料,是铸石原料。质地均匀、无裂纹者可做石材原料,细粒者尤佳。如贵州的“罗甸绿”、浙江临海的“孔雀绿”、河南的“五龙青”、“菊花青”均属此类矿床。

玄武岩英文写法为BASALT。

玄武岩是一种基性喷出岩[1],其化学成分与辉长岩相似,SiO2含量变化于45%~52%之间,K2O+Na2O含量较侵入岩略高,CaO、Fe2O3+F eO、MgO含量较侵入岩略低。矿物成份主要由基性长石和辉石组成,次要矿物有橄榄石,角闪石及黑云母等,岩石均为暗色,一般为黑色,有时呈灰绿以及暗紫色等。呈斑状结构。气孔构造和杏仁构造普遍。玄武岩是地球洋壳和月球月海的最主要组成物质,也是地球陆壳和月球月陆的重要组成物质。1546年,G.阿格里科拉首次在地质文献中,用basalt这个词描述德国萨克森的黑色岩石。汉语玄武岩一词,引自日文。日本在兵库县玄武洞发现黑色橄榄玄武岩,故得名。玄武岩体积密度为2.8~3.3g/cm3,致密者压缩强度很大,可高达300MPa,有时更高,存在玻璃质及气孔时则强度有所降低。玄武岩耐久性甚高,节理多,且节理面多成六边形。且具脆性,因而不易采得大块石料,由于气孔和杏仁构造常见,虽玄武岩地表上分布广泛,但可作饰面石材不多。

玄武岩化学成分表

玄武岩的主要成份是二氧化硅、三氧化二铝、氧化铁、氧化钙、氧化镁(还有少量的氧化钾、氧化钠),其中二氧化硅含量最多,约占百分之四十五至五十左右玄武岩的颜色,常见的多为黑色、黑褐或暗绿色。因其质地致密,它的比重比一般花岗岩、石灰岩、沙岩、页岩都重。但也有的玄武岩由于气孔特别多,重量便减轻,甚至在水中可以浮起来。因此,把这种多孔体轻的玄武岩,叫做"浮石"。

成分

玄武岩根据其成分不同可以分为拉斑玄武岩、碱性玄武岩、高铝玄武岩;

结构

按其结构不同可分为气孔状玄武岩、杏仁状玄武岩、玄武玻璃;

充填矿物

按其充填矿物不同可分为橄榄玄武岩、紫苏辉石玄武岩等。

SiO2饱和程度

按SiO2饱和程度和碱性强弱,玄武岩被分为两大类:①拉斑玄武岩(即亚碱性玄武岩),是SiO2过饱和或饱和的岩石。不含橄榄石和霞石,以含斜方辉石、易变辉石为特征。它的SiO2与全碱的关系是(Na2O+K2O)/(SiO2-39)的值小于0.37。②碱性玄武岩,SiO2不饱和,富碱。含橄榄石和副长石(如霞石)、沸石等,后两种矿物有时与碱性长石或钾质中长石、钾质更长石一起,呈填隙物产于基质中;不含斜方辉石、易变辉石,仅含富钙的单斜辉石,即透辉石质普通辉石。(Na2O+K2O)/(SiO2-39)的值大于0.37。

产出的构造环境

玄武岩

按产出的构造环境,玄武岩分4种:①发育于深海洋脊的玄武岩。大致以每年1.5×1010吨速率自洋脊涌出,属拉斑玄武岩类,故又名深海拉斑玄武岩,以低含量的K2O、TiO2、全铁和P2O5、高含量的CaO,区别于其他玄武岩。由于海底扩张,来自洋脊的深海拉斑玄武岩成为洋壳的主要组成。②发育于洋盆内群岛和海山的玄武岩。一般由拉斑玄

武岩和碱性玄武岩复合构成,其成因可能与上地幔热柱活动有关。③发育于岛弧和活动大陆边缘的玄武岩。一般近深海沟一侧和早期发育的是拉斑玄武岩,规模大,分布广,并可能是细碧角斑岩系列的组成部分;向大陆方向,碱含量增高,为碱性玄武岩,但也可以有拉斑玄武岩与之共生,它们形成于岛弧和造山活动最后阶段或稳定以后,通常规模较小而零散。所谓的高铝玄武岩以及共生的安山岩、英安岩、流纹岩等,出现于岛弧和造山带发育的中期。太古代晚期绿岩带的拉斑玄武岩,在成分和产状上可能相当于新生代岛弧的拉斑玄武岩。④发育于大陆内部的玄武岩。它包括由裂隙喷发的大规模泛流拉斑玄武岩和少量的碱性玄武岩,它们受陆壳花岗物质混染。

月球玄武岩

月球玄武岩

月球玄武岩是构成月球的主要岩石之一,由月球外层约200公里深处形成的岩泉,经多次喷发(至少5次)在月表结晶(约1050℃)而成。是月球上最年轻的岩石,形成于距今33~37亿年间,几乎相当于已知的地球最古老岩石。月球玄武岩细粒、多孔,主要由辉石、斜长石和钛铁矿组成。其中辉石含量约50~59%,普通辉石多于易变辉石;斜长石约20~29%,为培长石或钙长石;钛铁矿含量约10~18%。次要矿物有橄榄石、铬铁矿-钛尖晶石、陨硫铁、铁、方英石、金红石、磷灰石、白磷钙矿、铜、云母、镍黄铁矿及若干尚未鉴定出的矿物。月球玄武岩的化学成分变化较大,特别是Al2O3和F eO,分别变化于7~25%和5~25%之间,一般以贫硅,富钛、铁为特点。

编辑本段矿物特性

由于玄武岩浆粘度小,流动性大,喷溢地表易形成大规模熔岩流和熔岩被,但也有呈层状侵入体的,如岩床等。在高原地区常形成面积达数千至数十万平方千米的熔岩台地,有人称其为高原玄武岩,如印度的德干高原玄武岩。在海洋则构成海岭和火山岛。与之有关的矿产有铜、钴、硫黄、冰洲石、宝石等,其本身亦可作耐酸铸石原料。玄武岩中的柱状节理——在玄武岩熔岩流中,垂直冷凝面常发育成规则的六方柱状节理。成因,一般认为,假设在均一基性的熔岩中有均匀分布的冷却中心(呈等边三角形分布,冷却中心距离彼此相等),然后,各向中心收缩,形成六方柱状节理。

编辑本段结构

玄武岩柱状节理海崖

玄武岩结晶程度和晶粒的大小,主要取决于岩浆冷却速度。缓慢冷却(如每天降温几度)可生成几毫米大小、等大的晶体;迅速冷却(如每分钟降温100℃),则可生成细小的针状、板状晶体或非晶质玻璃。因此,在地表条件下,玄武岩通常呈细粒至隐晶质或玻璃质结构,少数为中粒结构。常含橄榄石、辉石和斜长石斑晶,构成斑状结构。斑晶在流动的岩浆中可以聚集,称聚斑结构。这些斑晶在玄武岩浆通过地壳上升的过程中形成(历时几个月至几小时),也可在喷发前巨大的岩浆储源中形成。基质结构变化大,随岩流的厚薄、降温的快慢和挥发组分的多寡,在全晶质至玻璃质之间存在各种过渡类型,但主要是间粒结构、填间结构、间隐结构,较少次辉绿结构和辉绿结构。玄武岩构造与其固结环境有关。陆上形成的玄武岩,常呈绳状构造、块状构造和柱状节理;水下形成的玄武岩,常具枕状构造。而气孔构造、杏仁构造可能出现在各种玄武岩中。在爆发性火山活动中,炽热的玄武质熔岩喷出火口,随其着地前固结程度的差异,形成不同形状的火山弹:纺锤形火山弹、麻花形火山弹、不规则状火山弹,以及牛粪状、饼状、草帽状或蛇形和扁平状溅落熔岩团。

