风电场有功功率控制系统的研究
风电场有功与无功功率控制系统的数据分析与优化方法

风电场有功与无功功率控制系统的数据分析与优化方法风电场是一种利用风能转化为电能的发电设备,正因为其具有环保、可再生等特点,近年来得到了广泛的关注和推广。
然而,由于天气条件的不确定性以及储能能力的限制,风电场在供电稳定性方面仍然存在一些挑战。
为了解决这个问题,有功与无功功率控制系统成为风电场运行中至关重要的一环。
一、风电场有功与无功功率控制系统的作用及原理风电场的有功功率是指风电机组所产生的有效功率,可以被电网直接采购和消耗。
而无功功率则是指在交流电网中,没有进行有用功率传输的电能,主要是用来维持电网的稳定运行和改善电能质量的。
有功功率和无功功率是风电场发电系统的两个重要指标,其合理控制和优化对于风电场的可靠性和功率输出至关重要。
风电场有功与无功功率控制系统的作用主要有两个方面。
首先,有功与无功功率控制系统可以确保风电场的电能输出稳定,并适应不同的电网条件。
当电网负荷需求大于风电场的发电能力时,有功控制可以提高有功功率的输出,满足电网的供电需求;而当有部分电网负荷由其他发电机组提供时,无功控制可以调节风电场的无功功率,以维持电网的稳定。
其次,有功与无功功率控制系统可以优化风电场的运行效率。
通过精确控制风电机组的转速和桨叶的角度,可以最大程度地捕获风能,并将其转化为有效的电能输出。
另外,通过合理控制风电机组的无功功率输出,可以改善电网的电压和频率稳定性。
风电场有功与无功功率控制系统的原理是基于风电机组控制器的智能化和自动化技术。
风电机组控制器通过对环境参数和电网条件的监测和分析,实时调整风电机组的工作状态和输出功率。
有功功率控制主要是通过调节风轮的桨叶角度和转速来改变风电机组的输出功率;无功功率控制则是通过调节发电机的励磁电流和无功功率因数来改变风电机组的无功功率。
二、风电场有功与无功功率控制系统的数据分析方法为了实现风电场有功与无功功率控制系统的优化,需要进行大量的数据分析和优化方法研究。
以下是一些常用的数据分析方法:1. 数据采集与预处理:首先需要在风电场中安装传感器来采集环境参数、电网条件和风电机组的运行数据。
风电场有功与无功功率控制系统的安全监控与预防措施

风电场有功与无功功率控制系统的安全监控与预防措施引言:近年来,风电场作为一种可再生能源的重要组成部分,受到了广泛关注和迅速发展。
风电场的有功与无功功率控制系统起着至关重要的作用,保证了风能转化为电能的高效性和稳定性。
然而,与此同时,风电场的安全监控与预防措施也备受关注。
本文将探讨风电场有功与无功功率控制系统的安全监控与预防措施,旨在提高风电场运行的可靠性和稳定性。
1. 了解风电场有功与无功功率控制系统在开始探讨安全监控与预防措施之前,我们先来了解一下风电场有功与无功功率控制系统的基本原理。
风电场的有功功率指的是将风能转化为电能的功率,而无功功率则是用于维持电力系统的稳定性和运行质量的功率。
有功功率控制系统和无功功率控制系统是风电场运行的核心组成部分,其目标是在提供足够的电能的同时,确保电网能够正常运行。
2. 安全监控系统的建立风电场的安全监控系统是为了确保风电场运行的安全和稳定,及时发现和解决潜在的问题。
首先,对于风电场的有功与无功功率控制系统来说,关键是建立一个完善的监控系统,实时监测并记录系统中的各种参数。
监控系统应包括对风速、发电机运行状态、功率输出、无功功率需求等关键指标的监测,并与中央控制系统进行数据通信和交互。
这样一来,风电场的主管部门和维护人员可以及时了解风电场的运行情况,并在必要时采取相应的措施。
3. 安全预防措施的制定为了预防风电场有功与无功功率控制系统的安全问题,以下是一些关键的预防措施。
3.1 设备维护与检修风电场的有功与无功功率控制系统是由众多设备组成的复杂系统,比如风力发电机、变频器、电容器组等。
为了保证系统的正常运行,风电场的运营团队必须时刻关注设备的运行状况,并制定合理的维护和检修计划。
设备维护与检修主要包括定期巡检、设备润滑、松紧调整、电器元件检查等工作,以确保设备的正常运行和疲劳寿命的延长。
