LabView的温度监测系统

合集下载

基于LabVIEW的温度检测系统

基于LabVIEW的温度检测系统

基于LabVIEW的温度检测系统摘要温度是个基本的物理量,他是工业生产过程中最普遍,最重要的工艺参数之一。

随着工业的不断发展,对温度测量的要求也越来越高,而且测量范围也越来越广。

合理的温度范围和精确地温度的测量队提高产品的质量、产量,降低消耗,实现工业生产自动化,均有积极作用,因此温度检测技术的研究具有重大意义。

本系统是一个基于LabVIEW的温度检测系统,采用多点温度检测,能检测较大区域内的温度变化,主要包括上位机和下位机两个部分。

下位机使用的DS18B20传感器和AT89C51单片机。

上位机和下位机的通讯方式是串口通讯。

上位机使用的是虚拟仪器LabVIEW,主要功能是实时温度的显示,温度曲线时间轴的显示,历史温度曲线的显示以及超限温度报警。

关键字:Labview 温度测量ABSTRACTThe temperature is a basic physical quantity, it is one of the most common industrial processes, the most important process parameters. With the continuous development of industry, the requirements for temperature measurement is also getting higher and higher, and the increasingly wide range of measurement. Reasonable temperature range and accurate temperature measurement team to improve product quality, production, reduce consumption, to achieve the automation of industrial production, had an active role in temperature sensing technology is of great significance.This system is a temperature sensing system based on LabVIEW, using multi-point temperature detection can detect temperature changes within the larger area, including two parts of the upper and lower machine. The next bit machine using the DS18B20 sensors and AT89C51 microcontroller. The upper and lower machine communication is serial communication. The host computer using a virtual instrument LabVIEW, the main function is to display real-time temperature, the temperature curve Timeline display, alarm display and gauge the temperature of the historical temperature curve.Keywords: LabVIEW Temperature survey目录摘要 (I)ABSTRACT (II)目录 (III)第1章引言 (1)1.1 背景 (1)1.2国内外研究现状 (2)1.2.1温度传感器 (2)1.2.2 上位机 (3)1.2.3 上位机与下位机通讯方式 (4)1.3研究内容 (4)第2章系统设计 (5)2.1下位机设计 (5)2.1.1 温度检测模块设计 (5)2.1.2 上位机和下位机的通讯方式设计 (6)2.1.3 下位机主控模块设计 (6)2.2上位机设计 (6)第3章下位机的软硬件实现 (9)3.1硬件实现 (9)3.1.1 DS18B20温度传感器 (9)3.1.2 单片机外围电路 (10)3.2下位机软件设计 (11)第4章上位机实现 (13)4.1上位机总体模块 (13)4.2模块分析 (13)4.2.1 串口通讯模块 (13)4.2.2 数据处理模块 (15)4.2.3 数据显示模块 (17)4.2.4 温度报警模块 (20)第5章调试 (21)5.1硬件调试 (21)5.2软件调试 (21)5.2.1 调试准备 (21)5.2.2 运行结果 (22)第6章结束语 (24)致谢 (25)参考文献 (26)附录I 源代码 (27)附录II 下位机电路图 (44)附录II 上位机程序图 (45)第1章引言1.1 背景温度是表征物体冷却程度物理量, 在许多工业生产和科学实验过程中,温度参数的检测和控制都非常重要。

基于LabVIEW的自动温度监控系统的设计

基于LabVIEW的自动温度监控系统的设计

基于LabVIEW的自动温度监控系统的设计作者:何乾伟,王小魏,黄致尧来源:《科技视界》 2015年第27期何乾伟王小魏黄致尧(西南石油大学石油与天然气工程学院,四川成都610500)【摘要】传统的温度监控器功能完全依赖硬件实现,有精度低、速度慢、价格昂贵等缺点,根据温度监控的需要,结合虚拟仪器的特点,基于LabVIEW的开发平台设计了一种自动温度监控系统。