玄武岩,是生产"铸石"的好原料。"铸石"是将玄武岩经过熔化铸造、结晶处理,退火而成的材料。它比合金钢坚硬而耐磨,比铅和橡胶抗腐蚀。玄武岩还在一种铸钢先进工艺中,起到"润滑剂"的作用,可以延长铸膜寿命。同时,玄武岩还可以抽成玻璃丝,比一般玻璃丝布抗碱性强,耐高温性能好。多气孔状的玄武岩(浮石),因为它气孔多,又相当坚硬,因此,将它搀在混凝土里,可以使混凝土重量减轻,但仍很坚固,同时有隔音、隔热等特点,是高层建筑轻质混凝土的良好骨料。浮石还是很好的研磨材料,可用来磨金属、磨石料;在工业上还可做过滤器、干燥器、催化剂等。玄武岩是修理公路、铁路、机场跑道所用石料中最好的材料,具有抗压性强、压碎值低、抗腐蚀性强、沥青粘附性玄武石,玄武石具有耐磨、吃水量少、导电性能差、抗压性强、压碎值低、抗腐蚀性强、沥青粘附性等优点,并被国际认可,是发展铁路运输及公路运输最好的基石。一些艺术家,根据浮石多孔和皱、漏的特点。用来建造园林中的假山,或雕成小巧玲珑的盆景。是由火山喷发出的岩浆冷却后凝固而成的一种致密状或泡沫状结构的岩石。它在地质学的岩石分类中,属于岩浆岩(也叫火成岩)。火山爆发流出的岩浆温度高达摄氏一千二百度,因有一定的粘度,在地势平缓时,岩浆流动很慢,每分钟只流动几米远;遇到陡坡时,速度便大大加快。它在流动过程中,携带着大量水蒸汽和气

泡,冷却后,便形成了各种变异的形状。

玄武岩

是由火山喷发出的岩浆冷却后凝固而成的一种致密状或泡沫状结构的岩石。它在地质学的岩石分类中,属于岩浆岩(也叫火成岩)。岩浆岩分侵入岩和喷出岩两种。其中侵入岩是地下岩浆在内力作用下侵入地壳上部,岩层冷却凝固而形成岩石,它的矿物结晶颗粒较大,代表岩石有花岗岩。喷出岩是地下岩浆在内力作用下,沿地壳薄弱地带喷出地表冷凝而形成岩石,它的矿物结晶颗粒细小,有的有流纹或气孔构造,代表岩石就是玄武岩。火山爆发流出的岩浆温度高达摄氏一千二百度,因有一定的粘度,在地势平缓时,岩浆流动很慢,每分钟只流动几米远;遇到陡坡时,速度便大大加快。它在流动过程中,携带着大量水蒸汽和气泡,冷却后,便形成了各种变异的形状。

产状表现

玄武岩的产状表现为两种喷发方式:

裂隙式喷发

往往构成大面积的泛流玄武岩,裂隙式喷发通道经常表现为与玄武岩成分相仿的岩墙群,但它们往往被后来的岩流掩埋而不易发现。中国西南部大面积分布的峨嵋山玄武岩即是一例,它形成于晚二叠世,分布面积约26万平方公里,一般厚度为600~1500米,西部最厚处达3000米以上,属拉斑玄武岩类,显著富TiO2。在泛流玄武岩中,单个岩流平均厚度约10~100米,流动距离可达100~150公里以上。一个地区的玄武岩往往由几次或几十次喷发形成,喷发间隔时间可长可短,有的长达几十万年。

中心式喷发

构成玄武岩火山锥及其邻近的熔岩流和火山碎屑岩。中国东部,北起黑龙江,南至海南岛的广大地区,是一个以碱性玄武岩为主、兼有拉斑玄武岩的复合岩区,喷发于新生代,以中心式喷发为主,有数百座火山锥,尤以黑龙江-吉林、内蒙古高原、集宁-大同、南京地区、云南腾冲、广东雷琼地区和台湾为丰富。

国内分布

福建福鼎市白琳大嶂山的玄武岩储存量50000万立方米,矿石裸露地表,呈墨黑色、色调凝重高雅,是全国罕见的高级建筑板材,属全国建筑石材基地之一,被国务院建材总局命名“福鼎黑”。镜泊湖北有瀑布状、波浪状的;莺歌岭一带有圆馒头状、宝塔状的;渤海镇和沙兰乡之间,是巨蟒状和熔岩隧道等。这里地质、地貌构造新颖、形态各异,丰富多彩。山东沂水圈里乡,呈波浪状的分布全乡35平方公里,玄武岩储量350亿吨左右,山东平邑县境内也有大量品质优良的玄武岩。安徽明光市玄武岩矿产资源丰富,大量分布于地处明光市城西的城西街道办事处,307、309省道、104国道、蚌宁高速公路、津沪铁路贯穿全境,西徐工业区砂石专用码头可停靠500吨船只直航长江,地理位置优越,交通十分便利。现已探明的远景储量1.68亿吨,探明可开采储量3400万吨,在皖东地区储量最大,年开采加工量在100多万吨,经东南大学、同济大学科学技术检测为国家一级玄武岩。玄武岩是生产铸石的主要原料。铸石具有较高的耐化学腐蚀性和耐酸性能,具有较大的硬度和机械强度,广泛用于化工、冶金、电力、煤炭、建材、纺织和轻工等工业部门。玄武岩是生产玄武岩纸、石灰火山岩无熟料水泥、装饰板材、人造纤维的原料,还是陶瓷工业中的节能原料。

峨眉山玄武岩成因假说:基于天体撞击对冲聚合效应

第29卷第5期一一一一一一一一一一一一一一一V o l.29,N o.5 2015年10月M I N E R A LR E S O U R C E SA N D G E O L O G Y O c t.,2015??????????????????????????????????????????????????? 峨眉山玄武岩成因新思考 天体撞击的对冲聚合效应 刘陈明,杨德敏,马绍春 (云南国土资源职业学院,云南昆明一650093) 摘一要:峨眉山玄武岩是目前被国内二国际唯一认可的大陆溢流玄武岩(C F B),关于其成因有很多解释, 多数认为是 地幔柱 成因,但是也仅仅停留在地球化学的依据上,没有更多有说服力的证据三本文结合 有关实验和数据论证 对冲聚合 理论的事实性和普遍性,认为地球另一端(撞击点)发生猛烈行星撞击, 引起 对冲聚合 效应,造成对冲点巨大冲击能量重新聚合进而引起地震二火山活动和大规模岩浆溢流, 撞击点和对冲点分别处在地球两端通过地心的对应点上,撞击发生时间和大规模岩浆活动几乎同时三 为此,峨眉山玄武岩可能不是 地幔柱 成因,其冲破岩石圈形成溢流可能并非 地幔柱 头部作用造成穹 窿上升二地壳减薄或者裂谷而喷溢,而可能是二叠纪/三叠纪时期地球另一端剧烈小行星撞击而引起 对 冲聚合 效应形成上升通道,热流体因为外界扰动而喷溢三且本文也为探索 地幔柱 动力学机制和探讨 地表热点分布以及和小行星撞击事件二全球生物大灭绝事件之间的联系,起到抛砖引玉的作用三 关键词:峨眉山玄武岩;对冲聚合;地幔柱;热点;大陆溢流玄武岩 中图分类号:P588.14+5一一文献标识码:A一一文章编号:1001-5663(2015)05-0585-06 0一引言 峨眉山玄武岩是我国目前已知的大陆溢流玄武岩(C F B),关于其成因很多学者做了不同的研究工作,有着不同的看法三峨眉山玄武岩是地球深部作用过程在地壳表层的表现,其动力学过程和机制比较复杂,最初由赵亚曾(1929年)提出到现今有关成因争议颇多三20世纪80~90年代主要观点为裂谷成因[1-3],随后随着研究的深入和新学说的兴起,提出其为 地幔柱 成因[4-6]三这些成因观点都基于岩石学二岩石化学上证据,并没有一种非此即彼的依据来说明,而且对其形成过程是否有 地幔柱 作用也有分歧[7]三目前大家所接受的成因观点认为是 地幔柱 ,因为目前主导的板块构造地质学无法对板内大规模溢流玄武岩进行有说服力的解释,这必然让地质学者去探求其真相三但是对于 地幔柱 是否真实存在的依据,目前只是仅仅停留在岩石学二岩石化学层面上,少量的地球物理数据也未能说明问题之所在三为此,按照本文中所引用的 对冲聚合 理论来思考,认为峨 眉山玄武岩大火成岩省的分布是因为处在峨眉山玄 武岩集中分布地区的地球另一端 撞击点 发生行星 撞击事件引起 对冲聚合 效应而造成火山活动引起 大规模岩浆溢流的结果三该理论的提出为地球物理 学家二天体物理学家二矿床学家研究天体上的岩浆活 动(据N A S A报道美国航天宇航局发现土卫6上的强烈岩浆活动)二天体之间的碰撞活动以及地球上的 板内C F B等提出了新的思路三文中对 对冲聚合 理论进行多方面的引证和说明,旨在结合 对冲聚合 理论来探讨峨眉山玄武岩的成因以及机制,也为探讨 地幔柱 动力学机制,为地球上发生在板内的火山岩浆活动和全球热点地区以及小行星撞击事件二生物灭绝事件等之间的关系提供新的研究思路[8]三 1一峨眉山玄武岩的地质背景 峨眉山玄武岩最早由赵亚曾1929年命名,用来泛指分布于扬子地台滇二川二黔三省的二叠系玄武岩组,其位于扬子克拉通西部及西缘,主要由玄武岩和 收稿日期:2014-01-23 作者简介:刘陈明(1984-),男,硕士,研究方向:矿床学二成矿规律与成矿预测三E-m a i l:105578731@q q.c o m 引文格式:刘陈明,杨德敏,马绍春.峨眉山玄武岩成因新思考:天体撞击的对冲聚合效应[J].矿产与地质,2015,29(5):585-590.

