伺服系统在机器视觉中的应用
视觉伺服控制算法优化综述

视觉伺服控制算法优化综述摘要:系统论述了视觉伺服控制的应用现状。
重点介绍了针对不同的实际情况,提出优化的基于位置的视觉伺服系统和基于图像的视觉伺服系统的控制算法。
优化后的算法效率高,具有很强的有效性和可行性。
优化后的控制系统功能更强,更精确有效。
关键词:视觉伺服;优化;算法Survey of Visual Servoing control algorithmAbstract:The application status of the visual servo control are reviewed . For different realities , we put fortward an improved position-based visual servo systems and image -based visual servo control algorithm of the system. High efficiency of the improved algorithm has strong effectiveness and feasibility. The improved control system functions stronger, and become more precise and effective.Keywords:Visual Servoing;improve;Algorithm1 引言随着科技的快速发展,在现代工业自动化生产过程中,机器视觉正成为一种提高生产效率和保证产品质量的关键技术,如机械零件的自动检测、智能机器人控制及生产线的自动监控等。
基于视觉的伺服策略是采用相机所观察的特征来控制机器人移动的一种灵活有效的方法。
视觉伺服主要分为3种:基于位置的视觉伺服(PBVS)、基于图像的视觉伺服(IBVS)和混合控制视觉伺服。
早期的研究主要是基于位置的视觉伺服研究,近年来主要是基于图像的视觉伺服研究。
伺服系统应用场景描述

伺服系统应用场景描述一、概述伺服系统是一种能够实现精确位置控制和速度调节的自动控制系统。
它广泛应用于各个领域,如工业生产、机械制造、航空航天、汽车制造等。
本文将从不同应用场景出发,具体描述伺服系统在各个领域中的应用情况。
二、工业生产领域在工业生产中,伺服系统扮演着重要的角色。
例如,在自动化生产线上,伺服系统可以用于控制机械臂的动作,实现精确的搬运和装配工作。
此外,伺服系统还可以用于控制输送带的速度,确保物料的连续运输。
在工业机械领域,伺服系统可用于控制切割机、冲床、注塑机等设备的运动,以保证加工精度和效率。
三、机械制造领域在机械制造过程中,伺服系统的应用也非常广泛。
例如,在数控机床中,伺服系统可用于控制各个轴向的运动,实现精确的加工操作。
同时,伺服系统还可用于控制各种精密机械设备,如3D打印机、激光切割机等,以实现高精度的制造需求。
四、航空航天领域伺服系统在航空航天领域中的应用也非常重要。
例如,在飞机上,伺服系统可以用于控制飞行控制面的运动,实现飞机的稳定飞行和姿态控制。
此外,伺服系统还可以用于控制飞机上的各种附件,如起落架、舵面等,以确保飞机的安全性和可靠性。
五、汽车制造领域在汽车制造中,伺服系统也有广泛的应用。
例如,在汽车生产线上,伺服系统可用于控制机器人的动作,实现车身焊接、喷涂等工艺操作。
此外,伺服系统还可以用于控制汽车上的各种部件,如电动座椅、车窗升降等,提供舒适的乘车体验。
六、其他领域除了上述几个领域外,伺服系统还有许多其他应用场景。
例如,在医疗器械中,伺服系统可用于控制手术机器人的动作,实现精确的手术操作。
在家用电器中,伺服系统可用于控制洗衣机、冰箱等设备的运转,提供更好的用户体验。
此外,伺服系统还可以应用于船舶、火车、机器人等领域,以满足不同领域的精密控制需求。
总结:伺服系统作为一种能够实现精确位置控制和速度调节的自动控制系统,在工业生产、机械制造、航空航天、汽车制造等领域中有着广泛的应用。
机器视觉

机器视觉是一个相当新且发展十分迅速的研究领域,目前己成为现代制造业工业的重要研究领域之一。
近年来在机器视觉技术基础上的各项研究及应用不断的发展,针对不同应用情况的特点,形成了不同的基于机器视觉技术的应用系统。
在工业零件制造中,经常需要对半成品或成品或再制造产品进行几何尺寸的检测,一般要求具有较高的检测精度和较快的检测速度。
传统的接触式的人工检测的方法不但繁琐,劳动强度大,而且检测速度较慢,不能消除人为的测量误差。
在检测过程中还可能对物体的表面造成一定的损伤,这些都使得传统检测方法达不到理想的要求。
非接触式的基于机器视觉技术的在线检测方法,以其检测速度快,精度高,测量项目多等特点在工业制造中具有广阔的应用前景。
本文基于工业中圆形再制制造产品的检测要求,对机器视觉的在线工件检测系统进行了深入的分析和研究。
1.1机器视觉1.1.1 机器视觉的概念机器视觉,简单的讲,可以理解为给机器加装上视觉装置,或者是加装有视觉装置的机器。
给机器加装视觉装置的目的,是为了使机器具有类似于人类的视觉功能,从而提高机器的自动化和智能化程度。
由于机器视觉涉及到多个学科和多种技术(包括数字图像处理技术、机械工程技术、控制技术、电光源照明技术,光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术等),所以给出一个精确的定义是很困难的,而且在这个问题上见仁见智,各人认识也不尽相同。
美国制造工程师协会(SME)机器视觉分会和美国机器人工业协会(RIA)自动化视觉分会关于机器视觉的定义是:"Machine vision is the use of devices for optical non-contact sensing to automatically receive and interpret an image of a real scene in order to obtain information and/or control machines or processes.”译成中文:“机器视觉是使用光学器件进行非接触感知,自动获取和解释一个真实场景的图像,以获取信息或控制机器或过程。
基于图像的视觉伺服系统的分析