该系统主要完成了前面板和程序框图的设计,具有使用灵活、效率高、自动化程度高、操作简单、可实现用户自定义其功能等优点。

【关键词】温度监控系统;LabVIEW;程序;设计0引言借助于仪器仪表技术和计算机技术的飞速发展,虚拟仪器随之诞生,20世纪80年代,美国国家仪器公司首先提出虚拟仪器的概念,和传统仪器相比,虚拟仪器具有使用灵活、效率高、自动化程度高、操作简单、可实现用户自定义其功能等优点。

虚拟仪器已成为未来仪器发展的一种趋势,但这也对现有虚拟仪器技术提出了更高的要求。

本文重点介绍了一种基于LabVIEW而设计的数字化自动温度监控系统,在很大程度上解决了传统温度检测仪器的诸多弊端。

该仪器可以由用户自由地组合计算机平台、硬件、软件、以及各种实现应用所需要的附件,这种灵活性可由供应商定义,功能固定、独立的传统仪器无法与之相比。

1自动温度监控系统的设计指标该自动温度监控系统基于LebView而设计,在实现传统温度监控器所实现的功能的基础上,结合虚拟仪器的特点进而增加了一些传统仪器不具备的新功能,该设计实现的主要功能如下:1)实时监测温度数值;2)自动分析已检测温度,显示最大温度、最小温度和平均温度;3)设定温度的监控范围,出现异常时报警提示;4)华氏温度与摄氏温度之间互相转换;5)用户可以控制监测过程。

2自动温度监控系统的设计2.1前面板的设计前面板的设计主要包括显示部分和控制部分,具体设计步骤如下,图1为前面板的设计图。

2.1.1显示部分显示部分主要包括一个波形图表和多个字符串显示控件,波形图表用于显示当前温度值和规定的报警温度温度上下线,字符串显示控件分别用于显示设定的温度上下线、当前温度值、最大温度、最小温度和平均温度,以便于更加直观的观察各项温度的精确值。

基于LabVIEW的温度测量及数据采集系统设计

基于LabVIEW的温度测量及数据采集系统设计

LabVIEW技术大作业题目:基于LabVIEW的温度测量及数据采集系统设计学院(系):信息与通信工程学院班级:通信133学号:xxxxxxxxx姓名:xxxxxx一、设计背景LABVIEW最初就是为测试测量而设计的,因而测试测量也就是现在LABVIEW最广泛的应用领域。

经过多年的发展,LABVIEW在测试测量领域获得了广泛的承认。

至今,大多数主流的测试仪器、数据采集设备都拥有专门的LabVIEW驱动程序,使用LabVIEW可以非常便捷的控制这些硬件设备。

同时,用户也可以十分方便地找到各种适用于测试测量领域的LabVIEW工具包。

这些工具包几乎覆盖了用户所需的所有功能,用户在这些工具包的基础上再开发程序就容易多了。

有时甚至于只需简单地调用几个工具包中的函数,就可以组成一个完整的测试测量应用程序。

二、系统方案本设计的程序框图和前面板图分别是图1.1和图1.2,“温度测量及数据采集系统.vi”是一个测量温度并将测试数据输出到文件的VI。

此VI中的温度是用一个20至40的随机整数来代替的,测试及采集100个温度值,每隔0.25秒测一次,共测定25秒。

在数据采集过程中,VI将在前面板的波形图上实时地显示测量结果。

采集过程结束后,波形图上显示出温度数据曲线,数组中显示每次的温度测量数据,并在显示控件中显示测试中温度的最大值、最小值和平均值,同时把测量的温度值以文件的形式存盘。

图1.1温度测量及数据采集程序框图1.2温度测量及数据采集前面板图二、系统各模块介绍2.1循环模块For循环用于将某段程序循环执行指定的次数,是总数接线端,指定For循环内部代码执行的次数。

