概率论与数理统计第四章习题及答案
概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-=.因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=⎪⎪⎭⎫ ⎝⎛04××=.P (X =1)=⎪⎪⎭⎫ ⎝⎛14××=, P (X =2)= ⎪⎪⎭⎫⎝⎛24××=.P (X =3)=⎪⎪⎭⎫ ⎝⎛34××=, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44××=. 从而E (X )=np =4×=习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j ∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X-2 0 2 k p求)53(),(),(22+X E X E X E .解 E (X )=(-2)+0+2=由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2+02+22=E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[322+5]=如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3+5=4.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xx x x X edx e dx e e e E Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。
概率论与数理统计(经管类)第四章课后习题答案word档

习题4.11.设随机变量X 的概率密度为(1) (2)f(x)={2x, 0≤x ≤1,0, 其他; f(x)=12e -|x |, -∞<x <+∞求E(X)解: (1)E (X )=∫+∞-∞xf (x )dx = ∫10x ∙2xdx =2∙x 32|10=23(2)E (X )=∫+∞-∞xf (x )dx =∫+∞-∞x ∙12e -|x |=02.设连续型随机变量X 的分布函数为F (x )={0, x <-1,a +b ∙arcsinx, -1≤x <1,1, x ≥1.试确定常数a,b,并求E(X).解:(1)f (x )=F '(x )={b 1-x 2, -1≤x <10, 其他∫+∞-∞f (x )dx =∫1-1b 1-x 2dx =b ∙arcsinx|1-1=bπ=1, 即b =1π又因当时-1≤x <1F (X )=∫X-1f (x )dx =∫x-11π∙11-x 2dx =1π∙arcsinx|x-1=1π∙arcsinx +12, 即a =12(2)E (X )=∫+∞-∞xf (x )dx =∫1-1xπ∙11-x 2=03.设轮船横向摇摆的随机振幅X 的概率密度为f(x)={1σ2e-x 22σ2, x >0,0, x ≤0.求E(X).解:E (X )=∫+∞-∞xf (x )dx =1σ2∫+∞0x ∙e -x 22σ2dx =14.设X 1, X 2,….. X n 独立同分布,均值为,且设,求E(Y).μY =1n ∑n i =1X i 解:E (Y )=E (1n ∑ni =1X i )=1n E (∑ni =1X i )=1n ∙n μ=μ5.设(X,Y)的概率密度为f(x,y)={e -y, 0≤x ≤1,y >0,0, 其他.求E(X+Y).解:E (X +Y )=∫+∞-∞∫+∞-∞(x +y )f (x,y )dxdy =∫+∞0∫10(x +y )e -ydxdy =∫+∞012∙e ‒y +y ∙e ‒y dy =326.设随机变量X 1, X 2相互独立,且X 1, X 2的概率密度分别为f 1(x )={2e -2x, x >0,0, x ≤0,求:f 2(x )={3e -3x, x >0,0, x ≤0,(1)E (2X 1+3X 2); (2)E (2X 1-3X 22); (3)E (X 1X 2解:(1)E (2X 1+3X 2)=2E (X 1)+3E (X 2)=2*12+3*13=2(2)E (2X 1-3X 22)==2E (X 1)-3E (X 22)=1-3*∫+∞x 23e -3xdx =1-3*[-∫+∞x 2d(e -3x)]=1-3*[-x 2∙e -3x|+∞0+∫+∞e -3xdx 2]=1-3*[0+∫+∞e -3x∙2xdx]=1-3*[23∫+∞e -3x∙3xdx ]=1-3*23*13=13(3)E (X 1X 2)=E (X 1)E (X 2)=12*13=167.求E(X).解:E (X )=∑i ∑j x i p ij =0*0.1+0*0.3+1*0.2+1*0.1+2*0.1+2*0.2=0.98.设随机变量X 的概率密度为且E(X)=0.75,求常数c 和.f(x)={cx α, 0≤x ≤1,0, 其他.α解:E (X )=∫+∞-∞xf (x )dx =∫10x ∙cx αdx =0.75习题4.21.设离散型随机变量X 的分布律为X -100.512P0.10.50.10.10.2求E (X ),E (X 2),D (X ).解: E (X )=(-1)*0.1+0*0.5+0.5*0.1+1*0.1+2*0.2=0.45E (X 2)=(-1)2*0.1+0*0.5+(0.5)2*0.1+12*0.1+22*0.2=1.025D (X )=(-1-0.45)2*0.1+(0-0.45)2*0.5+(0.5-0.45)2*0.1+(1-0.45)22.盒中有5个球,其中有3个白球,2个黑球,从中任取两个球,求白球数X 的期望和方差.解: X 的可能取值为0,1,2P {X =0}=C 22C 25=0.1P {X =1}=C 13∙C 12C 25=0.6P {X =2}=C 23C 25=0.3E (X )=0∗0.1+1∗0.6+2∗0.3=1.2D (X )=(0‒1.2)2∗0.1+(1‒1.2)2∗0.6+(2‒1.2)2∗0.3=0.144+0.024+0.192=0.363.