玄武岩

玄武岩 要点摘要:玄武岩是一种基性喷出岩[1],其化学成分与辉长岩相似,SiO2含量变化于45%~52%之间, K2O+Na2O含量较侵入岩略高,CaO、Fe2O3+FeO、MgO含量较侵入岩略低。矿物成份主要由基性长石和辉石组成,次要矿物有橄榄石,角闪石本文来源:https://www.360docs.net/doc/a48944111.html,/hyzx/lvsmfj.html 辉绿岩(diabase) 辉绿岩(又名福建青、大湖青、青石),花岗岩的一种,成分相当于辉长岩的基性浅成岩。显晶质,细-中粒,暗灰-灰黑色,常具辉绿结构或次辉绿结构。深灰、灰黑色。主要由辉石和基性长石(与辉长岩成分相当的浅成岩类)组成,含少量橄榄石、黑云母、石英、磷灰石、磁铁矿、钛铁矿等。基性斜长石常蚀变为钠长石、黝帘石、绿帘石和高岭石;辉石常蚀变为绿泥石、角闪石和碳酸盐类矿物。因绿泥石的颜色而整体常呈灰绿色。 辉绿岩跟辉长岩的成分差不多,但它形成得比较浅,不像辉长岩那样深。根据含有的不同成分,有多种。如含石英多的叫作石英辉绿岩;含沸石、正长石等的,称碱性辉绿岩等。辉绿岩是上等建筑材料。 辉绿岩为深源玄武质岩浆向地壳浅部侵入结晶形成,常呈岩脉、岩墙、岩床或充填于玄武岩火山口中的岩株状产出。按次要矿物的不同,可分为橄榄辉绿岩、石英辉绿岩等。可做建筑石材或工艺石料,是铸石原料。质地均匀、无裂纹者可做石材原料,细粒者尤佳。如贵州的“罗甸绿”、浙江临海的“孔雀绿”、河南的“五龙青”、“菊花青”均属此类矿床。 玄武岩英文写法为BASALT。 玄武岩是一种基性喷出岩[1],其化学成分与辉长岩相似,SiO2含量变化于45%~52%之间, K2O+Na2O含量较侵入岩略高,CaO、Fe2O3+FeO、MgO含量较侵入岩略低。矿物成份主要由基性长石和辉石组成,次要矿物有橄榄石,角闪石及黑云母等,岩石均为暗色,一般为黑色,有时呈灰绿以及暗紫色等。呈斑状结构。气孔构造和杏仁构造普遍。玄武岩是地球洋壳和月球月海的最主要组成物质,也是地球陆壳和月球月陆的重要组成物质。1546年,G.阿格里科拉首次在地质文献中,用basalt这个词描述德国萨克森的黑色岩石。汉语玄武岩一词,引自日文。日本在兵库县玄武洞发现黑色橄榄玄武岩,故得名。

峨眉山玄武岩的基本特征及工程意义

峨眉山玄武岩的基本特 征及工程意义 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

峨眉山玄武岩的基本特征及工程意义此次工程地质实习我们主要考察了学校附近的峨眉山玄武岩,我经查阅众多书籍及网站,对峨眉山玄武岩做出以下一些基本介绍,由于本人对峨眉山玄武岩所知甚少,故本文引用较多资料,请见谅。 玄武岩属基性火山岩。是地球洋壳和月球月海的最主要组成物质,也是地球陆壳和月球月陆的重要组成物质。 峨眉山玄武石-地质年代 峨眉山玄武岩时代属中二叠世晚期至晚二叠世早期。分布于西南各省,如川西、滇、黔西及昌都地区等,最初命名地点在四川峨嵋山,故名。岩性是以为主,局部地区有粗面岩、安山岩、流纹岩及松脂岩等,主要以陆相裂隙式或裂隙—中心式溢出,常具拉斑玄武结构、气孔及杏仁状结构。 峨眉山玄武岩-主要成分 峨眉山玄武岩的主要成分与一般玄武岩基本相同,根据地质科学家分析鉴定,玄武岩的主要成份是二氧化硅、三氧化二铝、氧化铁、氧化钙、氧化镁(还有少量的氧化钾、氧化钠),其中二氧化硅含量最多,约占百分之四十五至五十左右。玄武岩主要矿物是富钙单斜辉石和基性;次要矿物有、斜方辉石、易变辉石、铁钛氧化物、、或副长石、、角闪石、、、、铁尖晶石、硫化物和等。玄武岩的化学成分如表。 玄武岩的化学成分与辉长岩相似,SiO2含量变化于45%~52%之间,K2O+Na2O含量较侵入岩略高,CaO、Fe2O3+FeO、MgO含量较侵入岩略低。矿物成份主要由基性长石和

辉石组成,次要矿物有橄榄石,角闪石及黑云母等,岩石均为暗色,一般为黑色,有 时呈灰绿以及暗紫色等。呈斑状结构。气孔构造和杏仁构造普遍。 玄武岩体积密度为~cm3,致密者压缩强度很大,可高达300MPa,有时更高,存 在玻璃质及气孔时则强度有所降低。玄武岩耐久性甚高,节理多,且具脆性,因而不 易采得大块石料,由于气孔和杏仁构造常见,虽玄武岩地表上分布广泛,但可作饰面 石材不多。 玄武岩-结构和构造 度。缓慢冷却(如每天降温几度)可生成几毫米大小、等大 的晶体;迅速冷却(如每分钟降温100℃),则可生成细小的针状、板状晶体或非晶质 玻璃。因此,在地表条件下,玄武岩通常呈细粒至隐晶质或玻璃质结构,少数为中粒 结构。常含橄榄石、和斑晶,构成斑状结构。斑晶在流动的岩浆中可以聚集,称聚斑 结构。这些斑晶在玄武岩浆通过地壳上升的过程中形成(历时几个月至几小时),也 可在喷发前巨大的储源中形成。基质结构变化大,随岩流的厚薄、降温的快慢和挥发 组分的多寡,在全晶质至玻璃质之间存在各种过渡类型,但主要是间粒结构、填间结 构、间隐结构,较少次辉绿结构和辉绿结构。 玄武岩构造与其固结环境有关。陆上形成的玄武岩,常呈绳状构造、块状构造和柱状 节理;水下形成的玄武岩,常具枕状构造。而气孔构造、杏仁构造可能出现在各种玄 武岩中。