如将0或负数连接至总数接线端,For循环不执行。

是计数接线端,表示完成的循环次数。

第一次循环的计数为0。

本设计使用for循环将循环内的程序循环100次。

2.1 for循环2.2等待模块本设计使用等待函数来等待指定长度的毫秒数,并返回毫秒计时器的值。

基于LabVIEW的温度监控系统设计

基于LabVIEW的温度监控系统设计

1引 言 随 着 周 内施 T 技 术 和 铣 刨 机 行 业 的迅 速 发 ,我 们 需 要
S= u △t / ( Z o) :2 I / ( Z九 )
式中: u . T作 速 度 , 最 高 T 作速 度 3 0 m / ai r n : u 5 ~l 6 m/ s : R 一
参数 , :u , / u 。
O . 3 m、 0 . 4 m; Z . 转 了. 每排 ) J 具个 数 , 3个 : . 运 动 学 进行人量铣刨过程分析 、 铣刨功率、 作 业 阻 力 计算 及 作 业 参 数 转 了 半 。 匹 方 面 的试 验 , 这 就 离 小 开 相 的 铣 刨 试验 系统 , 即 铣 刨 试 验 。 通 过 训 研 发 现 日前 困 内矬 的 关 于 铣 刨 转 了 的试 验 俞 , 转 了血 为 6 0 0 am, r 转 了 转速 分 别 为 l 6 m/ s 、 5 m/ s 时, 则
显示 、 存储等 功能 。L a b VI E W 通过 VI S A 串口驱动程序和 单 片机进行通讯,采集温度数据。上位 需求 , 如开始、 暂停 、 上下 限设置 等 。同时本系统还具有 良好的人机界面,可 以通过温度计和
图 2 串 口电路
关键词 : L a b V I E W
温度采集 串口 单片机
文献标识码 : A
D S 1 8 B 2 0
文章编号: 1 0 0 7 . 3 9 7 3 ( 2 0 1 3 ) 0 0 9 . 1 3 4 . 0 2
中图分类号 : T P 2 7 7
1 引 言
2 . 2串 口通 讯模 块
环境温度监测在工农业生产 、 科研 、 工作和 生活 中占有重

基于LabVIEW的多点报警温度监测系统设计

基于LabVIEW的多点报警温度监测系统设计

0 引言
温 度 是 工 业 生 产 中 的 重 要 监 测 参 数 ,对 保 证 产品加工质量和安全生产具有至关重要的作用 。
1 系统 架构和功 能
基 于 La b VI E W 的 多 点 报 警 温 度 监 测 系 统 架 构如 图l 所 示 。 该 构 架 由温 度 监 测 装 置 和 基 于 L a b VI E W 的上 位 机 程 序 两 部分 组 成 ,温 度监 测装 置和 上位 机程 序通 过 串 口进行通 信 。
方便 的优 点 ,但 缺少 灵活 性 。如 难 以在监 测 装置 端
实 现 报警 、不 能通 过上 位机 控 制监 测装 置设 置报 警 温 度 等,而报警 是温度监 测系统 极其重要 的功能 。 针对 以上 问题 ,本文提 出了一种基 于L a b V I E W 的 多点报警 温 度监 测系统 。该 系统能 在上 位机 设 置
吴卓葵,许胜棋
WU Zh u o . k u i ,XU Sh e n g - q j
( 仲恺农业 工程 学院 自动化学 院,广 州 5 1 0 2 2 5 ) 摘 要 :为 了实现温度的远 程监测和多 点报警 ,提 出了一种基于 L a b V l E W的多 点报警温度 监测 系统。 该系统由 以A T 8 9 0 5 1 为核心 的温度监测 装置和基于 L a b V l E W的上位机程序 组成 ,它们之 间通 过 串 口进 行通信 实现 远程 监测。系 统的主要特 点是 能自动在 温度监测装 置和上位 机程序 同步 温 度测量值 和报警温 度 ,当温 度超过 设定 的报 警温度 时 ,能同时在温度 监测装置 和上位机 程 序报警,具有实时多点报警和控制灵活的优点。理论分析和实验结果表明,设计的系统能实 现温 度监测和 报警功 能 ,与 基于数据 采集卡 的温度 监测 系统相 比 ,报警 成功率提 高1 9 % ,且 具有 更好的扩展性。 关键词 : 温度监测 ; 温度 报警 ;L a b V l E W;串口通信