设随机变量X,Y 相互独立,他们的概率密度分别为f X (x )={2e ‒2x, x >0,0, x ≤0,f Y(y )={4, 0<y ≤14,0, 其他,求D(X+Y).解:D (X +Y )=D (X )+D (Y )=122+(14‒0)212=491924.设随机变量X 的概率密度为f X (x )=12e ‒|x |, ‒∞<x <+∞,求D(X)解:E (X )=∫+∞‒∞x2e ‒|x |dx =0E(X2)=∫+∞‒∞x 22e‒|x|dx=2∫+∞‒∞x22e‒x=∫+∞‒∞x2e‒x=2=D(X) E(X2)‒[E(X)]2=25.设随机变量X与Y相互独立,且D(X)=1,D(Y)=2,求D(X-Y).解: D(X‒Y)=D(X)+D(Y)=1+2=36.若连续型随机变量X的概率密度为f(x)={ax2+bx+c, 0<x<1,0, 其他,且E(X)=0.5,D(X)=0.15.求常数a,b,c.解:E(X)=∫10x(ax2+bx+c)dx=a4+b3+c2=0.5E(X2)=∫10x2(ax2+bx+c)dx=a5+b4+c3=0.15+(0.5)2=0.4∫+∞‒∞f(x)dx=∫10(ax2+bx+c)dx=a3+b2+c=1解得a=12,b=-12,c=3.习题4.31.设两个随机变量X,Y相互独立,方差分别为4和2,则随机变量3X-2Y的方差是 D .A. 8B. 16C. 28D. 442.设二维随机变量(X,Y)的概率密度为f(x,y)={18(x+y), 0≤x≤2,0≤y≤2,0, 其他求Cov(X,Y).解:E(X)=∫20[∫20x8(x+y)dy]dx=∫20(x28∙y+x8∙y22)|20d x=76E(Y)=∫20[∫20y8(x+y)dx]dy=76E(XY)=∫20[∫20xy8(x+y)dy]dx=43Cov(X,Y)=E(XY)‒E(X)E(Y)=43‒76∗76=‒1363.设二维随机变量(X,Y)的概率密度为f(x,y)={ye‒(x+y), x>0,y>0,0, 其他求X与Y的相关系数ρxy.解:E(X)=∫+∞0(∫+∞0xye‒(x+y)dy)dx=1E(Y)=∫+∞0(∫+∞0y2e‒(x+y)dx)dy=∫+∞0(∫+∞0y2e‒x e‒y dx)dy=∫+∞0y2e‒y dy=‒∫+∞0y2d(e‒y)=‒y2e‒y|+∞0+∫+∞0e‒y d(y2)=0+∫+∞0e‒y∙2ydy=2∫+∞0e‒y∙ydy=2E(XY)=∫+∞0(∫+∞0xy2e‒(x+y)dy)dx=2Cov(X,Y)=E(XY)‒E(X)E(Y)=2‒2∗1=0所以ρxy=Cov(X,Y)D(X)D(Y)=04.设二维随机变量(X,Y)服从二维正态分布,且E(X)=0, E(Y)=0, D(X)=16, D(Y)=25, Cov(X,Y)=12,求(X,Y)的联合概率密度函数f(x,y).布解:f (x,y )=12πσ1σ21‒ρ2e‒12(1‒ρ2){(x ‒μ1)2σ12‒2ρ(x ‒μ1)(y ‒μ2)σ1σ2+(y ‒μ2)2σ22}∵E (X )=0,E (Y )=0∴μ1=0, μ2=0,∵D(X)=16, D(Y)=25∴σ1=4,σ2=5∵Cov(X,Y)=12∴ρ=Cov (X,Y )D(X)D(Y)=124∗5=35∴f (x,y )=132πe‒2532(x 216‒3xy 50+y 225)5. 证明D(X-Y)=D(X)+D(Y)-2Cov(X,Y).证:D (X ‒Y )=E [X ‒Y ‒E (X ‒Y )]2=E [(X ‒E (X ))‒(Y ‒E (Y ))]2=E [(X ‒E (X ))2]‒2E [X ‒E (X )]∙E [Y ‒E (Y )]+E [(Y ‒E (Y ))2]=D (X )+D (Y )‒2Cov(X,Y)6. 设(X,Y)的协方差矩阵为,求X 与Y 的相关系数ρxy.C =(4‒3‒39)解:∵C =(4‒3‒39)∴Cov (X,Y )=‒3, D (X )=4,D (Y )=9∴ρxy =Cov (X,Y )D(X)D(Y)=‒32∗3=‒12自测题4一、 选择题1.设随机变量X 服从参数为0.5的指数分布,则下列各项中正确的是 B .A. E(X)=0.5, D(X)=0.25 B. E(X)=2, D(X)=4C. E(X)=0.5, D(X)=4 D. E(X)=2, D(X)=0.25解: 指数分布的E (X )=1λ, D (X )=1λ22. 设随机变量X,Y 相互独立,且X~B(16,0.5),Y 服从参数为9的泊松分布,则D(X-2Y+1)= C.A.-14B. 13C. 40D. 41解: D (X )=npq =16∗0.5∗0.5=4, D (Y )=λ=9D (X ‒2Y +1)=D (X )+4D (Y )+D (1)=4+4∗9+0=403. 已知D(X)=25,D(Y)=1, ρxy=0.4, 则D(X-Y)= B .A.6B. 22C. 30D. 464. 设(X,Y)为二维连续随机变量,则X 与Y 不相关的充分必要条件是 C .A. X 与Y 相互独立B. E(X+Y)=E(X)+E(Y)C. E(XY)= E(X)E(Y)D. (X,Y)~N()μ1,μ2,σ12,σ22,0解: ∵X 与Y 不相关∴ρxy =0, ∴Cov (X,Y )=0∴E(XY)= E(X)E(Y)5.设二维随机变量(X,Y)~N(),则Cov(X,Y)= B .1,1,4,9,12A. B. 3C. 18D. 3612解: ∵ρxy =12=Cov (X,Y )D(X)D(Y)=Cov (X,Y )2*3, ∴Cov (X,Y )=36.已知随机变量X 与Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)= A .A. 3B. 6C. 10D. 12解: ∵X~U (‒1,3),Y~U (2,4)∴E (X )=a +b 2=‒1+32=1, E (Y )=2+42=3E (XY )= E (X )E (Y )=1∗3=37.