罗甸辉绿岩分析报告

贵州高速矿业发展有限责任公司 罗甸辉绿岩料场沥青表层粗集料成本分析报告 一、罗甸辉绿岩料场简介 根据贵州省高速公路网络交通规划,将在黔南地区新建多条高速公路。为满足该地区高速公路建设以及后期路面维护砂石料的需求、弥补该地区高速公路建设沙石用量的缺口,因地制宜设置罗甸辉绿岩路面集料料场。该项目区位于贵州省罗甸县罗悃镇平艾村,处于贵州高原南缘向广西丘陵过渡的斜坡地带,相对高差500—600m,地形切割陡峻,山峦起伏,水系发育,沟谷纵横,深切河谷多呈“V”字型。项目区距在建惠罗高速公路仅15km,距离312省道约0.5km,有乡村公路通行,距离罗甸县城仅25km,交通较为方便。 二、罗甸辉绿岩的形成及储量 罗甸辉绿岩属岩浆岩中的侵入岩,粒度较细,为细粒结构。罗甸辉绿岩主要由辉石和基性长石(与辉长岩成分相当的浅成岩类)组成,含少量橄榄石、黑云母、石英、磷灰石、磁铁矿、钛铁矿等。基性斜长石常蚀变为钠长石、黝帘石、绿帘石和高岭石;辉石常蚀变为绿泥石、角闪石和碳酸盐类矿物,因绿泥石的颜色而整体常呈灰绿色。 辉绿岩跟辉长岩的成分差不多,但它形成得比较浅,不像辉长岩那样深,所以粒度较小,又不像玄武岩那样喷出地表而以玻璃质为主。辉绿岩为深源玄武质岩浆向地壳浅部侵入结晶形成,常呈岩脉、岩墙、岩床或充填于玄武岩火山口中,呈岩株状产出。

根据贵州地矿局的勘察报告可知,罗甸辉绿岩主要在罗甸—望谟沿线一带,其储量约在5亿m3左右,罗甸辉绿岩料场所在地辉绿岩储量约300万m3,储量大、品质高。 三、罗甸辉绿岩粗集料的化学成分及性能分析 根据中国科学院地球化学研究所的分析报告,罗甸辉绿岩结构为块状结构、辉绿结构、自形晶体结。岩石主要由斜长石和辉石组成,其中斜长石占全岩的70-80%,辉石占10-20%,不透明矿物含量占5-10%。长石为细小长条状自形晶体,长一般为0.03-0.2mm,宽0.008-0.03mm。比较鲜,透明度高,无风化现象。抗压强度224Mpa,密度3.07g/cm3;其化学成分见表1,基本性能见表2。 表1 罗甸辉绿岩与常规玄武岩化学成分对比 表2 罗甸辉绿岩粗集料基本性能表

峨眉山玄武岩

一、峨眉山玄武岩 峨眉山玄武岩(Emeishan Basalt,Omeishan Basalt)时代属中二叠世晚期至晚二叠世早期。分布于西南各省,如川西、滇、黔西及昌都地区等。命名地点在四川峨眉山。主要为陆相裂隙式或裂隙—中心式溢出的基性岩流,以玄武岩为主,局部地区有粗面岩、安山岩、流纹岩及松脂岩等。常具拉斑玄武岩结构、气孔及杏仁状结构。在云南、四川会理及金沙江流域,厚达1000~2000米。与下伏茅口组呈假整合或不整合接触,与上覆宣威组呈整合或假整合接触。在昆阳石龙坝附近玄武岩组底部发现有孔虫、腕足类及珊瑚等海相化石。在贵州威宁玄武岩下部夹凸镜状灰岩层。[1 二、方解石 方解石 方解石是一种碳酸钙矿物,天然碳酸钙中最常见的就是它。因此,方解石是一种分布很广的矿物。方解石的晶体形状多种多样,它们的集合体可以是一簇簇的晶体,也可以是粒状、块状、纤维状、钟乳状、土状等等。敲击方解石可以得到很多方形碎块,故名方解石。 磁黄铁矿+方铅矿+方解石 英文名:calcite

俗名:大方解,小方解 分子式:CaCO3 分子量:100.09 CAS号:471-34-1 密度2.60~2.8g/cm3 莫式硬度:3 主要成分:(由Ca(钙),C(碳),O(氧)三种元素 简介 方解石的色彩因其中含有的杂质不同而变化,如含铁锰时为浅黄、浅红、褐黑等等。但一般多为白色或 方解石 无色。无色透明的方解石也叫冰洲石,这样的方解石有一个奇妙的特点,就是透过它可以看到物体呈双重影像。因此,冰洲石是重要的光学材料。方解石是石灰岩和大理岩的主要矿物,在生产生活中有很多用途。我们知道石灰岩可以形成溶洞,洞中的钟乳石、石笋汉白玉等其实就是方解石构成的。 2004年8月17日,贵州省贵阳市徐氏珠宝制作室把其研琢成功的目前世界最大的两块方解石宝石捐献给中国地质博物馆珍藏。当日,贵州省贵阳市徐氏珠宝制作室把其研磨成功的目前世界最大的两块方解石宝石捐献给中国地质博物馆珍藏。其中一块宝石(右)为浅黄色、翻面葡萄牙式琢型方解石宝石,重172.5克拉;另一块(左)为金黄褐色、密切尔六角型方解石宝石,重84克拉。这两块宝石的重量都超过了目前珍藏在美国斯密逊博物馆的75.8克拉的金黄褐色阶梯琢型的翻光面方解石宝石。

峨眉山玄武岩的基本特征及工程意义

峨眉山玄武岩的基本特征及工程意义此次工程地质实习我们主要考察了学校附近的峨眉山玄武岩,我经查阅众多书籍及网站,对峨眉山玄武岩做出以下一些基本介绍,由于本人对峨眉山玄武岩所知甚少,故本文引用较多资料,请见谅。 玄武岩属基性火山岩。是地球洋壳和月球月海的最主要组成物质,也是地球陆壳和月球月陆的重要组成物质。 峨眉山玄武石-地质年代 峨眉山玄武岩时代属中二叠世晚期至晚二叠世早期。分布于西南各省,如川西、滇、黔西及昌都地区等,最初命名地点在四川峨嵋山,故名。岩性是以玄武岩为主,局部地区有粗面岩、安山岩、流纹岩及松脂岩等,主要以陆相裂隙式或裂隙—中心式溢出,常具拉斑玄武结构、气孔及杏仁状结构。 峨眉山玄武岩-主要成分 峨眉山玄武岩的主要成分与一般玄武岩基本相同,根据地质科学家分析鉴定,玄武岩的主要成份是二氧化硅、三氧化二铝、氧化铁、氧化钙、氧化镁(还有少量的氧化钾、氧化钠),其中二氧化硅含量最多,约占百分之四十五至五十左右。玄武岩主要矿物是富钙单斜辉石和基性斜长石;次要矿物有橄榄石、斜方辉石、易变辉石、铁钛氧化物、碱性长石、石英或副长石、沸石、角闪石、云母、磷灰石、锆石、铁尖晶 玄武岩化学成分表 CaO、Fe2O3+FeO、MgO含量较侵入岩略低。矿物成份主要由基性长石和辉石组成,次要矿物有橄榄石,角闪石及黑云母等,岩石均为暗色,一般为黑色,有时呈灰绿以及暗紫色等。呈斑状结构。气孔构造和杏仁构造普遍。

玄武岩体积密度为2.8~3.3g/cm3,致密者压缩强度很大,可高达300MPa,有时更高,存在玻璃质及气孔时则强度有所降低。玄武岩耐久性甚高,节理多,且具脆性,因而不易采得大块石料,由于气孔和杏仁构造常见,虽玄武岩地表上分布广泛,但可作饰面石材不多。 玄武岩-结构和构造 玄武岩结晶程度和晶粒的大小,主 要取决于岩浆冷却速度。缓慢冷却(如 每天降温几度)可生成几毫米大小、等 大的晶体;迅速冷却(如每分钟降温 100℃),则可生成细小的针状、板状晶 体或非晶质玻璃。因此,在地表条件下, 玄武岩通常呈细粒至隐晶质或玻璃质结 构,少数为中粒结构。常含橄榄石、辉 石和斜长石斑晶,构成斑状结构。斑晶 在流动的岩浆中可以聚集,称聚斑结构。 这些斑晶在玄武岩浆通过地壳上升的过 程中形成(历时几个月至几小时),也 可在喷发前巨大的岩浆储源中形成。基 质结构变化大,随岩流的厚薄、降温的 快慢和挥发组分的多寡,在全晶质至玻玄武岩柱状节理海崖 璃质之间存在各种过渡类型,但主要是 间粒结构、填间结构、间隐结构,较少次辉绿结构和辉绿结构。 玄武岩构造与其固结环境有关。陆上形成的玄武岩,常呈绳状构造、块状构造和柱状节理;水下形成的玄武岩,常具枕状构造。而气孔构造、杏仁构造可能出现在各种玄武岩中。 在爆发性火山活动中,炽热的玄武质熔岩喷出火口,随其着地前固结程度的差异,形成不同形状的火山弹:纺锤形火山弹、麻花形火山弹、不规则状火山弹,以及牛粪状、饼状、草帽状或蛇形和扁平状溅落熔岩团。 峨眉山玄武岩-形成 玄武岩是由火山喷发出的岩浆冷却后凝固而成的一种致密状或泡沫状结构的岩石。它在地质学的岩石分类中,属于岩浆岩(也叫火成岩)。火山爆发流出的岩浆温度高达摄氏一千二百度,因有一定的粘度,在地势平缓时,岩浆流动很慢,每分钟只流动几米远;遇到陡坡时,速度便大大加快。它在流动过程中,携带着大量水蒸汽和气泡,冷却后,便形成了各种变异的形状。峨眉山玄武石形成也是由火山喷发而来,火山爆发流出的岩浆温度高达摄氏一千二百度,因有一定的粘度,在地势平缓时,岩浆流动很慢,每分钟只流动几米远;遇到陡坡时,速度便大大加快。它在流动过程中,携带着大量水蒸汽和气泡,冷却后,便形成了各种变异的形状。镜泊湖北有瀑布状、波浪状的;莺歌岭一带有圆馒头状、宝塔状的;渤海镇和沙兰乡之间,是巨蟒状和熔岩隧道等。这里地质、地貌构造新颍、形态各异,丰富多彩。