3.2 技术培训与人员素质提高风电场的有功与无功功率控制系统的运行依赖于专业的维护人员的技术水平和素质。
风电场有功与无功功率控制系统的智能运维与自动控制

风电场有功与无功功率控制系统的智能运维与自动控制随着能源需求的增长和环境保护意识的提升,可再生能源的发展逐渐成为全球关注的热点。
作为可再生能源的重要组成部分,风能逐渐成为一种受到广泛关注和应用的清洁能源技术。
风电场的建设和运营是一个复杂而严谨的过程,在风电场的运维过程中,提高风电场有功与无功功率控制系统的智能运维与自动控制水平至关重要。
风电场有功与无功功率控制系统的智能运维与自动控制是为了提高风电场的运行效率和可靠性,并确保风电机组稳定运行的关键技术之一。
它主要包括智能监测与诊断、智能运维管理和自动控制三个方面。
首先,智能监测与诊断是指通过传感器和监测装置对风电场进行实时监测和数据采集,通过数据分析和处理技术对风电机组的运行状态进行判断和诊断。
这些数据包括风速、电网电压、风机温度等运行参数,通过分析这些数据可以发现机组的故障和隐患。
利用智能监测与诊断技术,可以及时发现故障和隐患,为风电机组的维修和保养提供科学依据,避免故障发生。
其次,智能运维管理是指基于智能运维平台的运维管理系统,通过对风电场的运行数据进行分析和管理,实现风电机组的智能化运维管理。
这包括保养计划的制定、维修人员的调度、备件的管理和故障记录的管理等。
通过智能运维管理系统,可以提高运维工作的效率和准确性,降低人力和物力成本,提高风电机组的可靠性和可用性。
最后,自动控制是指利用先进的控制技术和智能化设备,实现风电场的自动化运行和控制。
自动控制系统可以根据风电机组的负荷需求和电网的情况,自动调整风机的转速和功率输出,实现风电机组的最佳运行状态。
此外,自动控制系统还可以通过对风电场的整体协调控制,实现风电场的无功补偿和功率限制控制,提高风电场对电网的稳定性和可靠性。
为了实现风电场有功与无功功率控制系统的智能运维与自动控制,需要依靠先进的技术手段和设备。
比如,利用大数据和人工智能技术,可以对风电机组的运行数据进行深入分析和预测,通过建立智能模型和算法,实现对风电机组的自动控制和仿真优化。
风电场有功与无功功率控制系统的管理与运维综述

风电场有功与无功功率控制系统的管理与运维综述一、引言随着全球对可再生能源的需求增加以及对环境保护意识的不断加强,风能逐渐成为重要的可再生能源之一。
风电场作为利用风能发电的重要设施,在能源结构调整中发挥着关键作用。
而风电场的有功与无功功率控制系统的管理与运维对于风电场的稳定运行和电网的安全性具有重要意义。
本文将综述风电场有功与无功功率控制系统的管理与运维相关内容。
二、风电场有功与无功功率控制系统概述1. 有功功率控制系统有功功率控制系统用于控制和调节风机的输出功率,确保风电场按照预定的发电能力稳定运行。
其主要组成部分包括风机控制器、功率转换器以及与电网进行连接的传输设备。
通过监测风速、风向、温度等环境参数,并根据预设的功率曲线,有功功率控制系统实现了对风电场内风机的输出功率的有效控制与调节。
2. 无功功率控制系统无功功率控制系统用于维持电网的稳定性,通过控制风电场的无功功率,保持电网电压的合理范围。
其主要组成包括无功发生器、电容器组以及与电网进行连接的传输设备。
无功功率控制系统能够主动响应电网的调度信号,并通过合理调节电容器的容量、投切无功发生器等方式,维持电网的无功功率平衡,提高电网的稳定性。
三、风电场有功与无功功率控制系统的管理与运维1. 系统监测与故障诊断风电场有功与无功功率控制系统的管理与运维的第一步是进行系统监测与故障诊断。
通过实时监测风电场的输出功率、电压、电流等参数,运维人员能够及时发现系统故障,提前做出相应的处理措施,以保证系统的正常运行。
同时,利用数据分析技术,对风机的运行状态进行评估和预测,提升系统的可靠性和运行效率。
2. 维护与保养风电场有功与无功功率控制系统的正常运行离不开维护与保养工作。
运维人员应定期对系统的关键设备进行巡检与维护,包括风机控制器、功率转换器、电容器组等。