设二维随机变量(X,Y)~N(),Ø(x)为标准正态分布函数,则下列结论中错误的是 C .0,0,1,1,0A. X 与Y 都服从N(0,1)正态分布 B. X 与Y 相互独立C. Cov(X,Y)=1 D. (X,Y)的分布函数是Φ(x)∙Φ(y)二、 填空题1.若二维随机变量(X,Y)~N(),且X 与Y 相互独立,则ρ= 0 .μ1,μ2,σ12,σ22,0解:Cov(X,Y)=0∵2.设随机变量X 的分布律为 3 .X -1012P0.10.20.30.4令Y=2X+1,则E(Y)= 3 .解: E(2X+1)=(2*-1+1)*0.1+(2*0+1)*0.2+(2*1+1)*0.3+(2*2+1)*0.4=33.已知随机变量X 服从泊松分布,且D(X)=1,则P{X=1}= .e ‒1解: ∵ D (X )=λ=1∴P {X =1}=λ1e ‒λ1!=e ‒14.设随机变量X 与Y 相互独立,且D(X)= D(Y)=1,则D(X-Y) =2 .5.已知随机变量X 服从参数为2的泊松分布,= 6.E (X 2)解: ∵E (X )=λ=2,D (X )=λ=2,∴ E (X 2)=E 2(X )+D (X )=4+2=66.设X为随机变量,且E(X)=2, D(X)=4,则= 8 .E(X2)7.已知随机变量X的分布函数为F(x)={0, x<0x4, 0≤x<41, x≥4则E(X) = 2 .解: f(x)=F'''"(x)={14, 0≤x<40, 其他E(X)=∫40x4dx=08.设随机变量X与Y相互独立,且D(X)=2, D(Y)=1,则D(X-2Y+3)= 6 .三、设随机变量X的概率密度函数为f(x)={32x2, ‒1≤x≤1,0, 其他试求: (1)E(X), D(X); (2).P{|X‒E(X)|<2D(X)}解:(1) E(X)=∫1‒132x3dx=0D(X)=E(X2)‒E2(X)=∫1‒132x4=32∙x55|1‒1=35(2)P{|X‒E(X)|<2D(X)}=P{|X|<65}=∫65‒65f(x)dx=∫1‒132x2dx=1四、设随机变量X的概率密度为f(x)={x 0≤x≤12‒x, 1≤x<20, 其他试求: (1)E(X), D(X); (2),其中n为正整数.E(X n)解:(1)E(X)=∫1x2dx+∫21x(2‒x)dx=13+13=1D(X)=E(X2)‒E2(X)=∫10x3dx+∫21x2(2‒x)‒1=14+(143‒154)‒1=16(2)E(X n)=∫1x n+1dx+∫21x n(2‒x)=2(2n+1‒1)(n+1)(n+2)五、 设随机变量X 1与X 2相互独立,且X 1~N(), X 2~N().令X= X 1+X 2, Y= X 1-X 2.μ,σ2μ,σ2求: (1)D(X), D(Y); (2)X 与Y 的相关系数ρxy.解:(1)D (X )=D (X 1+X 2)=D (X 1)+D (X 2)=σ2+σ2=2σ2D (Y )=D (X 1‒X 2)=D (X 1)+D (X 2)=2σ2(2) Cov (X,Y )=E (XY )‒E (X )E (Y )=0ρxy =Cov (X,Y )D(X)D(Y)=0六、 设随机变量X 的概率密度为f (x )={2e ‒2x, x >0, 0, x ≤0.(1)求E(X),D(X);(2)令,求Y 的概率密度f Y (y).Y =X ‒E(X)D(X)解:(1)E (X )=∫+∞2xe ‒2x dx =12D (X )=E (X 2)‒E 2(X )=∫+∞02x 2e ‒2x dx ‒14=12‒14=14(2)Y =X ‒E(X)D(X)=X ‒1212=2X ‒1由Y=2X-1得, X’=X =Y +1212=∴f Y (y )={2e‒2(Y +12)∙12,Y +12>00, Y +12≤0{e ‒(y +1), y >‒10, y ≤‒1七、 设二维随机变量(X,Y)的概率密度为f (x,y )={2, 0≤x≤1,0≤y ≤x,0, 其他求: (1)E(X+Y); (2)E(XY); (3). P{X +Y ≤1}解:(1)E (X +Y )=∫10dx ∫x 02(x +y )dy =∫102x 2+x 2dx =1(2)E(XY)=∫1dx∫x2xy dy=∫1x3dx=14(3) P{X+Y≤1}=∬x+y≤1f(x,y)dxdy=∫12(∫1‒yy2dx)dy=∫122‒4ydy=12八、设随机变量X的分布律为X-101P 131313记Y=X2,求: (1)D(X), D(Y); (2) ρxy.解:(1)E(X)=(‒1)∗13+0∗13+1∗13=0D(X)=(‒1‒0)2∗13+(0‒0)2∗13+(1‒0)2∗13=23 E(Y)=(‒1)2∗13+0∗13+12∗13=23D(Y)=(1‒23)2∗13+(0‒23)2∗13+(1‒23)2∗13=29E(XY)=(0∙‒1)∙9+(1∙‒1)∙29+(0∙0)∙19+(0∙1)∙29+(1∙0)∙19+(1∙1)∙29=0Cov(X,Y)=E(XY)‒E(X)E(Y)=0‒0∗23=0ρxy=Cov(X,Y)D(X)D(Y)=0。
概率论与数理统计 数字特征习题答案

结束放映
概率论
(3)设X的概率密度为f (x) Ae x2 ,则D( X ) 1 2
1 + f ( x )dx= + Ae x2dx
-
-
= A + e x2dx A - A1
+ x 2
0
2
DX EX 2 EX 2 2
概率论
概率论
证明(2)X与 X 不相互独立,因为任给x 0
P(X x, X x) P( X x)
随机变量函数 的数学期望
P(X x)P( X x)
奇函数
(3) E( X X ) x | x | 1 e x dx 0
2
Cov( X , X ) E( X X ) E( X )E( X ) 0
概率论
第四章 数字特征 习题及答案
结束放映
概率论
一、选择题
(1)掷一颗均匀的骰子600次, 那么出现"一点"
次数的均值为 B
A)50
B)100
C)120 D)150
解 : 设X "出现一点的次数",则X ~ b(600, 1) 6
E(X ) 600 1 100 6
结束放映
概率论
(2)设X1, X 2, X3相互独立服从参数 3的泊松分布,