工程地质实习报告--峨眉山玄武岩的基本特征及用途意义

工程地质实习报告 峨眉山玄武岩的基本特征及用途意义 摘要:此次在工程地质实习中我们进行了对峨眉山玄武岩的学习和了解,通过老师们认真地讲解和自 己对实体的观察,并课后通过书籍和网络对峨眉山玄武岩基本特征和工程意义的一些内容的整合,在此对玄武岩的腐岩、玄武岩的柱状节理构造、层间错动带及断层、杏仁状玄武岩及其风化状况、及灰岩和玄武岩的关系进行一些总结和描写。 关键词:峨眉山玄武岩、基本特征、工程意义、腐岩、柱状节理构造、错动带及断层、杏仁状、风化、灰岩。 一、峨眉山玄武岩 (1) 玄武岩 玄武岩它属于一种基性喷出岩,它的化学成分与辉长岩很相似,SiO2含量变化于45%~52%之间,K2O+ Na2O的含量较侵入岩略高,CaO、Fe2O3+FeO、MgO含量较侵入岩略低。它的成份主要由基性长石和辉石组成,次要的矿物有橄榄石,角闪石及黑云母等,岩石均为暗色,一般为黑色,有时呈灰绿以及暗紫色等。呈斑状结构。气孔构造和杏仁构造普遍。玄武岩体积密度为 2.8~3.3g/cm3,致密者压缩强度很大,可高达300MPa,有时更高,存在玻璃质及气孔时则强度有所降低。 (2)玄武岩的形成 玄武岩,它是由于火山喷发出的岩浆冷却后凝固而成的一种致密状或泡沫状结构的岩石。火山爆发流出的岩浆温度高达摄氏一千二百度,因此岩浆有一定的粘度,在地势平缓时,岩浆流动很慢,每分钟只能流动几米远;而当遇到陡坡的时候,其速度便大大地加快。它在流动过程中,携带着大量水蒸汽和气泡,冷却后,便形成了各种变异的形状。 (3)峨眉山玄武岩

峨眉山玄武岩(Emeishan Basalt ,Omeishan Basalt )其形成时代属中二叠世晚期至晚二叠世早期。分布于西南各省,如川西、滇、黔西及昌都地区等。命名地点在四川峨眉山。主要为陆相裂隙式或裂隙—中心式溢出的基性岩流,以玄武岩为主,局部地区有粗面岩、安山岩、流纹岩及松脂岩等。常具拉斑玄武岩结构、气孔及杏仁状结构。在云南、四川会理及金沙江流域,近似呈菱形分布,厚达1000~2000米,露头面积约3.8×104 km 2,岩流覆盖面积达30~50×104 km 2,火山堆积总量接近28×104 km 3 。与下伏茅口组呈假整合或不整合接触,与上覆宣威组呈整合或假整合接触。在昆阳石龙坝附近玄武岩组底部发现有孔虫、腕足类及珊瑚等海相化石。在贵州威宁玄武岩下部夹凸镜状灰岩层,即峨眉山玄武岩就是指下二叠统茅口组灰岩(含筳科化石)之上的玄武岩。1 (3)有关于峨眉山玄武岩的地质灾害 965年11月22日23时,云南昆明禄劝县马鹿塘公社普福及老木德大队所在的烂泥沟发生特大山 体滑坡,造成444人死亡,1265亩农田被毁,1157头牲畜失踪,成为解放以来我 国人员损失最为惨重的单一特大型滑坡灾害事件。烂泥沟滑坡在下游白水河上形成的滑坡坝堆积方量达2×108 m3,连同沿程堆积,累计方量超过2.14×108 m3;滑坡后缘到堆积前缘直线平距6.31 km ,折线平距6.53 km ;后缘最高点标高3120 m ,主堆积区-白水河标高1350 m ,垂直落差1770 m 。1991年9月17日16时,烂泥沟古滑坡后缘再次发生滑坡,形成沿烂泥沟分布的斜长3200 m 、宽1700 m ,厚30~50 m ,方量约2.18×108 m3,垂直滑距1100 m 的碎屑流堆积,整个过程历时3 min ,造成在沟内放牧、耕作的10人死亡,21 头牛及219只羊被掩埋,沿途树木、耕地全部被毁灭。1991年9月23日18时10分,云南昭通市东北约30 km 的盘河乡头寨沟村发生远程山体滑坡,造成216人死亡,系我国上世纪90年代以来人员损失最为惨重的重大滑坡灾害事件。头寨滑坡方量约900×104 m3,其中400×104 m3滑离源区;后缘到堆积体前缘的斜长、水平投影及高差分别为3423、3330和763 m 峨眉山玄武岩除以高陡斜坡等天然地貌单元出现外,还经常成为大型工程的工程边坡,如雅砻江官地、金沙江白鹤滩及金沙江溪洛渡等 1 摘自网络资料 图1峨眉山玄武岩 图2峨眉山玄武岩

新型矿物在摩擦材料中的应用--辉绿岩及其纤维的性能与特点

新型矿物纤维在摩擦材料中的应用 --辉绿岩及其纤维的性能与特点 文懿 (清远市博尔纤维有限公司,广东清远,511533) 摘要:辉绿岩的硬度适中,高熔点使其具有很好的耐温性能,所制成的矿物纤维柔韧性高,易分散,非纤维物质含量低,是适用于制动系统的良好材料。 关键词:辉绿岩辉绿岩纤维耐温性分散非纤维物质 Applications of New Type Mineral Fibres Used in Friction Matereial ----Performances & Properties of Diabase and Its Fibres Wen Yi (Qing Yuan Boer Fibre Co.,Ltd. Qingyuan, Guangdong, 511533) Abstract: Diabase has a moderate hardness, its high melting point makes it a very good temperature tolerance performance. Mineral fibres which are made from this kind of material has excellent properties on flexility, dispersion, non-fibrous material etc. It is a favorable material for manufacturing brake systems. Keywords: Diabase Diabase Fibre Temperature Tolerance Performance Dispersion Non-fibrous Material 一、前言 石棉种类繁多,应用范围广,且性能较稳定。根据美国职业安全与健康协会(OSHA)做出的测试,每进行一次常规性的摩擦试验,刹车片就会产生数百万之多的石棉纤维散发到空气中,而且这种纤维远远小于人的头发,是肉眼无法观察到的,所以一次呼吸可能吸人成千上万的石棉纤维而人们却毫无察觉。细小的石棉纤维被吸入人体后,没有被排出体内并沉积在肺部的纤维会造成石棉肺、胸膜、皮间瘤等疾病。鉴于越来越多的论证表明长期使用石棉对人体存在危害,一些发达国家如欧洲、北美等地区自20世纪70年代起就开始逐步禁用石棉,如1972年,美国环保局颁布了有关禁止喷涂含石棉纤维的耐火涂料的条例。2001年11月10日,我国被批准加入世界贸易组织(WTO),并于30天后,即2001年12月10日起正式生效。对于一直被认为是我国入世后最容易受冲击的产业—汽车产业,在应对得当的情况下,进口汽车严重冲击国内汽车产业的情况并未出现。2003年,我国汽车产量首次超过400万辆,其中轿车产量超过200万辆,成为世界第四大汽车生产国。随着国际合作机会与市场贸易机会的增多,无石棉材料代替石棉材料是大势所趋。只有各厂