在维护过程中,需注意设备的温度、电流等参数的监测,及时发现并处理设备的故障,以减少因设备故障带来的停机时间和维修成本。
风电场有功功率控制系统研究与应用

风电场有功功率控制系统研究与应用一、有功功率控制系统的工作原理有功功率控制系统是指通过控制发电机转子角度,来调整风电场的发电功率输出,从而保持风电场的有功功率在稳定状态下运行。
其基本工作原理是根据风机的输出功率和预期的功率曲线,通过控制风机的轴角度,来调整风机的扭矩和转速,使得风电场的发电功率始终保持在最佳状态。
通过这种方式,可以最大限度地提高风电场的发电效率,同时降低风电场对电网的影响。
有功功率控制系统通常由控制器、传感器和执行器等部件组成。
控制器负责接收传感器采集到的数据,经过处理后输出控制信号给执行器,从而实现对风机转角的调节。
传感器用于监测风机的转速、风速、电网情况等关键参数,为控制器提供必要的输入信号。
执行器则根据控制信号调整风机的转角,实现对风机的控制。
有功功率控制系统在风电场中的应用具有重要意义。
有功功率控制系统可以有效提高风电场的发电效率。
通过控制风机的转角,使得风机在不同风速下可以输出最佳的有功功率,最大限度地利用风能资源。
有功功率控制系统可以保证风电场的稳定运行。
在电网故障或电网负荷变化时,有功功率控制系统可以快速响应,通过调整风机的转角,使得风电场的有功功率保持在稳定状态,保护电网和风电场的安全运行。
有功功率控制系统还可以降低风电场对电网的影响。
通过控制风机的输出功率,可以减少因风能波动导致的电网频率和电压的波动,提高电网的稳定性和安全性。
随着风能行业的不断发展和成熟,有功功率控制系统也面临着新的挑战和机遇。
未来,有望出现更加智能化和自动化的有功功率控制系统。
通过引入先进的控制算法和人工智能技术,可以实现对风电场的全面监测和智能控制,使得风电场可以更好地适应复杂多变的外部环境。
有望出现更加柔性化和高效化的有功功率控制系统。
随着新型材料和新型技术的不断进步,有望开发出更加轻量化和高效化的风机转角控制装置,减小风机的机械损耗,提高风电场的发电效率。
风电场有功功率控制综述

风电场有功功率控制综述由于风电具有随机性、波动性和反调峰特性,高比例的风电并入电网会对电力系统的稳定性和安全性造成很大的冲击,因此有必要对风电场有功功率输出进行控制,减少风电功率的波动性,提高输出功率的平滑性。
1.风电场有功功率控制原理风电场有功功率控制系统一般主要由风电场功率控制层、机组群控制层、机组控制层组成图。
风电场有功控制系统的目的是为了使风电场能够根据调度指令调整其有功功率的输出,在一定程度上表现出与常规电源相似的特性,从而参与系统的有功控制。
然而,风电场有功控制能力不等同于风力发电机组控制能力的简单叠加。
为此,利用风力发电机群的统计特性,可以采用两种方式实现此目的:一是将风电场有功控制系统分为风电场控制层、各类机群控制层和机组控制层,依次下达调度指令,完成风电场有功功率控制的任务;二是电网调度中心将指令直接下达给风电机组,各机组调节有功出力,实现有功功率的控制。
2.风电场有功功率的控制2.1最大出力模式最大出力模式是指当风电场的预测功率小于电网对风电场的调度功率时,风电场处于最大出力状态向电网注入有功功率。
最大出力控制模式就是在保证电网安全稳定的前提下,根据电网风电接纳能力计算各风场最大出力上限值,风电场输出功率变化率在满足电网要求的情况下处于自由发电状态。
若超出本风电场的上限值时,可根据其他风场空闲程度占用其他风电场的系统资源,以达到出力最大化和风电场之间风资源优化利用的目的。
在最大出力模式投入运行时,风电场内的各台达到切入风速但在额定风速以下的风机处于最大功率跟踪状态;风电场内处于额定风速以上的各台风电机组运行在满功率发电状态,从而保证风电场的输出功率达到最大值,尽可能提高风能资源的利用效率。
2.2基于目标函数优化的功率控制基于目标函数优化的有功功率控制策略,通常先确定目标函数以及约束条件,在此基础上建立多目标优化的风电场模型。
在基于目标函数优化的场站级有功功率控制策略中,基于小扰动分析方法分析了限功率运行下风电机组非线性模型的稳定特性,并综合了3个目标,分别是限功率运行状态均衡度、风电场功率目标偏差、总机组启停次数最少,建立了多目标优化模型。