结束放映
概率论
解 : X "甲组砝码称重物时所用的砝码数" Y "乙组砝码称重物时所用的砝码数" Z"丙组砝码称重物时所用的砝码数" 物品的重量是一个随机变量 U , U k (k 1,2, ,10) , P{U k} 1 10 (k 1,2, ,10) .
概率论与数理统计第四章补充习题

第四章补充习题一、 填空题1、 设随机变量X 则Y X 和的相关系数XY ρ= ,=),(2222Y X Cov Y X 的协方差和 。
2、设随机变量Y X 和的数学期望分别为22和-,方差分别为41和,而相关系数为5.0-,则根据切比雪夫不等式{}≤≥+6Y X P 。
3、设随机变量Y X 与相互独立且均服从正态分布2(0,)N , 则)(Y X E -= ,=-)(Y X D 。
4、随机变量ξ服从指数分布,参数λ= 时,72)(2=ξE 。
5、设随机变量Y X ,,2)(-=X E ,4)(=Y E ,4)(=X D ,9)(=Y D ,5.0-=XY ρ, =-+-)323(22Y XY X E 。
6、设随机变量Y X 与的相关系数9.0=XY ρ,若4.0-=X Z ,则=YZ ρ 。
7、设Y X ,同分布,密度函数均为⎪⎩⎪⎨⎧<<=其它若0102)(2tx xtx f ,使t Y X C E 1))2((=+, 则=C 。
8、设随机变量X 的数学期望和方差均为0,则{}=≠0X P 。
9、将一枚均匀硬币连掷3次,用X 表示正面出现的总次数,Y 表示第一次掷得的正面数, 则=)(XY E ,=),(Y X Cov ,=XY ρ 。
二、选择题1、设随机变量Y X 和独立同分布,记 Y X V Y X U +=-=,,则随机变量V U 与必然( ) (A )不独立, (B) 独立, (C) 相关系数不为零, (D) 相关系数为零。
2、将一枚硬币掷n 次,以Y X 和分别表示正面朝上和反面朝上的次数,则Y X 和的相关系数等于( )。
(A )1- (B) 0 (C)21(D) 1。
3、设随机变量Y X 和相互独立且分别服从正态分布(0, 1)N 和(1, 1)N ,则( )。
(A) {}210=≤+Y X P , (B) {}211=≤+Y X P , (C) {}210=≤-Y X P , (D) {}211=≤-Y X P 。
概率论与数理统计 第四章 随机变量的数字特征 练习题与答案详解

概率论与数理统计 第四章 随机变量的数字特征练习题与答案详解(答案在最后)1.假定每个人生日在各个月份的机会是相同的,求三个人中生日在第一季度的人数的平均.2.100个产品中有5个次品,任取10个,求次品个数的数学期望与方差.3.设随机变量X 的概率密度为)(,e 21)(∞<<-∞=-x x p x试求数学期望EX 及方差DX .4.已知随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤<≤=,,,,,,4140400)(x x x x x F 试求X 的数学期望EX 方差DX .5.对圆的直径作近似测量,设其值均匀地分布在[]b a ,内,求圆面积的数学期望.6.设随机变量X 概率密度为⎪⎩⎪⎨⎧≤≤=其它,,,,020cos )(πx x x f X试求随机变量DY X Y 的方差2=.7.设随机变量ξ只取非负整数值,其概率为{}0)1(1>+==+a a a k P k k,ξ是常数, 试求ξE 及ξD .8.设独立试验序列中,首次成功所需要的次数ξ服从的分布列为:其中q =9.若事件A 在第i 次试验中出现的概率为,i p 设μ是事件A 在起初n 次独立试验中的出现次数,试求μE 及μD .10.随机变量n ξξξ,,,21 独立,并服从同一分布,数学期望为,μ方差为2σ,求这些随机变量的算术平均值∑==ni i n 11ξξ的数学期望与方差.11.设μ是事件A 在n 次独立试验中的出现次数,在每次试验中,)(p A P =再设随机变量η视μ取偶数或奇数而取数值0及1,试求ηE 及ηD .12.设随机变数ξ之概率分布如下:求: (1) ; ]]1[2[2+ξE (2) ])[(2ξξE E -.13.随机变量,)(~x f X⎪⎩⎪⎨⎧<<-≤≤=其它,,,,,,021210)(x x x x x f试计算n EX n (为正整数).14.随机变量aX Y p n B X e ),,(~=,求随机变量Y 的期望和方差. 15.某种产品每件表面上的疵点数服从泊松分布,平均每件上有8.0个疵点.规定疵点数不超过1个为一等品,价值10元,疵点数大于1不多于4为二等品,价值为8元,4个以上者为废品,求:)1( 产品的废品率;)2( 产品的平均价值.16.一个靶面由五个同心圆组成,半径分别为25,20,15,10,5厘米,假定射击时弹着点的位置为Z Y Z ,),(为弹着点到靶心的距离,且),(Y Z 服从二维正态分布,其密度为200222001),(y x ey x f +-=π,现规定弹着点落入最小的圆域为5分,落入其他各圆域(从小到大)的得分依次为4分,3分,2分,1分,求:)1( 一次射击的平均得分;)2( 弹着点到靶心的平均距离.17.若ξ的密度函数是偶函数,且∞<2ξE ,试证ξ与ξ不相关,但它们不相互独立.18.若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立.答案详解1.每个生日在第一季度的概率是41=p .设X 表示三个人中生日在第一季度的人数,则X 服从二项分布,,⎪⎭⎫⎝⎛B 413从而X 的平均为43413)(=⨯=X E2.5.0=EX ,11045=DX3.x -e 21为偶函数,⋅x x-e 21为奇函数,所以,由积分性质知0d e 21=⋅=-∞∞-⎰x x EX x(奇函数在对称区间上的积分值为零)=DX x x P X E x X d )()]([2⎰∞∞--=⨯=-∞∞-⎰x x xd e 212x x x d e 02-∞⎰)(d )(202x x x x --∞-=-=⎰ x x x d e 200⎰∞-+∞2d e 20==⎰∞-x x x 4.342==DX EX ,5.