峨眉山玄武岩的基本特征及工程意义

峨眉山玄武岩的基本特征及工程意义 此次工程地质实习我们主要考察了学校附近的峨眉山玄武岩,我经查阅众多书籍及网站,对峨眉山玄武岩做出以下一些基本介绍,由于本人对峨眉山玄武岩所知甚少,故本文引用较多资料,请见谅。 玄武岩属基性火山岩。是地球洋壳和月球月海的最主要组成物质,也是地球陆壳和月球月陆的重要组成物质。 峨眉山玄武石-地质年代 峨眉山玄武岩时代属中二叠世晚期至晚二叠世早期。分布于西南各省,如川西、滇、黔西及昌都地区等,最初命名地点在四川峨嵋山,故名。岩性是以玄武岩为主,局部地区有粗面岩、安山岩、流纹岩及松脂岩等,主要以陆相裂隙式或裂隙—中心式溢出,常具拉斑玄武结构、气孔及杏仁状结构。 峨眉山玄武岩-主要成分 峨眉山玄武岩的主要成分与一般玄武岩基本相同,根据地质科学家分析鉴定,玄武岩的主要成份是二氧化硅、三氧化二铝、氧化铁、氧化钙、氧化镁(还有少量的氧化钾、氧化钠),其中二氧化硅含量最多,约占百分之四十五至五十左右。玄武岩主要矿物是富钙单斜辉石和基性斜长石;次要矿物有橄榄石、斜方辉石、易变辉石、铁钛氧化物、碱性长石、石英或副长石、沸石、角闪石、云母、磷灰石、锆石、铁尖晶石、硫化物和石墨等。玄武岩的化学成分如表。 CaO、Fe2O3+FeO、MgO含量较侵入岩略低。矿物成份主要由基性长石和辉石组成,次要矿物有橄榄石,角闪石及黑云母等,岩石均为暗色,一般为黑色,有时呈灰绿以及暗紫色等。呈斑状结构。气孔构造和杏仁构造普遍。 玄武岩体积密度为2.8~3.3g/cm3,致密者压缩强度很大,可高达300MPa,有时更高,存在玻璃质及气孔时则强度有所降低。玄武岩耐久性甚高,节理多,且具脆性,因而不易采得大块石料,由于气孔和杏仁构造常见,虽玄武岩地表上分布广泛,但可作饰面石材不多。 玄武岩-结构和构造

福建辉绿岩资源与市场价格概述

xxxx资源与市场价格概述 福建沿海地处中国东南活动大陆边缘,中生代岩浆作用十分强烈,是中国东南部重要的构造一岩浆活动带在福建沿海大片晚中生代花岗岩及火山岩中,普遍出露中-基性岩墙群,它们起源于地球深部地幔或下地壳,侵位于不同的地壳层次,蕴藏着大量岩浆活动。 一、火山地质作用造就丰富的辉绿岩矿产资源 1.基性火山喷发与断裂地质作用的成矿机理 据福建省地史记载,闽东南沿海地区自中侏罗世开始基性海底火山喷发活动频繁,直全第四纪更新世末,先后有八期次火山喷发、溢流活动。而火山喷发活动中心,就在漳州市海滨火山国家地质公园内及相邻海域大陆架地带。该区火山喷发活动主要通过长乐一南澳北东向深大断裂构造带,①与仙游漳平东西向基底断裂活动;②引发隐藏于地球深处上地幔高温高压的融溶基性火山岩浆失去平衡,并沿深断裂通道上升喷发或溢流出地壳表层与浅部;地壳表面(地面)的火山溶岩流,冷凝固结形成的火山碎屑岩或火山岩等岩石,其中,有一种基性岩石,称为“玄武岩”;如果火山岩浆尚未喷出地壳表面而是停滞赋存于地壳浅部有利地质构造空间(如破火山口、火山爆发岩简等部位)冷凝结晶形成的基性岩石,就是辉绿岩。这类辉绿岩近地表浅部常出现“六棱柱状节理”的辉绿岩巨晶地质找矿标志。 2.xx空间分布严格受断裂构造控制 (1)辉绿岩体常沿人断裂构造带两侧成组、成群产出,并有分段、富集的成矿规律。 (2)在①与②断裂构造带交复会部位或破火山口、火山岩简或火山颈构造部位,多为富厚工业矿体和矿床最佳赋存地段。例如,莆田市秀屿区的虫代前山桃花山一官山地带(以下简称“虫代前山辉绿岩矿田”),在50km2范围内集中出现0.25~0.86km2出露面积的辉绿岩岩株3~5个,距秀屿港仅几公里。矿山供水、供电基础设施良好。经普查评价,初步探明B+C级矿石储量2300余万m3。待补充地质勘探工作后,町作组建辉绿岩碎石、方砖、岩粉等系列产品的大型生产基地。

峨眉山的地质成因

峨眉山的地质成因 峨眉山雄镇于成都平原西南隅,具体位置29o26ˊn 103o26ˊe。山林拔地而起,峰峦重叠,高插入云。千百年来,就以它雄、秀、险、奇的风姿著称于世。山中蕴藏着极其丰富的地貌景观及典型的地质特征。 一.地质部分 (一)地层 峨眉山区地层出露较全,在全世界出露的13个系的地层中,除缺失志留系、泥盆系和石炭系外,其余10个系均有出露。总厚度达7490.32米。其中,震旦系上统——三叠系中统主要为海相沉积;三叠系上统为海陆过渡相;侏罗系一—下第三系为河湖相;上第三系-——第四系为冲积层、洪积层及冰川沉积。 前震旦系 峨眉山岗岩、埋藏在峨眉山背斜核部,由于断层的抬升和流水的切割才零星出露地表,主要分布在张沟两侧谷坡上及黑龙江、白龙江深谷中。 岩性特征:灰白色、浅灰色及肉红色,中至细粒结构(一线天一带)和中粗粒似班状结构(张沟)。岩体出露部位为边缘相和过渡相。 震旦系 峨眉山缺失下统及上统下部列古六组。上统观音岩组直接不整合于晋宁期峨眉山花岗岩岩体之上。峨眉山花岗岩出露于石笋沟、洪椿坪、牛心寺、张沟等地,构成峨眉山背斜核部,其岩体剥蚀较浅,仅出露了边缘相和过渡相。 (1)喇叭岩组(zbl)下部浅灰色砂岩夹薄层不纯白云岩,底部有一层含细砾石英岩(不稳定),上部为灰至深灰色薄至中层泥至白云岩,顶部夹黑色碳质页岩,厚47.5米。 (2)洪椿坪(zbh)为浅灰色薄层微晶白岩,局部夹硅质条带,含丰富的藻类化石,与下伏喇叭岗组及上伏麦地坪组呈整合接触。 寒武系 发育完整,与震旦系连续沉积,为中国有代表性的著名剖面之一。分布与震旦系大体一致,并展布于遇仙寺、九岗子、洗象池一带,构成峨眉山背斜两翼。其东翼受构造影响,地层残缺。与下伏震旦系整合接触,分下、中、中上统。 (1)麦地坪组(? 1m)为浅灰至深灰色中厚层状微晶白云岩,中夹有硅质岩,硅质条带及磷块岩,是本区最主要的含磷矿层位。 (2)九老洞组(? 1j)底部为一层黑色、灰色炭质页岩及粉砂岩,其上为灰、深灰、黄灰色等薄至中厚层泥质粉砂岩,顶部为灰色页岩。该层页岩中含三叶虫化石。与下伏麦地坪组为平行不整合。 (3)遇仙寺组(? 1y) 下部为灰色中层石英砂岩夹紫红色泥岩、灰绿色粉砂岩及白云岩。上部为灰色薄层至厚层泥质白云岩、鲕状白云岩及白云岩。含三叶虫化石(古油节虫、莱得利基虫) (4)大鼻山组(q2d)杂色(浅灰、紫红、黄、灰、灰绿)薄层泥灰岩,白云质灰岩及细砂岩之互层。下部泥砂质教重,中上部钙镁质较重其中夹有多层紫红色岩、与q2 其中的紫红色夹层想对照,称“上红层”。 (5)洗象池组(q2——3x)灰色中厚至厚层致密细晶白云岩,炭质白云岩及白云质灰岩,夹少量钙质砂岩,底部常见3~5米厚的浅灰石英砂岩,本层致密坚硬,常成绝壁,洗象池,仙峰寺一带的悬岩上部均由它构成。 奥陶系 分布于阎王坡、大乘寺等地,构成峨眉山背斜两翼。缺失下统上部以及中、上统。其下统分