风电场风电机组优化有功功率控制的研究

风电场风电机组优化有功功率控制的研究2017年度申报专业技术职务任职资格评审答辩论文题目:风电场风电机组优化有功功率控制的研究作者姓名:李亮单位:中核汇能有限公司申报职称:高级工程师专业:电气二Ο一七年六月十二日摘要随着风电装机容量的与日俱增,实现大规模的风电并网是风电发展的必然趋势。
然而,由于风能是一种波动性、随机性和间歇性极强的清洁能源,导致风电并网调度异于常规能源。
基于此,本文将针对风电场层的有功功率分配开展工作,主要工作概括如下:(1)对风电机组和风电场展开研究,分析风力发电机组运行特性、风力发电机组控制策略、风电场的控制策略。
(2)提出了一种简单有效的风电场有功功率分配算法,可以合理利用各机组的有功容量,优化风电场内有功调度分配指令,减少机组控制系统动作次数,平滑风电机组出力波动。
(3)优化风机控制算法后,通过现场实际采集数据将所提方法与现有方法进行了比较,验证了所提方法的合理性。
关键词:风电机组、风电场、有功功率控制、AGCAbstractWith increasing wind power capacity, to achieve large-scale wind power is an inevitable trend of wind power development. However, since the wind is a volatile, random and intermittent strong clean energy, resulting in wind power dispatch is different from conventional energy sources. And the wind farm is an organic combination for a large number of wind turbines, wind farms under active intelligent distribution layer hair is also included in the grid scheduling section. Based on this, the active allocation and scheduling for grid scheduling side active layer wind farm work, the main work is summarized as follows:(1)Wind turbines and wind farms to expand research, in-depth analysis of the operating characteristics of wind turbines, wind turbine control strategy, control strategies of wind farms.(2)This paper proposes a simple and effective wind power active power allocation algorithm, can reasonable use each unit capacity, according to the optimization of wind farms in active dispatching command, decrease The Times of turbine control system action smooth wind power output fluctuation unit.