设圆的直径为随机变量X ,圆的面积为随机变量,Y 则24)(X X f Y π==,随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤-=其它,,,,01)(b x a ab x p X , 于是)(12112 d 14d )()())(()(2232b ab a a b x ab x ab x x x p x f X f E Y E b aX ++=⋅-⋅=-⋅===⎰⎰∞∞-πππ6.2220π-=DY7.⎥⎦⎤⎢⎣⎡++=+⋅=∑∑∞=∞=+101)1(11)1(k k k k k a a k a a a k E ξ, 令,且,则10)1(<<=+p p a a ,211)1()1()(p p p p p p p kp k k kk -='-='=∑∑∞=∞= 故a aa a aaE =+-+⋅+=2)11(111ξ.采用同样的方法并利用a E =ξ得⎥⎦⎤⎢⎣⎡++=∑∞=k k a a k a E )1(11122ξ[]k k p k k a ∑∞=+-+=11)1(11 ∑∑∞=∞=-+++=11)1(1111k k k k p k k a kp a ,2322122)1(21)1(1)(1a a p a p a p p a p a p a p a k k +=-⋅++="⎥⎦⎤⎢⎣⎡-++=''++=∑∞=故)1()2()(2222a a a a a D +=-+=E -E =ξξξ 8.21pqD pE ==ξξ,9.设,21n μμμμ+++= 其中⎩⎨⎧=出现次试验若第出现次试验若第A i A i i ,0,1μ,则∑∑===E =ni i ni i p E 11μμ,由试验独立得诸i μ相互独立,从而知=μD )1(11i ni i ni i p p D -=∑∑==μ10.nD E 2,σξμξ== 11.事件A 出现奇数次的概率记为b ,出现偶数次的概率记为a ,则.,++=++=---3331122200n n n n n n n n q p C pq C b q p C q p C a 利用,,n n p q b a q p b a )(1)(-=-=+=+可解得事件A 出现奇数次的概率为 n n p p q b )21(2121])(1[21--=--=,顺便得到,事件A 出现偶数次的概率为n p a )21(2121-+=.η服从两点分布,由此得,{}{}===出现奇数次事件A P P 1ηn p )21(2121--, {}{}===出现偶数次事件A P P 0ηn p )21(2121-+, 所以,=ηE n p )21(2121--,=ηD ][)21(2121[n p --])21(2121n p -+n p 2)21(4141--=.12.(1) 117; (2) 46513.x x f x EX n n d )(⎰∞∞-=x x x x x x n n d )2(d 2110-⋅+⋅=⎰⎰12)212(012212+-+⋅++=+++n x n x n x n n n)21122212(2122+++-+-+++=++n n n n n n n )2)(1(222++-=+n n n 14.n a n a n a p q p q DY p q EY 22)e ()e ()e (+-+=+=, 15.(1) 0.0014; (2) 9.616.(1) 007.3; (2) π2517.设)(x f 是ξ的密度函数,则)()(x f x f =-,由)(x xf 是奇函数可得,0=ξE 从而0=ξξE E .又由于)(x f x x 是奇函数及,2∞<ξE 得ξξξξE E x x f x x E ===⎰∞∞-0d )(,故ξ与ξ不相关.由于ξ的密度函数是偶函数,故可选0>c 使得当{}10<<P <c ξ时,也有{}10<<P <c ξ,从而可得 {}{}{}{}c c P c P c P c P <<=<≠<<ξξξξξ,,其中等式成立是由于{}{}c c <⊂<ξξ,由此得不独立与ξξ.18.设⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛2,2,1, , 1q p d c p b a q :,:ηξ.作两个随机变量 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=**2211,0, ,0, q p d c d q p b a b :,:ηηξξ, 由ξ与η不相关即ηξξηE E E ⋅=得)(bd d b E E +--=**ξηξηηξbd dE bE E E +--=ξηηξ**=--=ηξηξE E d E b E ))((,而,,,}{)(}{)(} {))((d c P d c b a P b a E E d c b a P d c b a E -=-⋅-=-=-=-=--=********ηξηξηξηξ由上两式值相等,再由0))((≠--d c b a 得,,}{}{}{d c P b a P d c b a P -=-==-=-=****ηξηξ 即}{}{}{c P a P c a P =⋅====ηξηξ,. 同理可证}{}{}{d P a P d a P =⋅====ηξηξ,, }{}{}{c P b P c b P =⋅====ηξηξ,, }{}{}{d P b P d b P =⋅====ηξηξ,,从而ξ与η独立.。
《概率论与数理统计》第04章习题解答