常见岩石的辨别

学会用肉眼或借助于放大镜来鉴定火成岩,是野外地质旅行的基本功之一。特别在填绘地质图、测制剖面图、研究侵入体及其相互穿插关系,观察侵入体与其围岩的关系,以及各种火成岩与成矿的关系等方面,均具有重要意义。 学会野外鉴定火成岩,大体上应从以下几项步骤入手。 首先观察岩石的颜色、含石英的分量、含铁镁矿物的分量这三项指标,估计遇到的火成岩应归属于哪一个大类。比如淡红色、浅灰色,含石英晶体的颗粒较多,而含铁镁矿物的分量较少的,大体上是属于酸性火成岩。如果岩石呈灰色、灰绿色,铁镁矿物的含量相当明显,而石英晶体的颗粒大为减少,或偶尔可见者,大体应属于中性火成岩。如果岩石的颜色黝黑,并略带橄榄绿,完全看不到石英颗粒,铁镁矿物几乎成为岩石的全部组分,则应属于基性岩类。 基本上分辨出酸性、中性和基性三大类岩石以后,接着就应该鉴定其具体的名称了。这时候,认识岩石中所含的矿物名称是鉴定的关键,因此,熟悉一下最基本的几种造岩矿物很有必要。 石英:晶体多为六方柱体及菱面体的聚形,晶面有横纹。颜色多种多样,纯净者无色透明,称之为水晶。常见者有白色、灰色乃至暗灰色。如含锰质,呈紫色;含有机质,呈烟黄色、烟褐色、墨色。玻璃光泽。断口不平,有如贝壳状。硬度7,超过铁器,故刀口针尖均难以刻画。

正长石:晶体短柱状,常呈粒状或块状。表面可见解理裂缝。颜色多呈肉红色、浅黄色。玻璃光泽。硬度6,与铁器相近。 斜长石:板状、板柱状晶体,多为白色、浅灰色,有时为浅绿色、浅红色。常为不规则的粒状。玻璃光泽。硬度6~6.5。 黑云母:晶体常呈板状、柱状。片状解理发育,极易剥落成薄片,故可用小刀、指甲拨开。具玻璃-珍珠光泽。硬度低,2~3。薄片富有弹性。颜色呈黑、褐色。易风化,成为绿泥石。 白云母:晶体形状与黑云母相同。片状解理亦发育,极易剥成薄片。玻璃-珍珠光泽。硬度2~3,颜色白、浅黄,浅灰、浅绿。不易风化。 普通角闪石:晶体常呈柱状,横断面为假六边形,颜色为黑色。绿色、褐色。玻璃光泽。有时可见金属光泽。其解理裂缝的交角为60°。硬度5.5~6。 普通辉石:晶体呈短柱状。其横剖面为假八面形。颜色多为黑色、墨绿色及褐黑色。玻璃光泽。硬度5~6。解理裂缝的交角呈90°。 橄榄石:它的颜色比较特殊,通常呈橄榄绿、黄绿色,有些则呈黑色。有较强的玻璃光泽。断口呈贝壳状。硬度6~7,因其极

中国玄武岩时空分布规律研究(7)

中国玄武岩时空分布规律研究(7) 胡经国 ㈤、峨眉山大火山岩省玄武岩 1、地幔柱学说简介 地幔柱说(Mantle Plume Theory,Plume Tectonics Hypothesis)是一种关于板块运动机制的学说,由摩根(WJMorgan,1971)提出。地幔柱是指地幔深部物质的柱状上涌体,其直径可达150千米,由于放射热积累导致地幔深部或核幔边界的物质升温上涌形成。 地幔柱上升到岩石圈底部以后向四周扩散,从而推动板块运动。在地质历史上,地幔柱的位置相对固定而且长期活动;其顶部引发的火山活动常常形成火山链。这种火山链由新到老位置的迁移指示了板块运动的轨迹,即可把它当作板块运动的一个参照系。地球上已经确证的地幔柱约有20个。 到了20世纪90年代,地幔柱这一名词被赋予了新的涵义。 有学者认为,地幔柱可以分为两类,即:在地幔范围内因板块俯冲消减和重力陷落而形成的冷地幔柱(Cold Plume)和因核幔边界处物质上涌而形成的热地幔柱(Hot Plume)。冷地幔柱和热地幔柱的运动是地幔中物质运动的主要形式。它控制或驱动了板块运动;导致岩浆活动、地震发生和磁极倒转;影响着全球性大地基准面变化、全球气候变化以及生物灭绝与繁衍。热地幔柱上升可以导致大陆破裂、大洋开启;而冷地幔柱的回流则会引起洋壳俯冲和板块碰撞。 还有学者预言,地幔柱构造正在发展成为一种超越板块构造的地球动力学新模式和大地构造新理论。然而,由于存在众多难以用地幔柱构造加以解释的地质现象,这一新理论还有待进一步验证。 2、峨眉山玄武岩概述 峨眉山玄武岩(EmeishanBasalt,OmeishanBasalt)时代属于中二叠世晚期至晚二叠世早期。它分布于中国西南各省,如川西、滇、黔西及昌都等地区。其命名地点是四川峨眉山。峨眉山玄武岩主要为通过陆相裂隙式或裂隙-中心式溢流而形成的基性岩流。 分布于中国西南三省(云南、贵州、四川)的峨眉山玄武岩是中国唯一被地学界认可的大火成岩省。其成因与地幔柱活动有关。自地幔柱理论提出以来,对峨眉山玄武岩的研究进入了一个崭新的时期。前人对云南、四川等地峨眉山玄武岩的研究相对较多,而对峨眉山大火成岩省东部岩区的贵州玄武岩研究相对较少。 3、峨眉山玄武岩的主喷发期 峨眉山玄武岩是地学研究的一个热点。根据峨眉山玄武岩的岩石组合、岩 1

贵州峨眉山玄武岩喷发期的岩相古地理研究

文章编号:1671-1505(2003)01-0017-12贵州峨眉山玄武岩喷发期的 岩相古地理研究X 陈文一 1,2 刘家仁1 王中刚3 郑启钤11 贵州省地质矿产勘查开发局,贵州贵阳5500042 贵州省地质科学研究所,贵州贵阳5500043中国科学院地球化学研究所,贵州贵阳550002 摘要 贵州峨眉山玄武岩喷发,从动态的角度可以分为茅口期晚期和龙潭期(吴家坪期), 龙潭期又可分为三个喷发旋回,对应于四个不同的岩相古地理环境,体现了东吴运动在造成贵 州地区地壳抬升、下沉和接受最大海侵之后,又上升、拉张、沉陷带发生地裂(又称峨眉地裂)以 及地幔物质喷溢等地质活动,具间歇性和多旋回性的特点。本文从研究海陆变迁入手,揭示峨 眉山玄武岩喷发与沉积作用的内在联系,进而探讨其与金、锑等矿产的成因联系,提出该期各相 区与成矿区的形成模式。通过对贵州峨眉山玄武岩不同喷发期岩相古地理的研究可以看出,茅 口期晚期和龙潭期早期海域的沉积韵律和相带展布格局与玄武岩喷发的间歇性和多旋回性特 征完全一致。玄武岩的喷发为成矿提供了物质基础,玄武岩喷发的间歇期又为沉积矿产的富集 提供了机遇。这种岩浆期后气液以富硅和二氧化碳为特征的玄武岩,本身富含铁、锰、铜、铅、锌、锑、砷、汞、金、银、氟、磷以及一些稀散和放射性元素等成矿组分。在喷发过程中,气液成分 有一定变化,各阶段和离岩浆的远近距离不同以及喷发性质和环境差异,形成了火山气液矿床、火山沉积矿床和沉积矿床的不同成矿带。 关键词 岩相古地理 峨眉山玄武岩 成矿规律 贵州 第一作者简介 陈文一,研究员,男,1933年生,1954年南京大学地质系毕业,贵州区域地 质调查大队总工程师,长期从事地质、矿产、岩相古地理等研究工作。 中图分类号 P531 文献标识码 A 1 前言 我国西南川、滇、黔三省邻接地区二叠纪沉积岩(茅口灰岩)与上覆火山岩(峨眉山玄武岩)的界面部位蕴藏着众多矿产,包括金、锑、锰、硫铁矿等。对于矿产,前人做过不少工作,但很少有人将其与峨眉山玄武岩喷发期的沉积环境和岩相古地理结合在一起进行研究。本文在充分吸取贵州区域地质已有成果的基础上,根据野外考察,从研究玄武岩喷发不同阶段贵州的岩相古地理入手,深入研究峨眉山玄武岩喷发时期贵州的海陆变迁和沉积环境演化,X 本文是国家自然科学基金项目(40072035)成果之一收稿日期:2002-06-06 改回日期:2002-07-25 第5卷 第1期 2003年2月 古地理学报J OURNAL OF PALAEOGEOGRAPHY Vol 15 No 11Feb 12003