基于图像的视觉伺服系统的分析Image-Based Visual Servoing(IBVS) 摘要:在MATLAB环境下导入机器人工具箱,对puma560机器人进行demo6模板的基于图像的视觉伺服系统的分析。
要是根据物体的三维空间位置,使用摄像机获取物体的二维图像位置,然后根据期望及误差来获取物体当前的三维空间位置,根据物体位置信息,使用MATLAB进行基于图像的视觉伺服闭环系统的仿真。
Abstract: import robot toolbox in MATLAB environment, demo6 template of puma560 robot visual servo system based on image analysis. If according to thethree-dimensional space position of the object, use the camera to obtain two-dimensional image position of the object, and then based on the current expectation and error to obtain the three-dimensional space position, according to the object location information, the use of MATLAB simulation based on image visual servo closed-loop system.一.基于视觉的伺服原理首先是根据物体所在的三维空间位置,用摄像机来获取物体的二维空间位置,最先有两种方法,一是eye-to-hand,二是eye-in-hand,我们这次仿真使用的是eye-in-hand,使用当前图像位置减去期望图像位置来获得这两者之间的误差。
一种三关节机器人视觉伺服系统研究

是 直 接 根据 图像 特征 控 制 机 械手 的运 动 , 成 了 图 完
像 信 息 的 闭环 , 视 觉重 构 问题从 机 器 人控 制 中分 把
离 出来 , 化 了机器人 的控制 , 简 并避 免 目标脱离 摄像 机 的视 野 。 在设 计 的控 制 系统 中 , 觉控 制器用 于 由 视 目标 图像特 征误 差得 到机 器人 各关 节 的期望运 动轨 迹, 而后 机 器 人 通过 关 节 控 制器 来 完 成对 期 望轨 迹
器 可 以理 想地 跟 踪 视 觉控 制 器 得 到 的期 望 轨迹 , 而
将研 究 的重 点放 在视 觉控 制器 的设计 上 。
2 坐 标 变 换
1 机 器 人 伺 服 系统 的 结构
机 器人 伺 服控 制 按 反馈 信 息 可 分 为 两类 , 是 一 基 于位 置 的机 器人 视 觉 伺 服控 制 , 依 据 图像 信 息 它 来 估计 3 D笛 卡儿 坐标 系 内机器 人 相 对 于 目标 物 体
的 跟踪 。鉴 于 目前 已有 了大量 成熟 的机 器人轨 迹跟 踪 控制 方 法[ , 此在 本 系统 中 , 假设 关 节控 制 4 因 q] 将
本 文针 对 三关 节 机 器人 抓 取 物 体 的任 务 , 计 设
了 一 种 三关 节 机 器 人 视 觉伺 服 系 统 。该 系 统 采 用
文献标 识 码 : A
文 章 编 号 :6 2 5 5 2 O ) 2 O 1 一O 1 7 — 4 X( O 6 O 一 O 2 4
的位 置 , 由相对 位 置 信 息 给 出机 器人 的直 角坐 标 空
引 言
利用 视觉 传 感器 获 取 客 观世 界 的信 息 , 而 实 从 现 控制 机器人 的各 种行 为是 在机 器人 控 制 中的热 点
伺服电机的原理与应用实例