(3)After optimization of the fan control algorithm, through the practical field data collected will be presented method are compared with those of the existing method, the rationality of the proposed method was verified.Keywords:wind turbine, wind farm, active power control目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题研究背景 (1)1.2 有功功率控制的现状 (1)第2章风力发电机组及风电场有功控制基础 (2)2.1 风力发电机组运行原理 (2)2.1.1 风电机组的组成 (2)2.1.2 风电机组数学模型 (2)2.1.3 风力发电机组运行特性 (8)2.1.4 风力发电机组控制策略 (9)2.2 风电场有功功率控制 (10)2.2.1 风电场的基本结构 (10)2.2.2 风电场的控制策略 (11)第3章风电场内有功功率控制策略 (13)3.1 风电场有功功率控制的基本要求 (13)3.2 风电场有功功率工作模式 (13)3.3 风电场有功功率控制状态 (14)3.5 风电场实测数据对比 (15)3.5.1 风电场电气接线 (15)3.5.2 单台风力发电机组测试 (15)第4章结论 (19)参考文献 (20)第1章绪论1.1 课题研究背景相比于常规的火电和燃气电站,风电场的有功调节能力十分有限。
大规模风电场集中有功控制策略研究

GUO Ho n g - me i , L I Xu , YANG C h a o , F U Yu a n , DU Ho n g - t a o
( 1 . S c h o o l o f E l e c t r i c a l E n g i n e e r i n g , N o r t h e a s t D i a n l i U n i v e r s i t y , J i l i n 1 3 2 0 1 2 , C h i n a ;
Ab s t r a c t : T h e p a p e r a n a l y z e s t h e i n l f u e n c e o f w i n d p o we r wi t h d i f f e r e n t c a p a c i t y o n t h e f r e q u e n c y a t p o i n t o f c o mmo n c o u p l i n g , a n d p u t s f o r w a r d t h e c e n t r a l i z e d c o n t r o l s t r a t e g y o f a c t i v e p o w e r o f t h e wi n d f a m . T r h e p a p e r c o n t r o l s wi n d f a r m o u t p u t i n t h e f o r m o f
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风电场有功功率控制系统的研究作者:孔朝志摘要:在分析风力发电机组有功功率控制的基础上,提出风电场的有功功率控制策略。
利用MATLAB/Simulink环境,建立风电场功率控制系统的仿真模型。
以电网调度给定功率波动为例,对风电场的有功功率调节过程进行仿真研究。
通过理论研究和仿真分析,验证了风电场有功功率控制策略的可行性和有效性。
关键词:风力发电,风电场,有功功率控制,功率分配0. 引言风电是一种具有间歇性、波动性的电源,大规模风电场的建设给电网调度和运行都带来了挑战。
国家电网公司制定的Q/GDW 392-2009《风电场接入电网技术规定》中指出,风电场应具备有功功率调节能力,能根据电网调度部门指令控制其有功功率输出。
因此,为了实现对有功功率的控制,风电场需配置有功功率控制系统,接收并自动执行调度部门远方发送的有功功率控制信号,确保风电场最大有功功率值及有功功率变化值不超过电网调度部门的给定值。
