电加热炉温度控制系统(DOC)
基于单片机PID算法的电加热炉温度控制系统设计

基于单片机 PID算法的电加热炉温度控制系统设计摘要:电加热炉的温度控制具有升温单向性,大惯性,时变性,纯滞后等特点,其控温过程存在非线性波动等问题。
本文采用AT89C51单片机基于PID算法设计了一种电加热温度控制系统。
仿真实验表明,本系统能够有效提高电加热炉温度控制的鲁棒性,符合新形势下对炉温调控的实际需求。
关键词:电加热炉;温度控制;单片机;PID算法1引言电加热炉在冶金、化工、机械等领域具备广泛的用途,但是它是一个多时变、存在物理耦合、本质非线性的复杂系统,传统的基于滞后反馈的控制律无法平衡炉温检测与炉温调控之间的时间同步关系,容易造成整个加热炉炉温调控系统的温度非线性波动、间歇性振荡,引起炉温调控器的参数变化。
因此提高电加热炉的温度控制水平,是当今工业控制技术的主要研究方向之一。
常规控制方法难以实现较高的控制精度和响应速度。
相比之下,经典的增量PID控制算法,无需针对控制对象建立数学模型,便可实现较发复杂系统的精确控制。
本文基于PID算法,提出设计了一套电加炉控制方法,核心控制芯片采用AT89C51系列单片机,具备数据采集、调控、显示、报警等多项功能,实现了对温控系统的设计和模拟仿真,能有效改善电加热炉温度控制系统的性能。
2总体方案设计本系统采用以AT89C51单片机为核心的温度控制系统,通过温度传感器PT100采样实时温度,并通过变送器将温度最终转换为电压信号通过A/D转换器0808将其转换为数字信号,送入单片机与给定值进行比较,运用PID算法得出控制结果,送显示并进行控制(图1)。
图1 系统总体设计方案图2.1系统硬件选择单片机是指将微处理器、存储器和输入/输出接口电路集成在一块集成电路芯版上的单片微型计算机。
单片机主要应用于工业控制领域,用来实现对信号的检测、数据的采集以及对应用对象的控制。
它具有体积小、重量轻、价格低、可靠性高、耗电少和灵活机动等许多优点。
单片机是微型计算机的一个重要分支,特别适合用于智能控制系统。
炉温控制系统

鉴于单片机的水温控制系统目录纲要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3第一章序言⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 31.1背景和意⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 31.2内容概括⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 31.3告概括⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5第二章要求2.1要求⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 62.2原件清⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6第三章系方案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯73.1系的要求⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯73.2系的控制部分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯73.3系的控制方式⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7第四章系硬件路⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯84.1STC12C5A60S2最小系⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 84.2DS18B20感器路⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯94.3矩⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯104.4数管示模⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯114.5蜂器警路⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12第五章系方法和果⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13第六章⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13附A系程序代2/24【纲要】温度是工业控制对象主要的参数之一,怎样准备而稳固的控制恒温在一些领域是十分重要的,因为遇到被控对象的特征的影响,使得控制系统难以被控制,因此设计一个高性能的温度控制系统是特别有价值的。