第四章 正态分布1、解:(0,1)ZN(1){ 1.24}(1.24)0.8925P Z ∴≤=Φ={1.24 2.37}(2.37)(1.24)0.99110.89250.0986P Z <≤=Φ-Φ==-= {2.37 1.24}( 1.24)( 2.37)(1.24)(2.37)0.89250.99110.0986P Z -<≤-=Φ--Φ-=-Φ+Φ=-+=(2){}0.9147()0.9147 1.37{}0.05261()0.0526()0.9474 1.62P Z a a a P Z b b b b ≤=∴Φ==≥=-Φ=Φ==,,得,,,得2、解:(3,16)XN8343{48}()()(1.25)(0.25)0.89440.59870.295744P X --∴<≤=Φ-Φ=Φ-Φ=-= 5303{05}()()(0.5)(0.75)44(0.5)1(0.75)0.691510.77340.4649P X --<≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 31(25,36){25}0.95442(3,4){}0.95X N C P X C X N C P X C -≤=>≥、()设,试确定,使;()设,试确定,使解:(1)(25,36){25}0.9544X N P X C -≤=,{2525}0.9544P C X C ∴-≤≤+=25252525()()0.954466()()2()10.9544666()0.9772,21266C C C C CC CC +---Φ-Φ=-Φ-Φ=Φ-=Φ=∴==即, (2)(3,4){}0.95XN P X C >≥,331()0.95()0.952231.6450.292C CCC ---Φ≥Φ≥-≥≤-即,,4、解:(1)2(3315,575)XN4390.2533152584.753315{2584.754390.25}()()575575(1.87)( 1.27)(1.87)1(1.27)0.969310.89800.8673P X --∴≤≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= (2)27193315{2719}()( 1.04)1(1.04)10.85080.1492575P X -≤=Φ=Φ-=-Φ=-=(25,0.1492)YB ∴4440{4}(0.1492)(10.1492)0.6664ii i i P Y C -=∴≤=-=∑5、解:(6.4,2.3)X N{}{}1()81(1.055)10.85540.14462.3(85}0.17615 6.451(0.923)(0.923)0.82121()2.3P X P X X P X -Φ>-Φ-∴>>======->-Φ-Φ-Φ6、解:(1)2(11.9,(0.2))XN12.311.911.711.9{11.712.3}()()(2)(1)(2)1(1)0.20.20.977210.84130.8185P X --∴<<=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 设A ={两只电阻器的电阻值都在欧和欧之间} 则2()(0.8185)0.6699P A ==(2)设X , Y 分别是两只电阻器的电阻值,则22(11.9,(0.2))(11.9,(0.2))X N Y N ,,且X , Y 相互独立[]22212.411.9{(12.4)(12.4)}1{12.4}{12.4)}1()0.21(2.5)1(0.9938)0.0124P X Y P X P Y -⎡⎤∴>>=-≤⋅≤=-Φ⎢⎥⎣⎦=-Φ=-=7、一工厂生产的某种元件的寿命X (以小时计)服从均值160μ=,均方差为的正态分布,若要求{120200}0.80P X <<≥,允许最大为多少解:因为2(160,)XN σ由2001601201600.80{120200}()()P X σσ--≤<<=Φ-Φ从而 40402()10.80()0.9σσΦ-≥Φ≥,即,查表得401.282σ≥,故σ≤8、解:(1)2(90,(0.5))XN8990{89}()(2)1(2)10.97720.02280.5P X -∴<=Φ=Φ-=-Φ=-= (2)设2(,(0.5))X N d由808080{80}0.991()0.99()0.99 2.330.50.50.5d d d P X ---≥≥∴-Φ≥Φ≥≥,,,即 从而d ≥ 9、解:22~(150,3),~(100,4)X Y X N Y N 与相互独立,且则(1)2221~(150(100,3)4)(250,5)W X Y N N =+++=()222222~2150100,(2)314(200,52)W X Y N N =+-⨯+-⨯+⨯=-22325~(125,)(125,(2.5))22X Y W N N +== (2)242.6250{242.6}()( 1.48)1(1.48)10.93060.06945P X Y -+<=Φ=Φ-=-Φ=-= 12551255125522212551251255125()1()(2)1(2)2.5 2.522(2)220.97720.0456X Y X Y X Y P P P ⎧+⎫++⎧⎫⎧⎫->=<-+>+⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭--+-=Φ+-Φ=Φ-+-Φ=-Φ=-⨯=10、解:(1)22~(10,(0.2)),~(10.5,(0.2))X N Y N X Y ,且与相互独立22~(0.5,2(0.2))(0.5,(0.282))X Y N N ∴--⨯=-0(0.5){0}()(1.77)0.96160.282P X Y ---<=Φ=Φ=(2)22~(10,(0.2)),~(10.5,)X N Y N X Y σ设,且与相互独立222~(0.5,2(0.2))(0.5,(0.2))X Y N N σ∴--⨯=-+0.90{0}P X Y ≤-<=Φ=Φ由1.28≥,故σ≤11、设某地区女子的身高(以m 计)2(1.63,(0.025))WN ,男子身高(以m 计)2(1.73,(0.05))MN ,设各人身高相互独立。
概率论与数理统计第四章习题参考答案
=
⎡ E⎢
1
⎢⎣ n −1
n i =1
(Xi
−
⎤ X )2 ⎥
⎥⎦
=
1 n −1
⎡ E⎢
⎢⎣
n i =1
X
2 i
−
nX
2⎤ ⎥ ⎥⎦
=
1 n −1
⎡n ⎢ ⎢⎣ i=1
E
(
X
2 i
)
−
nE( X
2⎤ )⎥ ⎥⎦
∑[ ] [ ] =
1 n −1
⎧ ⎨ ⎩
n i =1
D(X i ) + E 2 (X i )
X −µ 3/2
<
⎫ 1.96⎬
=
0.95
⎭
故,正态总体均值 µ 的 95%的置信区间为 (X − 2.94, X + 2.94)
代入样本值得正态总体均值 µ 的 95%的置信区间为(-2.565,3.315)。