伺服电机的原理与应用实例1. 什么是伺服电机伺服电机是一种具有闭环控制系统的电机,通过反馈控制技术可以实现精确的位置、速度和力矩控制。
伺服电机通常由电机、编码器、控制器和功率放大器等组成。
它广泛应用于工业自动化领域,例如数控机床、机械手臂、印刷设备等。
2. 伺服电机的工作原理伺服电机的工作原理基于反馈控制系统。
其基本原理如下:1.位置反馈–伺服电机常用的位置反馈器件是编码器,它可以测量电机转轴的角度或位置。
编码器将电机转轴的位置信息反馈给控制器,控制器据此控制电机输出相应的转矩,使得电机转轴能够达到预定的位置。
2.速度控制–伺服电机可以根据编码器的角度变化速度来计算电机的转速。
控制器会比较编码器的实际速度与设定速度之间的差异,并调整电机输出的转矩,使得电机能够保持所需的转速。
3.力矩控制–伺服电机的控制器可以根据载荷的变化调整电机的输出力矩。
当负载变动时,控制器会通过编码器的反馈信号对电机的输出力矩进行实时调整,以保证电机能够稳定输出所需的力矩。
3. 伺服电机的应用实例伺服电机广泛应用于各种工业自动化领域。
以下是几个典型的应用实例:3.1 数控机床•在数控机床中,伺服电机通常用于驱动主轴、进给轴和伺服轴等。
•伺服电机可以精确控制主轴的转速,使其可以实现高速、高精度的切削加工。
•伺服电机还可以控制进给轴的移动速度和位置,以实现复杂的零件加工。
3.2 机械手臂•伺服电机在机械手臂中的应用十分广泛。
•伺服电机可以实现机械手臂的高精度运动和灵活的动作。
•机械手臂的关节通常由伺服电机驱动,以实现准确的位置和姿态控制。
3.3 印刷设备•在印刷设备中,伺服电机常用于控制印刷轴的位置和速度。
•伺服电机可以精确控制印刷轴的转动,使得印刷色彩更加准确。
•伺服电机还可以实现印刷设备的高速运转和自动化控制。
4. 总结伺服电机是一种具有闭环控制系统的电机,通过反馈控制技术实现精确的位置、速度和力矩控制。
它在工业自动化领域有着广泛的应用,包括数控机床、机械手臂、印刷设备等。
伺服电机在CNC机床中的应用研究

伺服电机在CNC机床中的应用研究随着科学技术的不断发展,计算机数控(Computer Numerical Control,CNC)机床已经成为现代制造业中不可或缺的设备之一。
在CNC机床中,伺服电机作为一种关键的运动控制装置,发挥着至关重要的作用。
本文旨在对伺服电机在CNC 机床中的应用进行深入研究,分析其优势和局限性,并探讨未来的发展趋势。
伺服电机是一种通过反馈信号实现精确控制的电机。
在CNC机床中,伺服电机被广泛应用于主轴驱动、进给轴驱动和辅助轴驱动等方面。
首先,我们来看主轴驱动。
主轴驱动是CNC机床中最重要的动力元件之一,负责旋转刀具,实现加工工件的旋转运动。
伺服电机能够通过闭环控制方式,实现主轴的高精度、高速度和高刚性驱动,从而提高机床的加工效率和加工质量。
其次是进给轴驱动。
进给轴驱动是CNC机床中的关键部件,它控制机床的运动速度和位置,实现工件的直线或曲线运动。
伺服电机的闭环控制特性使其能够实现精确的速度和位置控制,保证机床在各坐标轴上的精准移动。
与传统的步进电机相比,伺服电机具有更好的加速度、更高的准确性和更低的振动,因此能够满足工件加工过程中对精确度和平滑度的要求。
此外,伺服电机还被广泛应用于CNC机床的辅助轴驱动中。
辅助轴通常用于机床的附加动作,例如旋转工作台、进给快速移位等。
伺服电机通过闭环控制,能够实现对辅助轴的高精度控制,提高机床的加工效率和生产灵活性。
虽然伺服电机在CNC机床中具有诸多优势,但也存在一些局限性需要解决。
首先是成本问题。
相对于传统的步进电机而言,伺服电机的价格较高,因此在一些中小型企业中的推广受到一定的限制。
其次是维护和调试的难度。
伺服电机需要进行高精度的调试和维护,对操作人员的技术水平要求较高,同时对设备的可靠性和稳定性也提出了更高的要求。
随着科技的进步和市场的需求,伺服电机在CNC机床中的应用仍将不断发展和完善。
首先,随着材料科学和生产工艺的进步,伺服电机的成本将逐渐下降,提高了其在各个行业中的普及率。
基于视觉伺服的目标跟踪控制系统设计