本系统采纳STC89C52单片机为控制单元,以PID控制算法为控制方法并用LABVIEW设计上位机及时监测温度。
硬件电路包含矩阵键盘、1602液晶显示、蜂鸣器报警电路等。
该系统经过试考证明能够正确控制水温,偏差在+-1℃,并可设计所需的恒温。
【重点字】单片机STC89C52、PID、恒温第一章序言1.1课题背景和意义在现代化的工业生产中,电流、电压、温度、流量和流速都是常用的主要控制参数。
比如在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各种加热炉、锅炉进行恒温控制。
电加热炉控制系统的设计

基于PLC控制的加热炉温度控制系统设计

课程设计姓名张镇炀学号********班级电气优创0801摘要温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。
加热炉温度控制在许多领域中得到广泛的应用。
这方面的应用大多是基于单片机进行PID 控制, 然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, PLC 在这方面却是公认的最佳选择。
加热炉温度是一个大惯性系统,一般采用PID调节进行控制。
随着PLC功能的扩充在许多PLC控制器中都扩充了PID 控制功能, 因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的。
本设计是利用西门子S7-300PLC控制加热炉温度的控制系统。
首先介绍了温度控制系统的工作原理和系统的组成,然后介绍了西门子S7-300PLC和系统硬件及软件的具体设计过程。
关键词:西门子S7-300PLC,PID,温度传感器,固态继电器目录摘要 (I)Abstract ........................................... 错误!未定义书签。
第一章引言 ....................................... 错误!未定义书签。
1.1 系统设计背景............................... 错误!未定义书签。
1.2 系统工作原理 (IV)1.3 系统设计目标及技术要求 (IV)1.4 技术综述 (IV)第二章系统设计 (V)2.1 控制原理与数学模型 (V)2.1.1 PID控制原理 (V)2.1.2 PID指令的使用注意事项 (VIII)2.2 采样信号和控制量分析 (IX)2.3 系统组成 (IX)第三章硬件设计 ................................................... X I3.1 PLC的基本概念 (XI)3.1.1 模块式PLC的基本结构 (XII)3.1.2 PLC的特点 (XIII)3.2 PLC的工作原理 (XIV)3.2.1 PLC的循环处理过程 (XIV)3.2.2 用户程序的执行过程 (XVI)3.3 S7-300 简介 (XVI)3.3.1 数字量输入模块 (XVII)3.3.2 数字量输出模块 (XVII)3.3.3 数字量输入/输出模块 (XVII)3.3.4 模拟量输入模块 (XVII)3.3.5 模拟量输出模块 (XVIII)3.4 温度传感器 (XVIII)3.4.1 热电偶 (16)3.4.2 热电阻 (17)3.5 固态继电器 (XX)3.5.1 概述 (18)3.5.2 固态继电器的组成 (18)3.5.3 固态继电器的优缺点 (19)第四章软件设计 ................................................. X XII4.1 STEP7编程软件简介 (XXII)4.1.1 STEP7概述 (XXII)4.1.2 STEP7的硬件接口 .......................... .. (XXII)4.1.3 