在电网紧急情况下,风电场应根据电网调度部门的指令控制其输出的有功功率,并保证风电场有功功率控制系统的快速性和可靠性。
必要时,可通过安全自动装置快速自动切除或降低风电场有功功率。
1. 风电场有功功率控制的原理由于风能的间歇性和随机性,精确预测风电功率难度非常大。
从电网运行角度进行风电有功功率控制,难以像火电、水电等常规电源一样做到随时按照电网调度的要求在指定出力下运行,而且为了有效利用风能资源,必须尽可能保证风电出力的最大化。
因此,风电有功功率控制有以下2种方式:1) 最大出力控制模式。
即在保证电网安全稳定的前提下,根据电网风电接纳能力计算各风电场最大出力上限值,风电场出力低于上限值时处于自由发电状态(爬坡速率必须满足要求),超出本风电场最大出力上限值时,可根据其他风电场空闲程度占用其他风电场的系统资源,以达到风电出力最大化与风电场之间风能资源优化利用的目标。
2) 出力跟踪控制模式。
即以各风电场风电功率预测为依据,经控制中心站安全校核后下发各风电场发电计划,各风电场必须实时跟踪发电计划进行有功功率的调整。
实现有功功率控制,需要解决以下两大技术难题:1) 系统的架构设计。
即如何根据现有的信道条件、可用设备资源和允许投资总额情况,设计整个系统的架构,保证系统的可靠性和可行性,同时还要考虑系统在今后一段时间内的可扩展性。
2) 系统的控制策略设计。
控制策略设计是系统设计的核心,调度运行人员对风电场调度运行的控制经验和控制方法均体现在控制策略设计中。
通过有功控制系统对控制策略的自动实施,代替调度运行人员对风电场的实时控制,减少调度运行人员与风电场之间频繁的业务联系和复杂的计算,让其专注于对全网的监控。
合理的控制策略设计同时也能最大限度地利用风能资源和电网输电通道资源,提高风电接纳能力和各风电场发电量,加强对风电场的管理和控制。
2. 风电场有功功率控制系统的设计2.1 风电场功率控制系统根据有功功率控制的基本思路,本文设计了如图1所示的风电场功率控制系统。
图1 风电场功率控制系统由图1可知风电场功率控制系统的工作原理,该系统中风电机组和本地负荷直接或间接地连接到升压站(T)的低压侧母线B0,其中风电场中的风电机组包含有可控部分和不可控部分。
通过高压侧母线B1风连接到电网。
在并网模式下,整个系统就相当于一个微电网简化模型,母线为其公共连接点(PPC)。
风电场经升压站注入电网的有功功率为P Grid,风电场中各风电机组注入母线B0的有功功率为和P CDP,本地负荷消耗的功率为P UDP。
那么对于母线B0有如下的有功功率平衡关系:(1)风电场功率控制系统的主要目的是集中控制输入电网的有功功率,使得风电场也能和传统的发电站一样参与对电网的控制。
根据电网调度中心的要求,可获得有功功率的参考信号P ref。
又由于风电场公共连接点(PCC点)的有功功率输出信号可测量,所以通过有功功率管理系统可确保风电场的输出功率参考值(P Cref为可控部分机组的参考值,P Uref为失控部分机组的参考值),然后再将P Cref转换成单台风电机组的输入功率参考信号(P Cref.i,i=1,2…,n)。
P Cref和P Uref的表达式为:(2)式中,m表示可控部分机组的台数,n表示不可控部分机组的台数。
2.2风电场功率管理系统图2 风电场功率管理系统风电场功率管理系统原理框图如图2所示,其控制方法如下:(1)测量得到PPC点有功功率P mea,根据有功功率的参考信号P ref可得设定值和测量值的有功功率偏差VP',再通过功率偏差来控制机组的启动和停机;(2)PCC点频率测量值P mea与给定目标频率P ref进行比较,将所得差值的绝对值记为频率偏差Vf,然后通过频率控制模块计算有功功率调整目标VP f;(3)将功率偏差VP'和有功功率调整目标VP f比较,数值较大者记为VP,若VP大于设定的阀值则进入下一步,若不成立则返回原点;(4)计算风电场有功功率的变化率,求得的变化率必须满足风电场接入电网技术规定,若不符合标准应加限幅器,再设定调整时间,并计算出调整时间内有功功率增量,作为PI模块的输入量;(5)有功功率增量经过PI模块的PI调节后,输出调整时间内的有功功率参考值P Aref,为了避免控制作用过于频繁,本文选用了带死区的PI控制算法;(6)根据可控部分和不可控部分机组运行数量,按比例分配有功功率参考值P Aref,将可控部分输出功率值P Cref输入功率分配模块,转换成功率调整指令向所属区域发送输入功率参考值P Cref.i,改变去相应有功功率输出。