(2)当σ 未知时,由 T = X − µ ~ t(n − 1) 即T = X − µ ~ t(3) ,所以
n
−a n
=0 =0
无解。由此不能求得
a,
b
的极大似然估计量。
⎩ ∂b
b−a
解:X
的概率密度为
f
(x)
=
⎪⎧ ⎨b
1 −
a
,
a
≤
x
≤
b
,
⎪⎩ 0, 其它
似然函数为 L(a, b) = 1 , θ1 ≤ xi ≤ θ 2 ,i = 1,2,L, n , (b − a)n
对于给定的样本值 (x1 , x2 ,L, xn )
−
n
D(
概率论与数理统计》课后习题答案第四章
习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。
解 由题意~(5,0.1)X B ,则X 的数学期望为 ()50.10.E X =⨯= 4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。
解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ== 所以地每年因交通事故死亡的平均人数为4人。
5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752ab a b ⎧=⎪⎪+⎨⎪=⎪+⎩可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解1201331221()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求 (1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。
概率论与数理统计答案 第四章习题
(x2
3000x)dx
1 1500 2
x3 3
1500 0
1 1500 2
(
x3 3
1500
x
2
)
3000 1500
500 4(500) (1000) 1500
X -2 0 2
6.设随机变量X的分布律为 pk 0.4 0.3 0.3 求E(X),E(X2),E(3X2+5).
3
解
E( X ) xk pk (2) 0.4 0 0.3 2 0.3 0.2
0),
2t ,
(a 1) a(a),
dx dt
2t
(1)
1,
(1
2)
.
E(X) 02tet
dt
2t
2 0t1 2etdt
2(3 2)
2 1 (1 2)
2
2
E(
X
2
)
0
3
(2t )3
2
2
et
2t
dt
2
2
0
te t
dt
2
2(2)
2
2
20. 设长方形的高(以m计)X~U(0,2),己知长方形的周长(以m计)为 20,求长方形面积A的数学期望和方差.
k 1
3
E( X 2 ) xk2 pk (2)2 0.4 02 0.3 22 0.3 2.8
k 1
3
E(3X2 5) (3xk2 5)pk [3(2)2 5]0.4[302 5]0.3[322 5]0.3 13.4
k1
或 E(3X2+5)= 3E(X2) + 5 = 32.8 + 5 =13.4
概率论与数理统计(I)第四章答案
第四章 大数定律及中心极限定理导 学——极限论在概率研究中的应用本章是承前启后的一章:明晰了“频率与概率的关系”,这是一个遗留问题。
并将《概率论》部分划上了一个句号,这是承前;说它启后,有定理设定:⋯⋯,21,,,n X X X 独立同分布,这一设定在《数理统计》部分一直沿用了下去。
全章由四节组成,§1节特征函数,§2节大数定律,讲了三个定理, §3节随机变量序列的两种收敛性,§4节中心极限定理。
三个定理。
“大数”及“极限”均要求+∞→n ,在实际问题中,n 充分大即可。
§2节主要研究对象为:算术平均值()n X X nX +⋯+=11;§4节的主要研究对象为: nni i X X X +⋯+=∑=11,比n X 1少了。
§2节的学习,不妨先从复习入手。
第二、三章已熟悉了()()⋅⋅D E 及,先推算出21)(,)(σμnX D X E =⋯==⋯=这是核心推导之一,后面学《数理统计》会反复使用,再由契比雪夫不等式及夹逼原理,可推出定理一,其中NX D 2)(σ=中的n1很宝贵。
定理二是由定理一推得的,关键点为:n A X X X n +⋯++=21及X X n n n ni i A ==∑=11,于是可用定理一了。
推导本身是一件很愉快的事。
§2节的三个定理可在比对中学习。
定理一(契)不要求⋯⋯,21,,,n X X X 一定为同分布,(贝)是由定理一(契)的特例。
定理二(马)不要求⋯⋯,21,,,n X X X 独立或同分布。
定理三(辛)不要求)(X D 一定存在,“契”“马”与“辛”的结论均为:μ−→−PX ,即算术平均值依概率收敛于数学期望。
“贝”的结论为:p nn PA −→−,即频率依概率收敛于概率。
这个结论很精致,十分简单了。
翻开§4节,一堆一堆的符号映入眼中,让人头大。
其实,若标准化方法娴熟,这一节并不难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-0.7361=0.2639.因此X 表示一天调整设备的次数时X ~B (4, 0.2639). P (X =0)=⎪⎪⎭⎫⎝⎛04×0.26390×0.73614=0.2936.P (X =1)=⎪⎪⎭⎫ ⎝⎛14×0.26391×0.73613=0.4210, P (X =2)= ⎪⎪⎭⎫ ⎝⎛24×0.26392×0.73612=0.2264. P (X =3)=⎪⎪⎭⎫ ⎝⎛34×0.26393×0.7361=0.0541, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44×0.2639×0.73610=0.0049. 从而E (X )=np =4×0.2639=1.0556习题4-2 设随机变量X 的分布律为 ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题4-3 设随机变量的分布律为求)53(),(),(22+X E X E X E .解 E (X )=(-2)⨯0.4+0⨯0.3+2⨯0.3=-0.2由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2⨯0.4+02⨯0.3+22⨯0.3=2.8E (3X 2+5)=[3⨯ (-2)2+5]⨯0.4+[3⨯ 02+5]⨯0.3+[3⨯22+5]⨯0.3=13.4如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3⨯2.8+5=13.44.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xxxxXedx edx e eeE Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。