基于LabVIEW的多功能温度测控系统设计

基于LabVIEW的多功能温度测控系统设计

升级维护方便等优点,是延长医院精密仪器使用寿命、降低医 院运行成本的有效途径。
1 系统总体结构
该系统采用软硬件相结合的控制结构,软件部分采用 Lab⁃ VIEW 编写监控程序,实现实时温度的仪表和数字显示、实时温 度曲线显示、接收的短信指令和号码显示、温度数据存储和报 警等功能[1][2]。硬件部分以 ATC89C52RC 为主控芯片,短信收发 模块由 GSM 模块构成,温度采集模块由 DS18B20 温度传感器[3] 构成,将采集到的温度由单片机处理后通过串口传到计算机。 当温度超过或低于设置的报警温度时会发出报警信号,并经过 单片机处理后发出相应的控制指令,然后驱动对应的继电器去 启动制冷或加热设备,同时把报警信息编辑成短信通过 GSM 模
收稿日期:2021-03-20 作者简介:李春辉(1991—),男,河南周口人,硕士,研究方向为智能控制与检测技术。
66
软件设计开发
本栏目责任编辑:谢媛媛
第 17 卷第 17 期 (2021 年 6 月)
块发送给管理人员的手机,管理人员可通过 GSM 模块把编辑好 的控制指令传给单片机,单片机处理后产生对应的控制指令去 控制继电器,进而启动制冷或加热设备。这样可增加了管理人 员的态势感知能力,使其能够及时了解到仪器室的动态。另 外,管理人员还可通过网页浏览器访问 WEB 服务器发布的温 控前面板页面,查看仪器室当前温度,实现远程监控。系统结 构框图如图 1 所示。
图 8 收到的短信内容图
图 6 短信显示程序图
4 网络远程监测
传统的温控系统往往在现场操作,这给管理带来不便。网 络技术拓展了虚拟仪器的使用范围,使之能通过局域网或 In⁃ ternet 实现远程测控的功能。本系统运用 LabVIEW 自身具有的 Web 发布功能,实现系统的网络与远程控制[4]。首先配置好服 务器目录与日志配置、客户端可见 VI 配置和客户端访问权限 配置,在客户端通过网页浏览器输入地址打开服务器上的 VI, 浏览器操作方式只需要在客户端安装一个 Run-Time Engine 就 可远程操作。Web 发布时保存网页的面板如图 7 所示。

使用LabVIEW进行电力设备温度监测实现电力设备的温度分布和故障预警

使用LabVIEW进行电力设备温度监测实现电力设备的温度分布和故障预警

使用LabVIEW进行电力设备温度监测实现电力设备的温度分布和故障预警随着电力设备的不断发展和智能化水平的提高,为了确保电力系统的正常运行和设备的安全性,温度监测和故障预警变得越来越重要。

本文将介绍如何使用LabVIEW(Laboratory Virtual Instrument Engineering Workbench)来实现电力设备的温度监测、温度分布分析以及故障预警。

一、LabVIEW的简介LabVIEW是一款由美国国家仪器公司(National Instruments)开发的图形化编程软件,它提供了丰富的工具和功能,方便用户进行数据采集、控制与分析。