STEP7的编程功能 (XXII)4.1.4 STEP7的硬件组态与诊断功能 (XXIII)4.2 STEP7项目的创建 (XXIV)4.2.1 使用向导创建项目 (XXIV)4.2.2 直接创建项目 (XXIV)4.2.3 硬件组态与参数设置 (XXIV)4.3 用变量表调试程序 (XXVI)4.3.1 系统调试的基本步骤 (XXVI)4.3.2 变量表的基本功能 (XXVII)4.3.3 变量表的生成 (XXVIII)4.3.4 变量表的使用 (XXVIII)4.4 S7-300的编程语言 (XXIX)4.4.1 PLC编程语言的国际标准 (XXIX)4.4.2 STEP7中的编程技术 (XXX)结束语 ......................................................... X XXIV 致谢 (33)参考文献 (34)附录 (35)1.1系统设计背景近年来,加热炉温度控制系统是比较常见和典型的过程控制系统,温度是工业生产过程中重要的被控参数之一,冶金﹑机械﹑食品﹑化工等各类工业生产过程中广泛使用的各种加热炉﹑热处理炉﹑反应炉,对工件的处理均需要对温度进行控制。
温度自控电加热炉工作原理

温度自控电加热炉工作原理
温度自控电加热炉是一种通过控制电流和加热时间来维持恒定温度的加热设备。
其工作原理如下:
1. 电源供电:将电加热炉连接到电源上,通过开关打开电流供应。
2. 温度传感器:电加热炉内部配备了温度传感器,用于检测当前炉内的温度。
3. 控制系统:电加热炉配备了一个智能控制系统,根据温度传感器的反馈信号,实时监测和调节炉内温度。
4. 控制信号:控制系统会根据设定的温度值与当前测量值进行比较,生成控制信号。
5. 电流调节:根据控制信号,控制系统会调节电流的大小,通过调整电流的传输量来控制炉内的加热速度。
6. 加热时间控制:控制系统还会根据控制信号,控制加热时间的长短,以实现温度的持续控制。
7. 反馈机制:通过不断监测和调节加热过程中的温度变化,控制系统能够及时调整电流和加热时间,以保持设定的恒定温度。
总结:温度自控电加热炉通过温度传感器、控制系统和电流调节来实现对加热过程的控制,以达到恒定温度的目的。
这种炉
子广泛应用于工业生产中的高温加热过程,提高了生产效率和产品质量。
电加热炉温度单片机控制系统

高, 稳定性和复现性较好, 抗氧化性强 , 价格便宜 ) 对 温度 进行检 测 。由于 温度 是非 线 性 输 出 的 , 而与 输 入
的m V信号 成线性 关 系 , 以在 软 件 上将 此 非 线 性 关 所 系加 以修正 , 以便 正 确 反 映输 入 mV信号 与 温 度 之 间 的关 系 。A C 89把检 测 到 的 连续 变化 的 温 度模 拟 D 00 量转换 成离 散 的数字 量 , 入 到单片机 中进行 处理 。 输 C )键盘输 入 的选 择 : 用 4片 B D拨 码 盘作 为 采 C 温度设 定的输 入单元 , 入范 围 为 0— 99, 输 99 可满 足本 系统 的要求 。每位 B D码 盘 占 4条线 , C 通过 上 拉 电阻 接人 85 25可编 程并 行 IO扩展 口。4片 B D码 盘 占 / C
单片机以其高可靠性 、 高性能价格比、 控制方便简
单 和灵活 性大等 优点 , 在工业 控制 系统 、 能化 仪器 仪 智 表等诸多 领域得 到广泛 应用 。采用 单片机 进行 炉温 控 制 , 以提高控制 质量 和 自动 化水平 。 可
码盘输人。由 A 8C 1 T 9 5 构成 的核心控制器按智能控
( 辽宁科技大学计算机科 学与工程学院, 辽宁省鞍山市 144 ) 104
摘 要 : 对 电加 热 炉温度控 制 由于非 线性 、 针 大滞 后 、 时变性 等特 点很 难 用数 学方法 建 立精 确 的
数 学模型 , 用传 统 的控 制理 论 和 方法很 难达 到好 的控制 效 果 , 绍 了一种 新 型的应 用单 片机 A 8 C 1 介 T 9 5 对 其进行 智能控 制的控 温 系统 。 系统 通过硬 件 电路 和软 件 程序 实现 智 能控 制 , 述 了硬 件 原理 图和 描
加热炉控制系统要点

加热炉控制系统要点1.温度控制:加热炉是用来提供高温环境的设备,因此温度控制是其最基本的功能。
控制系统应该能够根据工艺要求对加热炉的温度进行精确控制。
这可以通过在炉内安装温度传感器,并与控制系统连接来实现。