因),(y x f 仅在有限区域}10|),{(:≤≤≤x y y x G 内不为零,故各数学期望均化为G 上相应积分的计算。
541212),()(1022====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-xGdy xy dx dxdy xy dxdy y x xf X E 531212),()(1032====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-xGdy y dx dxdy yy dxdy y x yf Y E 211212),()(132====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-xGdy xy dx dxdy xyy dxdy y x xyf XY E 1516)(1212)()(142222222=+=+=+⎰⎰⎰⎰xGdy y y x dx dxdy y y x Y X E 习题4-6 将n 只球)~1(n 号随机地放进n 只)~1(n 盒子中去,一只盒子装一只球,若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:10i i i X i i ⎧=⎨⎩第只球放在第只盒子中第只球没有放在第只盒子中1ni i X X ==∑ 表示所有配对的个数()()11101i i P X P X n n====- 1i EX n∴=111ni i EX EX n n=∴==⨯=∑ 习题4-7 设随机变量X 服从瑞利分布,其概率密度为⎪⎩⎪⎨⎧≤>=-0,0,0,)(222/2x x ex x f x σσ其中0>σ是常数,求)(),(X D X E .解 ⎰⎰∞+∞--∞+∞-==dx e xxdx x xf X E x222/2)()(σσσπσσσσ2)2/1(212)2/3(222/02/122=Γ=Γ==⎰∞+-du e u x u u 令⎰⎰+∞∞--+∞∞-==dx e xx dx x f x X E x222/2222)()(σσ2202222)2(222/σσσσ=Γ==⎰+∞-du ue x u u 令故 222222422))(()()(σπσπσ-=-=-=X E X E X D 习题4-8 设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧≤+=其它,0,1,1),(22y x y x f π试验证:X 和Y 是不相关的,但X 和Y 不是相互独立的. 设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰同理E (Y )=0. 而 Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y +∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关. 下面讨论独立性,当|x |≤1时,1()X f x y 当|y |≤1时,1()Y f y x 显然()()(,).X Y f x f y f x y ≠ 故X 和Y 不是相互独立的.习题4-9 设随机变量),(Y X 具有概率密度⎪⎩⎪⎨⎧≤≤≤≤+=其它,0,20,20),(81),(y x y x y x f求)(,),,(),(),(Y X D Y X Cov Y E X E XY +ρ.解 因),(y x f 仅在有限区域}20,20|),{(:<<<<y x y x G 内不为零,故有⎰⎰⎰⎰+==∞+∞-∞+∞-2020)(8),()(dy y x xdx dxdy y x xf X E⎰⎰=+=+=202020267)1(4|)2(8dx x x dx y xy x⎰⎰⎰⎰+==∞+∞-∞+∞-2020222)(8),()(dy y x x dx dxdy y x f x X E⎰⎰=+=+=20220202235)(4|)2(8dx x x x dx y xy x⎰⎰⎰⎰+==∞+∞-∞+∞-2020)(8),()(dy y x xydx dxdy y x xyf XY E⎰⎰=+=+=202020234)34(4|)2(8dx x x dx y xy xy由x ,y 在f (x ,y )的表达式中的对称性(即在表达式f (x ,y )中将x 和y 互换,表达式不变),得知,35)()(,67)()(22====Y E X E Y E X E且有 3611)67(35)]([)()()(222=-=-==X E X E X D Y D ,而 361364934)()()(),(-=-=-=Y E X E XY E Y X Cov 111)()(),(-==Y D X D Y X Cov XY ρ; 95),(2)()()(=++=+Y X Cov Y D X D Y X D习题4-10 设),(Y X 服从二维正态分布,且)3,0(~N X ,)4,0(~N Y ,相关系数4/1-=XY ρ,试写出X 和Y 的联合概率密度.解 因41,2,3,02121-=====ρσσμμ,故X 和Y 的联合概率密度为 )]4343()16/11(21exp[16/11341),(22y xy x y x f ++---=π)]4343(158exp[53122y xy x ++-=π。