LabVIEW以其易于使用和灵活性而在各个领域得到广泛应用,包括电力系统监测与控制。

二、电力设备温度监测的重要性电力设备温度的监测对于确保设备的正常运行和延长其寿命至关重要。

设备过热会导致设备短路、爆炸等故障,进而导致停电和损坏。

因此,及时监测设备的温度并进行故障预警是非常关键的。

三、使用LabVIEW实现电力设备温度监测在LabVIEW中,通过传感器采集温度数据,并利用数据采集模块实时获取温度数据。

可以使用各种类型的传感器,如热电偶、红外线传感器等。

在编程方面,可以使用LabVIEW提供的图形化编程工具轻松构建温度监测系统。

通过搭建界面,可以实现对温度数据进行实时监测和显示。

并且,可以通过设置报警阈值,一旦温度超过设定值就会触发警报,提醒操作员进行处理。

此外,LabVIEW还可以通过网络实现远程监测,方便操作员随时随地获取设备温度信息。

四、电力设备温度分布分析除了实时监测外,LabVIEW还可以通过数据分析功能进行电力设备温度分布分析。

通过采集多个传感器的温度数据,并利用LabVIEW进行数据处理,可以得到设备温度在不同位置上的分布情况。

通过数据可视化工具,如图表和热力图等,可以直观地观察到电力设备的温度分布情况。

这将帮助工程师了解设备运行时的热点和冷点,有助于优化设备的布局和散热系统的设计。

基于LABVIEW的温度高低温报警系统

基于LABVIEW的温度高低温报警系统

摘要随着信息领域各种技术的发展,在数据采集方面的技术也取得了很大的进步,采集数据的信息化是目前社会的主流发展方向。

各种领域都用到了数据采集,在石油勘探,地震数据采集领域已经得到应用。

随着测控技术的迅猛发展,以虚拟仪器为核心的数据采集系统已经在测控领域中占到了统治地位。

数据采集系统是将现场采集到的数据进行处理、传输显示、储存等操作。

数据采集系统主要功能是把模拟信号变成数字信号,并进行分析、处理、存储和显示。

温度数据采集系统广泛的应用于人们的日常生活中。

本文主要介绍了利用labview实现温度采集系统的设计过程,系统结构时利用了labview的虚拟仪器技术,由labview虚拟系统自生成温度信号,通过温度的采集实现对温度数据的采集,预处理,分析,储存和显示。

全文的内容主要包括:虚拟仪器的发展,labview虚拟仪器的介绍,温度采集系统的制作与调试最后是自己在本次制作中的不足与展望。

关键词:labview ,虚拟仪器,温度监测系统目录1、研究背景 (1)1.1温度的研究背景 (1)1.2研究的意义 (1)2、课题方案 (2)2.1实验目的 (2)2.2实验目标 (2)3、研究思路和方法 (3)3.1实验内容和步骤 (3)3.2单元设计模块 (3)4、前面板界面设计 (7)5、程序框图设计 (8)6、程序运行情况 (9)7、心得体会 (10)参考文献 (11)1、研究背景1.1温度的研究背景传统靠人工控制的温度、湿度、液位等信号的测压﹑力控系统,外围电路比较复杂,测量精度较低,分辨力不高,需进行温度校准(非线性校准、温度补偿、传感器标定等);且它们的体积较大、使用不够方便,更重要的是参数的设定需要有其它仪表的参与,外界设备多,成本高,因而越来越适应不了社会的要求。

在对多类型、多通道信号同时进行检测和控制中,传统的测控系统能力有限。

如何将计算机与各种设施、设备结合,简化人工操作并实现自动控制,满足社会的需求,成为一个很迫切的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传感器技术与应用课程设计 设计题目:___ _基于LabView的温度监测系统_______ 班 级:__________ _电信08-1班________________ 学 号:__________ _ __29号____________________ 姓 名:_______ _ _李锦明 _______ _________ 指导老师:_____ ____ ___张静_ ________________ 设计时间:__________2011年12月5日_ _________ 摘要 随着信息领域各种技术的发展,在数据采集方面的技术也取得了很大的进步,采集数据的信息化是目前社会的主流发展方向。各种领域都用到了数据采集,在石油勘探,地震数据采集领域已经得到应用。随着测控技术的迅猛发展,以虚拟仪器为核心的数据采集系统已经在测控领域中占到了统治地位。 数据采集系统是将现场采集到的数据进行处理、传输显示、储存等操作。数据采集系统主要功能是把模拟信号变成数字信号,并进行分析、处理 、存储和显示。温度数据采集系统广泛的应用于人们的日常生活中。 本文主要介绍了利用labview实现温度采集系统的设计过程,系统结构时利用了labview的虚拟仪器技术,由labview虚拟系统自生成温度信号,通过温度的采集实现对温度数据的采集,预处理,分析,储存和显示。全文的内容主要包括:虚拟仪器的发展,labview虚拟仪器的介绍,温度采集系统的制作与调试最后是自己在本次制作中的不足与展望。

