初中数学圆的练习题集锦

合集下载

初中数学圆综合练习题

初中数学圆综合练习题

初中数学圆综合练习题
1. 已知圆的半径为5cm,求该圆的周长和面积。

2. 圆心为O的圆与直线AB相切于点C,若OC=3cm,求圆的半径。

3. 一个圆的直径为8cm,求该圆的半径和周长。

4. 已知圆的面积为50π平方厘米,求该圆的半径。

5. 圆心为O的圆与两平行线l1和l2分别相切于点A和B,若
OA=OB=4cm,求两平行线之间的距离。

6. 一个圆的半径为10cm,求该圆的直径和面积。

7. 圆心为O的圆与直线CD相交于点E和F,若EF=8cm,求圆的直径。

8. 已知圆的周长为31.4cm,求该圆的半径。

9. 圆心为O的圆与直线GH相切于点I,若OI=6cm,求圆的半径。

10. 一个圆的半径为7cm,求该圆的周长和面积。

11. 圆心为O的圆与直线JK相交于点M和N,若MN=10cm,求圆的直径。

12. 已知圆的面积为78.5平方厘米,求该圆的半径。

13. 圆心为O的圆与两平行线l3和l4分别相切于点P和Q,若
OP=OQ=5cm,求两平行线之间的距离。

14. 一个圆的直径为12cm,求该圆的半径和周长。

15. 圆心为O的圆与直线RS相切于点T,若OT=8cm,求圆的半径。

16. 已知圆的周长为62.8cm,求该圆的半径。

17. 圆心为O的圆与直线UV相交于点W和X,若WX=12cm,求圆的直径。

18. 一个圆的半径为9cm,求该圆的直径和面积。

19. 圆心为O的圆与直线YZ相切于点Z,若OZ=7cm,求圆的半径。

20. 已知圆的面积为100π平方厘米,求该圆的半径。

2023年人教版初中数学中考第八章 圆(基础)专题训练(一)打印版含答案

2023年人教版初中数学中考第八章 圆(基础)专题训练(一)打印版含答案

2023年人教版初中数学中考第八章 圆(基础)专题训练时间:45分钟 满分:80分一、选择题(每题4分,共32分)1.已知⊙O 的直径为10,点P 到点O 的距离大于8,那么点P 的位置( )A .一定在⊙O 的内部B .一定在⊙O 的外部C .一定在⊙O 上D .不能确定2.如图,△ABC 内接于圆,弦BD 交AC 于点P ,连接AD .下列角中,AB ︵所对的圆周角是( )(第2题)A .∠APBB .∠ABDC .∠ACBD .∠BAC3.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( ) A.π6 B .π C.π3 D.2π34.如图,⊙O 的直径AB =8,弦CD ⊥AB 于点P ,若BP =2,则CD 的长为( )A .2 5B .4 2C .4 3D .8 2(第4题) (第5题) (第6题)5.如图,AB是⊙O的直径,CD是⊙O的弦,若∠ACD=65°,则∠BAD的度数为()A.25°B.30°C.35°D.40°6.如图,在⊙O中,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A.40°B.50°C.55°D.60°7.如图,以边长为2的等边三角形ABC的顶点A为圆心,一定的长为半径画弧,恰好与BC边相切,分别交边AB,AC于点D,E,则图中阴影部分的面积是()A.3-π4B.23-πC.(6-π)33 D.3-π2 (第7题)(第8题)8.如图,在⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是()A.12B.1 C.32D.2二、填空题(每题4分,共16分)9.已知圆的半径是3,则该圆的内接正六边形的边长是________.10.如图,四边形ABCD内接于⊙O,∠A=110°,则∠BOD=________°.(第10题)(第11题)11.如图,P A,PB与⊙O相切于A,B两点,点C在⊙O上,若∠C=70°,则∠P=________°.12.已知圆锥的母线长为5,底面半径为3,则圆锥的侧面展开图的面积为________.三、解答题(共32分)13.(10分)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD 至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.(第13题)14. (10分)如图,⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC交BC的延长线于点D,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若sin ∠CAB=35,⊙O的半径为522,求AB的长.(第14题)15.(12分)如图,在Rt △ABC 中,∠C =90°,BC 与⊙O 相切于点D ,且⊙O 分别交AB ,AC 于点E ,F .(1)求证:AD 平分∠CAB ;(2)当AD =2,∠CAD =30°时,求AD ︵的长.(第15题)答案一、1.B 2.C 3.D 4.C 5.A 6.A 7.D 8.A 二、9.3 10.140 11.40 12.15π三、13.(1)证明:∵四边形ABCD 是⊙O 的内接四边形,∴∠ABC +∠ADC =180°.∵∠ADC +∠ADE =180°,∴∠ADE =∠ABC . ∵AB =AC ,∴∠ABC =∠ACB .∵∠ACB =∠ADB ,∴∠ADB =∠ADE .(2)解:如图,连接CO 并延长交⊙O 于点F ,连接BF , 则∠FBC =90°.由题意得在Rt △BCF 中CF =4,BC =3,(第13题)∴sin F =BC CF =34.∵∠F =∠BAC ,∴sin ∠BAC =sin F =34.14.(1)证明:如图,连接OA .∵∠ABC =45°, ∴∠AOC =2∠ABC =90°.∵AD ∥OC ,∴∠DAO +∠AOC =180°,∴∠DAO =90°,即OA ⊥AD .又∵OA 是⊙O 的半径,∴AD 是⊙O 的切线.(2)解:如图,过点C 作CE ⊥AB 于点E .由(1)知∠AOC =90°.∵AO =OC =522,∵CE ⊥AB ,∴∠AEC =∠CEB =90°,∴sin ∠CAB =CE AC =35, ∴CE =3,∴AE =AC 2-CE 2=4.∵∠CEB =90°,∠ABC =45°,∴∠BCE =45°, ∴CE =BE =3,∴AB =AE +BE =7.(第14题)15.(1)证明:如图,连接OD .∵BC 与⊙O 相切于点D ,∴OD ⊥BC ,即∠ODB =90°.∵∠C =90°,∴OD ∥AC ,∴∠ODA =∠CAD .∵OD =OA ,∴∠OAD =∠ODA ,∴∠CAD =∠OAD ,∴AD 平分∠CAB .(2)解:如图,连接DE .∵AE 为⊙O 的直径,∴∠ADE =90°.∵∠CAD =30°,∠OAD =∠ODA =∠CAD , ∴∠OAD =∠ODA =30°,∴∠AOD =120°. 在Rt △ADE 中,AE =AD cos ∠EAD =232=43 3,∴⊙O 的半径为23 3, ∴AD ︵的长=120π×23 3180=49 3π.。