控制系统应该能够读取传感器的数据,并根据预设的温度范围来调节炉内的加热设备。
2.压力控制:加热炉在工作过程中需要维持一定的内部压力,以保证炉内温度的稳定性和燃烧效果。
控制系统应该能够监测加热炉内的压力,并通过调节进气和排气量来维持压力在合适的范围内。
3.燃料供给控制:加热炉的燃料供给对于平稳的燃烧效果至关重要。
控制系统应该能够监测燃料的流量和压力,并根据需要进行精确的控制。
例如,在炉内温度过低时,控制系统应该能够增加燃料供给来提高温度。
4.温度保护:加热炉的操作范围必须在安全范围内,超过限定的高温范围可能导致炉子损坏或者危险。
因此,控制系统应该具备温度保护功能,一旦温度超过设定范围,就应该自动切断加热设备的电源,并发出警报信号,以防止事故的发生。
5.远程监控和控制:加热炉控制系统应该具有远程监控和控制的功能,方便工作人员在不同的位置对炉子进行实时监测和操作。
通过与计算机或者移动设备相连,工作人员可以远程监控加热炉的运行状态,并对其进行必要的调整和控制。
6.数据记录和分析:加热炉控制系统应该能够将每次加热过程的相关数据进行记录,并能够生成相应的报表和图表。
这些数据可以用于对加热炉的性能进行分析和评估,有助于改进和优化生产过程。
7.系统安全性:加热炉控制系统应该具备一定的安全性能,以避免操作失误和不当操作引发的事故。
例如,可以设置密码保护功能,只有经过授权的人员才能对控制系统进行操作。
此外,还可以设置紧急停机按钮等安全装置,以便在紧急情况下快速切断炉子的电源。
综上所述,一个优秀的加热炉控制系统应该具备温度、压力和燃料供给等参数的精确控制能力,同时具备远程监控和数据分析功能。
通过有效地控制加热炉的操作,可以提高生产效率,保证产品质量,提升安全性能。
基于单片机的电加热炉温度控制系统的设计【开题报告】

开题报告电气工程及其自动化基于单片机的电加热炉温度控制系统的设计一、课题研究意义及现状在冶金、化工、建材、机械、食品、石油等各类工业中,广泛使用着加热炉、热处理炉、反应炉等,炉子温度控制是工业对象中一个主要的被控参数。
过去曾使用常规PID控制或继电-接触器控制,自动化程度低,动态控制精度差,满足不了日益发展的工艺技术要求。
由于电热锅炉控制存在较大难度,经研究和实验提出了电加热锅炉的循环投切和分段模糊控制的控制模式,较好地解决了电加热锅炉控制的理论和实际问题。
国内电加热炉控制有四个发展阶段:第一阶段:手动控制、温度仪表显示第二阶段:顺序控制器或PLC程控器,温度仪表参与控制第三阶段:全PLC控制第四阶段:专用电脑控制用电加热锅炉专用电脑取代通用的PLC,更取代温控表。
它具有全PLC控制的全部优点,并克服了全PLC控制的全部缺点,可产品化,成本低,易与各种电热锅炉配套,配备最先进和成熟的控制程序,现场参数可由一般操作人员在现场进行设置和解决。
因此电加热锅炉专用电脑控制器已被广泛采用。
电功率输出的元件分为有机械触点和无机械触点两大类。
前者是交流接触器,后者是可控硅,交流接触器只能用作有级功率调节,优点是主回路完全电气隔离,耐过流和过压能力较强、自身耗电小、发热量也小、价格较低,缺点是有机械动作噪声,触点寿命较短。
可控硅可以用作无级功率调节,也可用于有级功率调节,优点是无机械动作噪声,触点寿命较长,缺点是主回路不能完全关断,过电流和过电压能力差,自身耗电较大,需要强制散热,价格较高。
本系统使用可控硅为输出的元件。
二、课题研究的主要内容和预期目标采用自动控制原理和单片机技术,对PID算法和单片机控制功能进行研究和设计,由可控硅元件来实现温度控制电路。
了解当前国内外电加热炉的研究与其产品市场;熟悉单片机技术,PID算法,可控硅元件等,为将来从事电子产品控制研发、制造及经营等方面工作打下基础。
毕业设计的具体内容:(1)研究和设计使用MCS-51单片机控制功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计说明书 设 计 题 目 电加热炉温度控制系统 完 成 日 期 2013 年 7 月 12 日 专 业 班 级 自动化12本 设 计 者 指 导 教 师 课程设计成绩评定 专 业 自动化 班 级 自动化12本 姓 名 学 号 教研室主任 指导教师 指导教师评语:
签字: 年 月 日 设计成绩:
签字: 年 月 日 目录 前言…………………………………………………………………………………………………1 第一章 设计方案概述……………………………………………………………………………..2 1.1 设计内容……………………………………………………………………………………….2 1.2 设计方案……………………………………………………………………………………….2 第二章 硬件部分设计……………………………………………………………………………..2 2.1温度检测电路…………………………………………………………………………………..2 2.2单片机连接电路………………………………………………………………………………..3 2.3 LCD显示部分………………………………………………………………………………….4 2.4按键与报警电路………………………………………………………………………………..5 2.5加热控制电路部分……………………………………………………………………………..5 第三章 软件部分设计……………………………………………………………………………..6 3.1周期采样程序…………………………………………………………………………………..6 3.2数字滤波程序…………………………………………………………………………………..6 3.3 PID程序………………………………………………………………………………………...7 3.4总程序…………………………………………………………………………………………...9 心得与体会………………………………………………………………………………………...10 参考文献…………………………………………………………………………………………...11 设 计 用 纸
1 前 言 温度是工业对象中一种重要的参数,特别在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉和反应炉等。由于炉子的种类不同,因此所采用的加热方法及燃料也不同,如煤气、天然气、油和电等。但是就其控制系统本身的动态特性来说,基本上属于一阶纯滞后环节,因而在控制算法上亦基本相同。 本次设计是电加热炉温度自动控制系统。该系统利用单片机可以方便地实现对PID参数的选择与设定;实现工业过程中PID控制。它采用温度传感器热电偶将检测到的实际炉温进行A/D转换,送入计算机中,与设定值比较出偏差。对偏差按PID规律进行调整,得出对应的控制量来控制固态续电器、调节电炉的加热功率,从而实现对炉温的控制。利用单片机实现温度智能控制,能自动完成数据采集、处理、转换、并进行PID控制。在设计中应该注意,采样周期不能太短,否则会使调节过程过于频繁,这样,不但执行机构不能反应,而且计算机的利用率也大为降低;采样周期不能太长,否则会使干扰无法及时消除,使调节品质下降。 设 计 用 纸
2 第一章 设计方案概述 1.1 设计内容 某工业电炉在对产品进行加工的过程中,炉温从室温上升到1000℃应为30min,然后温度保持到1000℃,其时间为1小时。最后断电,使电炉自然冷却。电炉的加热源是热阻丝,利用大功率可控硅控制热阻丝两端所加的电压大小,来改变流经热阻丝的电流,从而改变电炉炉内的温度。 炉温控制的基本原理是:改变可控硅的导通角即改变电热炉加热丝两端的有效电压,有效电压可在0~140V内变化。温度传感器是通过一只热敏电阻及其放大电路组成,温度越高其输出电压越小。外部LED灯的亮灭表示可控硅的导通与关断的占空比时间,如果炉温低于设定值则可控硅导通,系统加热,否则系统停止加热,炉温自然冷却到设定值。 设计要求为:一个以单片机为核心,包括主要过程输入输出通道及主要接口,外配LED显示、键盘操作以及包括传感变送器及执行器的小型计算机控制系统。 1.2 设计方案 该控制系统使用单片机作为微处理器,连接温度传感器、A/D转换、温度控制电路,并附加显示部分及键盘部分。它可以实时地显示温度,实现对温度的自动控制并设有报警电路。还可以通过键盘对PID参数进行设置。 该控制系统使用热电偶测出电阻炉实际温度并转换成电压信号。此电压信号经过温度检测电路转换成与炉温相对应的数字信号送入单片机,而单片机经过数据处理后,控制显示部分显示温度。此外,将温度与设定值比较,根据设定计算出控制量,通过控制电阻丝两端交流电压的通断时间比例来实现电阻丝发热量的控制。
第二章 硬件部分设计 2.1温度检测电路 该部分采用热电偶传感器,该传感器具有价廉、精度高、构造简单、测量范围宽(通常从-50℃~1600℃)及反应快速的优点。 热电偶传感器采用MAX6675,其引脚功能图如下: 表1 MAX6675引脚功能图