关键词:labview ,虚拟仪器,温度监测系统 目录 中文摘要 ....................................................................................................................... 1 一 概述 ......................................................................................................................... 3 1.1研究背景 .......................................................................................................... 3 1.1.1温度的研究背景 .................................................................................... 3 1.1.2 LABVIEW的发展 ................................................................................. 3 1.2研究的意义 ...................................................................................................... 4 二 设计的任务以及要求 ............................................................................................. 4 2.1设计的任务 ...................................................................................................... 4 2.2设计的要求 ...................................................................................................... 4 三 系统化设计 ............................................................................................................. 4 3.1系统设计方案 .................................................................................................. 4 3.1.1 结构框图 ............................................................................................... 4 3.2.2 系统工作原理 ...................................................................................... 5 3.2单元模块设计 .................................................................................................. 5 3.2.1单元模块的设计 .................................................................................... 7 3.2.2单元模块的链接 .................................................................................... 9 四 系统调试 ................................................................................................................. 8 4.1 前面板布置………………………………………………………………8 4.2 系统运行以及分析………………………………………………………………….8 五 结论与展望 ............................................................................................................. 9

六 仪器设备清单 ......................................................................................................... 9 参考文献 ....................................................................................................................... 9 一 概述 1.1研究背景 1.1.1 温度的研究背景 传统靠人工控制的温度、湿度、液位等信号的测压﹑力控系统,外围电路比较复杂,测量精度较低,分辨力不高,需进行温度校准(非线性校准、温度补偿、传感器标定等);且它们的体积较大、使用不够方便,更重要的是参数的设定需要有其它仪表的参与,外界设备多,成本高,因而越来越适应不了社会的要求。在对多类型、多通道信号同时进行检测和控制中,传统的测控系统能力有限。如何将计算机与各种设施、设备结合,简化人工操作并实现自动控制,满足社会的需求,成为一个很迫切的问题。温度检测是现代检测技术的重要组成部分,在保证产品质量、节约能源和安全生产等方面起着关键的作用。由单片集成电路构成的温度传感器的种类越来越多,测量的精度越来越高,响应时间越来越短,因其使用方便、无需变换电路等特点已经得到了广泛的应用。随着社会的发展、科技的进步以及人们生活水平的逐步提高,各种方便于生产的自动控制系统开始进入了人们的生活,以单片机为核心的温度采集系统就是其中之一。同时也标志了自动控制领域成为了数字化时代的一员。它实用性强,功能齐全,技术先进,使人们相信这是科技进步的成果。温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。单片机具有处理能强、运行速度快、功耗低等优点,应用在温度测量与控制方面,控制简单方便,测量范围广,精度较高。

1.1.2 LABVIEW的发展 上世纪80年代早期,计算机接口变得越来越精细,软件设计的虚拟器界面也越来越友好,苹果公司的Macintosh开发了G语言,这些为功能强大的专业虚拟仪器软件的出现提供了必要基础。不久,NI为基于计算机的测量和自动化开发出了LABVIEW软件包。 LABVIEW的功能不断丰富和强大。LABVIEW用来进来数据采集和控制、数据分析和数据表达,使工程师和科学家能充分利用PC的功能,快速简便地完成自己的工作。经过多年的不断充实,LABVIEW成为丰富、强大的实用工具软件包,内部配有GPIB、VXI、串口和插入式DAQ板的库函数以及全球几百家厂商的仪器驱动程序。围绕这些核心软件还陆续开发出多种附件。 工业发达国家已经将虚拟仪器技术广泛应用于航天、通讯、生物医学、地球物理、电子、机械等各个领域,进行工程技术和科学研究,国内对于虚拟仪器的研究与工程也取得了很多成就,在产品性能测试、设备故障诊断、生产过程控制中得到普遍应用。 1.2 研究的意义

生活的需要,方便了生产中对温度的控制,有效的提高了生产质量。外围电路比较简单杂,测量精度较高,分辨力高,使用方便。温度检测是现代检测技术的重要组成部分,在保证产品质量、节约能源和安全生产等方面起着关键的作用。本次毕业设计正是为了完成温度采集而设计的,而且采用了温度传感器LM35,可以说与人们的日常生活是息息相关的,具有很大的现实意义。

二 设计的任务以及要求 本设计是基于labview 的温度监测系统,采用一个随机取值,能用波形显示器显示温度曲线,能实时显示温度,在一定时间内能统计最大值最小值以及平均值,温度达到上限温度或者下限温度时能报警。

三 系统设计 3.1系统设计方案 3.1.1结构框图 结构主要四个部分,为数据采集、波形显示、数据显示和警报 结构框图如下:

相关文档
最新文档