图像 处 理 任 务 南罔 像 处圳 器来 完 成 ,然 后 通 过 } { { 口的 方 式 将 控 制 任 务传 递 给 台控 制 器 。 【 人 J 此 ,5 l 系列 的 片 机 最 小 系统 开 发 板 作 为控 制器 就 能 够 满 足控 制 f 务 的 需
水义云 台控 制器 丰要 实现 的是 舵 机 的运 动 控 制功 能 ,
3个定时器 ,其巾串n通信需要一个定时{ 并 ; ,舵机控制
实现 定 时 的时 间精 度 和稳 定性 要 求 比较 高 .采川 定 时器 0 和定 时器 1 分 别控 制 下 转 动舵机 的 高 电平持 续 时问 ,采 用 软 件 延时 的方式 实 现低 电半 的控 制 . . 通 过 对定 l I I f 器 的使
技 术 应 用
基 于 视 觉 伺 服 的 目标 跟 踪 控 制 系统 设 计
◆张东波 。 刘长青 郭洪红 李明海 。 ‘ 。 ( 1北京市智能机械创新设计服务工程技术研究中心,北京,1 0 0 0 2 0 :2北京联合大学机电学院,北京,1 0 0 0 2 0 )
摘 要
望 小文 中 ,两 f 度运 动平 台 的单 片机控 制 器 的型 号为 j
( } 8 9 C 5 2 R C ,单片机的供电电 为 5 v,端 ¨输 m信号能 时 ,从 而实 现对 舵机 控 制高 电平 的持 续 N l ' n 】 的控 制 ;改
够川 1 舵 机 的驱动 控制 , 控 制 器 的 接线 如 3所 示 。其 『 { 1 ,P 3 . 0和 P 3 . 1连 接 到 机 ,利用 串行 通 的方 式进 行 数据 交 q : ;P I L 』 接
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伺服系统在机器视觉中的应用机器视觉是一种将摄像机、图像处理和机器学习技术结合起来的技术领域,用于使计算机具备对图像和视频进行分析和理解的能力。
在机器视觉的应用过程中,伺服系统发挥着重要的作用。
本文将探讨伺服系统在机器视觉中的应用,并介绍其原理和优势。
一、伺服系统的原理
伺服系统是一种自动控制系统,它通过反馈信号来实现对系统行为的控制。
它由一个伺服电机和一个伺服控制器组成。
伺服电机通常是一种高精度的电动机,通过接收控制器发送的指令来调整输出的位置或速度。
在机器视觉中,伺服系统可以通过接收来自图像处理算法的数据,准确地控制机器的位置和角度。
例如,在工业领域,伺服系统可以用于自动装配线上的产品定位和对位。
通过将伺服系统与机器视觉技术相结合,可以实现高精度的定位和对位,从而提高生产线的效率和质量。
二、1. 机器人视觉导航
伺服系统在机器人视觉导航中起着关键的作用。
通过将伺服系统与摄像头相连,机器人可以实时接收图像数据并进行处理。
基于图像处理的算法,机器人可以分析图像中的目标物体,并利用伺服系统精确地控制自身的运动以实现导航。
在工业领域,机器人视觉导航广泛应用于自动化生产线,可以帮助机器人完成复杂的装配任务。
在军事领域,机器人视觉导航可以用于危险环境下的侦查和救援任务。
通过伺服系统的精确控制,机器人可以在复杂的环境中进行准确定位和路径规划。
2. 视觉测量与检测
伺服系统在机器视觉的测量与检测中也扮演着重要的角色。
通过对图像数据的处理,可以利用伺服系统实现对目标物体尺寸、角度和位置等参数的测量和检测。
这对于自动化生产线中的质量控制和产品检验非常关键。
例如,在半导体行业中,伺服系统可以与机器视觉技术相结合,测量半导体芯片上的特定缺陷和线宽。
通过伺服系统的精确运动控制,可以实现高精度的测量,提高半导体产品的质量和可靠性。
3. 跟踪和捕捉
伺服系统在机器视觉中还可以用于目标的跟踪和捕捉。
通过实时接收图像数据,并结合伺服系统的控制,机器可以追踪移动目标并进行捕捉。
例如,在机器人足球比赛中,伺服系统可以实时跟踪足球,并控制机器人进行拦截和进攻。
在医疗领域,伺服系统也可用于手术机器人中。
医生通过图像引导系统,在手术过程中可以精确地控制机器臂和工具的运动,实现对患者的精细操作。
伺服系统的应用使得手术过程更加安全和精确。
三、伺服系统的优势
伺服系统在机器视觉中具有以下优势:
1. 高精度控制:伺服系统可以实现高精度的位置和角度控制,提供非常精细的运动控制能力。
2. 实时性强:伺服系统可以实时接收和处理图像数据,提供准确的反馈信号,并迅速对系统行为进行调整。
3. 稳定性好:伺服系统具有良好的稳定性,可以保证在变化环境下的准确控制。
4. 可靠性高:伺服系统通常采用优质的电动机和控制器,具有较高的可靠性和使用寿命。
总结:
伺服系统在机器视觉中的应用具有广泛的领域和重要的作用。
通过将伺服系统与图像处理和机器学习技术相结合,可以实现高精度的定位、测量和检测,以及运动的跟踪和捕捉。
伺服系统的高精度控制、实时性强和稳定性好等优势,使其成为机器视觉领域的不可或缺的技术工具。
随着技术的不断发展,伺服系统在机器视觉中的应用将更加广泛和深入。