最新峨眉山玄武岩

峨眉山玄武岩

一、峨眉山玄武岩 峨眉山玄武岩(Emeishan Basalt,Omeishan Basalt)时代属中二叠世晚期至晚二叠世早期。分布于西南各省,如川西、滇、黔西及昌都地区等。命名地点在四川峨眉山。主要为陆相裂隙式或裂隙—中心式溢出的基性岩流,以玄武岩为主,局部地区有粗面岩、安山岩、流纹岩及松脂岩等。常具拉斑玄武岩结构、气孔及杏仁状结构。在云南、四川会理及金沙江流域,厚达1000~2000米。与下伏茅口组呈假整合或不整合接触,与上覆宣威组呈整合或假整合接触。在昆阳石龙坝附近玄武岩组底部发现有孔虫、腕足类及珊瑚等海相化石。在贵州威宁玄武岩下部夹凸镜状灰岩层。[1 二、方解石 方解石 方解石是一种碳酸钙矿物,天然碳酸钙中最常见的就是它。因此,方解石是一种分布很广的矿物。方解石的晶体形状多种多样,它们的集合体可以是一簇簇

的晶体,也可以是粒状、块状、纤维状、钟乳状、土状等等。敲击方解石可以得到很多方形碎块,故名方解石。 磁黄铁矿+方铅矿+方解石 英文名:calcite 俗名:大方解,小方解 分子式:CaCO3 分子量:100.09 CAS号:471-34-1 密度2.60~2.8g/cm3 莫式硬度:3 主要成分:(由Ca(钙),C(碳),O(氧)三种元素 简介 方解石的色彩因其中含有的杂质不同而变化,如含铁锰时为浅黄、浅红、褐黑等等。但一般多为白色或

方解石 无色。无色透明的方解石也叫冰洲石,这样的方解石有一个奇妙的特点,就是透过它可以看到物体呈双重影像。因此,冰洲石是重要的光学材料。方解石是石灰岩和大理岩的主要矿物,在生产生活中有很多用途。我们知道石灰岩可以形成溶洞,洞中的钟乳石、石笋汉白玉等其实就是方解石构成的。 2004年8月17日,贵州省贵阳市徐氏珠宝制作室把其研琢成功的目前世界最大的两块方解石宝石捐献给中国地质博物馆珍藏。当日,贵州省贵阳市徐氏珠宝制作室把其研磨成功的目前世界最大的两块方解石宝石捐献给中国地质博物馆珍藏。其中一块宝石(右)为浅黄色、翻面葡萄牙式琢型方解石宝石,重172.5克拉;另一块(左)为金黄褐色、密切尔六角型方解石宝石,重84克拉。这两块宝石的重量都超过了目前珍藏在美国斯密逊博物馆的75.8克拉的金黄褐色阶梯琢型的翻光面方解石宝石。这两块方解石宝石是贵阳市徐氏珠宝制作室历经2000年至2002年两年多时间精心研琢成功

花岗岩、河卵石、玄武岩、辉绿岩的破碎工艺分析

花岗岩、河卵石、玄武岩、辉绿岩的破碎工艺分析 石料的破碎通常由以下几个因素决定: 1)破碎物料的类型 2)破碎物料的硬度、含硅量、含水量 3)在进入破碎系统之前,破碎物料的平均粒度 4)成品粒度,以及各个粒度范围的比例要求,成品的用途 5)台时产量 玄武岩、辉绿岩、花岗岩、河卵石等石料属于硬度较高,且硅含量较高,在实际破碎作业中属于较难破碎,或者破碎成本较高的的物料。通俗的讲,玄武岩和辉绿岩是硬且韧的物料,花岗岩是硬且脆的物料,河卵石硬度相对低一点,但是硅含量最高。因此,对这些物料的破碎工艺要设计合理,在考虑破碎项目的投资成本的同时,必须考虑生产线的生产成本。 在实际的破碎作业中,有些客户的原料是石灰石,鄂破的鄂板损耗非常低,一副鄂板的使用寿命达到一年是很常见的现象。这是因为石灰石不仅仅硬度很低(4~5级),而且石料中的硅含量很低,对破碎机的耐磨件的磨蚀性很低。 原料是玄武岩、花岗岩的破碎作业中,颚板、板锤、反击板等耐磨件的损耗十分的高。客户的生产成本远远大于石灰石的生产成本。因此,我们对破碎工艺的设计上,尽可能的选用层压原理的破碎设备,以降低耐磨件的损耗。典型的层压设备配置是两级颚破或者颚破加圆锥破的工艺配置。如果客户对最终的石料粒型有较高的要求,我们可以再配置一台反击破进行石料整型破碎,这样就形成了三段破碎的工艺配置。三段破碎必然导致项目的投资成本较高,但是对于长期运营的石料厂,三段破碎降低的生产成本是十分可观的。 对上述难破的物料,也可以采用颚破加反击破的两级破碎工艺。但是,这必然导致反

击破的板锤损耗很高,板锤寿命较短,返料比例较高等问题,这些是值得厂家和客户注意的问题。 下面是典型我厂的三种工艺方案: 方案一:喂料机+鄂式破碎机+反击式破碎机+振动筛+输送系统+控制系统 方案二:喂料机+鄂式破碎机+细型颚式破碎机+反击式破碎机(可选)+振动筛+输送系统+控制系统 方案三:喂料机+颚式破碎机+圆锥破碎机+反击式破碎机(可选)+振动筛+输送系统+控制系统 上述方案中,主要的区别是第二道破碎是选用以打击破碎为主的反击式破碎机,还是以层压破碎为主的细碎颚式破碎机、圆锥破碎机。 在很多对石料的粒型要求不高的石料场,用户愿意使用颚式破碎机、细碎颚式破碎机/圆锥破搭配的方式来组建生产线。因为颚破与圆锥破都属于层压原理,耐磨件的磨损比较小,生产成本也就比较低廉。但是,也由于层压原理,会导致破碎的石料粒型不太好,针片状石料的含量比较高,石料的内裂纹比较严重,是高等级建筑所不愿意接受的,因此市场售价较反击石料便宜。 反击式破碎机最大的特点就是能够生产粒形优质的石料,具备破碎与整型的双重性能;粒型好的石料能够给建筑物增加更好的受力性能,在市场有较高的售价,当然,反击破的易损件磨损成本也比同等产量的细碎颚破、圆锥破高。针片状石料和自然界原始的光滑石料在建筑使用中很难达到多棱立方石料所能形成的力学性能。因此,反击破主要用于建筑用的石料破碎场,为公路、铁路、机场、码头、高层建筑提供优质粒形的石料。 如果市场对成品石料的粒型有一定的要求,用户又想降低易损件的吨成本,可以考虑粗颚破+细颚破/圆锥破作为粗破与二破,反击式破碎机放在第三道破碎的位置上,主要起到

相关文档
最新文档