引脚号 名称 功能 1 GND 接地端 2 T- 热电偶负极(使用时接地) 3 T+ 热电偶正极 4 VCC 电源端 5 SCK 串行时钟输入端 6 CS 片选信号 7 S0 数据串行输入端 8 NC 悬空不用 设 计 用 纸 3 MAX6675的数据输出分为3位串行接口,因此只需要占用微处理器的3个I/O口。图3为温度检测电路图,图中串行外界时钟由微处理器的P2.6提供,片选信号由P2.5提供,转换数据由P2.7读取。热电偶的模拟信号由T+和T-端输入,其中T-需接地。MAX6675的转换结构将在SCK的控制下连续输出。
图1 温度检测电路 热电偶工作原理如下:热电偶产生的热电势,经过低噪声电压放大器A1和电压跟随器A2放大、缓冲后,得到热电势信号U1,在经过S4送至ADC。电压可由如下公式来近似计算: )(℃0)V/(41U1TT
2.2单片机连接电路 本设计选用了ATMEL公司的AT89C52单片机,该型号单片机片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,内部集成了微处理器、储存器、I/O接口、定时/计数器、中断系统、串行接口等基本部件。完全能满足控制要求。 此外,考虑到该设计中需使用显示输出、A/D转换、键盘输入、报警电路、信号输出等外部扩展功能,固选用经典的8255作为并行输出接口,方便外部数据寻址。 最小实现系统示意如下 设 计 用 纸
4 图2最小实现系统原理图 2.3 LCD显示部分 在该温度控制系统中,选用AMPIRE 128X64型LCD作为显示部件,该液晶模块可以显示汉字及图形,内置8192个中文汉字(16X16点阵),128个字符(16X16点阵),及64X256点阵显示RAM。可与CPU直接接口,提供两种界面来连接微处理器:8位并行及串行两种连接方式。具有多种功能:光标显示、画面移位、睡眠模式。AMPIRE 128X64型LED驱动电路如下所示。
图3 LCD显示电路 设 计 用 纸
5 2.4按键与报警电路 按键控制电路如下图所示,分别接在单片机P1.0~P1.3口。当触发式按键闭合时,单片机P1.0~P1.3的管脚由“1”变为“0”。当触发式按键断开时,单片机P1.0~P1.3为高电平“1”。 报警电路采用黄、红、绿三种颜色的发光二极管进行显示,黄灯亮表示温度偏低,绿灯亮表示温度正常,红灯亮表示温度过高。电路如图4所示。
图4 按键、报警电路 2.5加热控制电路部分 MOC3021可以即时触发,只要输入引脚1输入15mA的电流,输出端6引脚、4引脚之间就会导通,内部双向晶闸管导通,触发外部晶闸管导通,当MOC3021输入引脚输入电流为0时,内部双向晶闸管关断,从而外部晶闸管也关断,从而外部晶闸管也关断,通过单片机来控制导通和关断的时刻,从而实现智能调压。 热阻丝两端用220V交流进行加热,因此要控制热阻丝功率,可以通过调功实现,即控制交流电的通断时间比例来实现。把交流电经全波整流后通过三极管变成过零脉冲,在反相后加到单片机的中断控制端作为同步基准脉冲。使用定时器T0计时移相时间Ta,然后发出触发脉冲,改变可控硅的导通角即改变电热炉加热丝两端的有效电压,实现炉温控制。电路如图5所示。
图5 可控硅控制电路 设 计 用 纸
6 第三章 软件部分设计 在该温度控制程序中,温度信号要经过周期采样、数字滤波、PID运算、输出等过程,其过程如图6所示。
图6 信号流程图 3.1 周期采样程序 在计算机内部,执行算法时,需要将外部信号进行离散化处理,因此需要对外部模拟信号进行周期采样。从理论上讲,采样频率越高,失真越小,但从控制器本身而言,大都依靠偏差信号E(k)进行调节器计算。当采样周期T太小时,偏差信号E(k),也会过小,此时计算机将会失去调节作用,而采样周期T过长又会引起误差。因此采样周期必须综合考虑,一般而言采样周期根据外部信号变化快慢而定,如在该温度控制系统中,水箱温度变化比较缓慢,因此采样时间T应该适当大一些。其程流程图如图7.
图7 周期采样程流程图 3.2 数字滤波程序 在工业过程控制系统中,由于被控对象所处的环境比较恶劣,常存在干扰源,如环境温度、电场和磁场等,使得采样值可能偏离真实值。对于各种随机出现的干扰信号,在计算机控制系统中,应该对采样的数据进行判断,以及平滑加工,以提高信号的可信度,减小乃至消除各种干扰及噪声,以保证系统的可靠性。 数字滤波有如下优点: 1.无须增加任何硬件设备,只要在程序进入数据处理和控制算法之前,附加一段数字滤波程序即可。
周期采样程序 定时计数器初始化 初值设置 开定时计数器 中断程序 定时器重赋初值 启动A/D转换 读取转换结果
周期 采样 数字 滤波 PID 运算 输
出 信号