2.1.1带死区的PI控制算法在计算机控制系统中,为了消除由于频繁动作所引起的振荡,可采用带死区的PID控制算法,控制算式为:(3)式中,e(k)为偏差,e o是一个可调参数,其具体数值可根据实际控制对象由实验确定。
若e o太小,会使控制动作过于频繁,达不到稳定被控对象的目的;若e o太大,则系统将产生较大的滞后。
带死区的控制系统实际上是一个非线性系统,当时,数字调节器的输出为0;当时,数字输出调节器有PID输出。
2.2.2有功功率分配策略在设计风电场有功功率分配策略时,应当避免分配给风电机组的有功指令超出机组的能力范围,其次要求风电场实际的有功出力应与调度指令相一致。
为充分利用各台机组的有功无功容量和尽可能避免机组视在功率饱和,本方案的有功分配原则是:有功可能出力越大的机组,风电场分配给它的有功任务越多。
根据上面的原则,按比例分配的算法,则在额定风速以下,风电场控制系统的输出功率参考值P Cref和每台风电机组的输入功率参考信号P ref.i之间的转换关系可表示为:(4)式中,表示风电场内各受控机组的最优机械功率之和,表示第i 台风电机组的最优机械功率,其表达式为:(5)式中,为风轮机的最优功率系数。
在同一风电场中,空气密度p i近似相同。
对于同一型号的风电机组具有相同的叶片扫过面积A i和近似的最优功率系数(βi均为0)。
那么,由式(4),(5)可得:(6)式中,k pi表示第i台风电机组的有功分配系数。
假如P ref.i小于400kW,则直接令P ref.i等于400kW。
当风电场风速超过额定风速后,就直接根据风电机组运行的台数等比例分配有功功率。
3 风电场有功功率控制系统的仿真3.1 风电场功率管理系统仿真模型根据前面介绍的基本控制策略,利用MATLAB/Simulink中的仿真模块实现风电场功率管理系统的设计。
MATLAB/Simulink仿真软件具有强大的功能,其中Simulink模块化的结构有助于将复杂的风电系统分解为各个简单的基本“物理”模块,适宜用来分析风力发电机组的各种运行状态。
而且软件本身带有设计好的双馈型风力发电机组模块,可以直接调用。
本文设计的风电场功率管理系统仿真模型如下图所示。
图3 风电场功率管理系统Simulink模型由图3可知,整个系统可以八个模块,分别是:时间控制模块,主要作用是提供采样周期和记录风机的启停时间;启停控制模块,其功能是根据需要控制风力发电机组的启动和停机;风电场模块,主要是模拟风电场的运行,包含有4台可控风机和1台不可控风机;功率测量模块,主要任务是测量风机实际发出的有功功率;功率分配模块和功率系数模块,主要是用于分配参与有功功率控制风机的功率给定值;PI控制模块,主要作用是控制风机实际功率与给定功率的匹配;数据显示模块,可以监控单台风机的运行状态和整个风电场的有功功率变化。
3.2 风电场功率管理系统仿真运行利用设计的风电场功率管理系统,可以模拟风电场的实际运行状态,其中整个风电场的有功功率变化如下图所示。
图4 风电场功率管理系统仿真运行从图4可看出,WindTurbine1,2,3,4是可控风机,在600s的运行周期内,大部分时间都能很好的跟踪功率给定,符合预期的目标。
WindTurbine5是不可控风机,处于自由运行状态。
整个风电场5台风机的总功率也能基本达到给定的状态,波动也不频繁。
图5 风电场功率管理系统仿真运行风速4 总结风电场通过集中控制策略协调控制所有风机的有功功率,可以有效地为电网提供稳定高效的风场电能,改善风电并网的电压稳定性。
同时,本文所介绍的有功功率分配算法只是实现了基本的功率控制功能,但还不是最优的控制策略,不能充分考虑风力发电机组的各种约束实现功率最优分配,这需要后面进一步的研究分析。