初中数学:圆的有关概念练习(含答案)

初中数学:圆的有关概念练习(含答案)

初中数学:圆的有关概念练习(含答案)一、选择题1.下列结论正确的是( )A.半径是弦B.弧是半圆C.大于半圆的弧是优弧D.弦所对的弧一定是劣弧2.已知⊙O的半径为5 cm,P是⊙O外一点,则OP的长可能是( )A.3 cm B.4 cmC.5 cm D.6 cm3.2017·张家界如图K-14-1,在⊙O中,AB是直径,AC是弦,连结OC,若∠ACO=30°,则∠BOC的度数是( )图K-14-1A.30° B.45° C.55° D.60°4.如图K-14-2所示,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于( )图K-14-2A.5 3 B.5 C.5 2 D.65.AB是⊙O的弦,OQ⊥AB于点Q,再以OQ为半径作同心圆,称作小⊙O,P是AB上异于点A,B,Q的任意一点,则点P的位置是( )A.在大⊙O上B.在大⊙O外部C.在小⊙O内部D.在小⊙O外而在大⊙O内6.如图K-14-3,点B,E,G,M在半圆O上,四边形ABCO,ODEF,OHMN都是矩形,设AC=a,DF =b,NH=c,则下列各式中正确的是( )图K-14-3A.a>b>c B.a=b=cC.c>a>b D.b>c>a二、填空题7.菱形四边的中点到____________的距离相等,因此菱形各边的中点在以____________为圆心,以____________为半径的圆上.8.已知⊙A的半径为6.5,圆心A的坐标为(-6,0),点B的坐标是(0,3),则点B与⊙A的位置关系是______________.9.在同一平面上,点P到⊙O上一点的距离最长为 6 cm,最短为 2 cm,则⊙O的半径为________ cm.10.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,若点B在⊙A 内,则a的取值范围是________.链接学习手册例1归纳总结三、解答题11.如图K-14-4,OA,OB为⊙O的半径,C,D分别为OA,OB的中点.求证:∠A=∠B.图K-14-412.如图K-14-5,点P的坐标为(3,0),⊙P的半径为5,且⊙P与x轴交于点A,B,与y轴交于点C,D,试求出点A,B,C,D的坐标.图K-14-513.如图K-14-6所示,若BD,CE都是△ABC的高.求证:B,C,D,E四点在同一个圆上.图K-14-614.如图K-14-7,在△ABC中,∠C=90°,BC=3 cm,AC=4 cm.(1)以点B为圆心,BC长为半径画⊙B,点A,C及AB的中点E与⊙B有怎样的位置关系?(2)以点A为圆心,R为半径画⊙A,若B,C,E三点中至少有一点在圆内,至少有一点在圆外,则⊙A的半径R应满足什么条件?链接学习手册例1归纳总结图K-14-715.如图K-14-8,线段AB=8 cm,点D从A点出发沿AB向B点匀速运动,速度为1 cm/s,同时点C从B点出发沿BA向A点以相同速度运动,以点C为圆心,2 cm长为半径作⊙C,点D到达B点时⊙C也停止运动,设运动时间为t s,求点D在⊙C内部时t的取值范围.图K-14-816.如图K-14-9所示,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/时的速度行驶时,A处受到噪音影响的时间为多少?图K-14-91.[答案] C2.[解析] D ∵P是⊙O外一点,∴OP>5 cm,∴OP可能是6 cm. 3.[答案] D4.[解析] A 连结CD.在Rt△ABC中,∠ACB=90°,AD=BD,∴CD=12AB=BC.根据勾股定理,得AC=AB2-BC2=102-52=5 3.故选A.5.[答案] D6.[答案] B7.[答案] 对角线的交点对角线的交点边长的一半8.[答案] 点B在⊙A外[解析] 在平面直角坐标系内,由勾股定理得BA=BO2+OA2=32+62=3 5>6.5,所以点B在⊙A外.9.[答案] 2或410.[答案] 1<a<5[解析] ∵⊙A的半径为2,点B在⊙A内,∴AB<2.∵点A所表示的实数为3,∴1<a<5.11.证明:∵OA=OB,C,D分别为OA,OB的中点,∴OD=OC.又∵∠O=∠O,∴△AOD≌△BOC,∴∠A=∠B.12.解:∵点P的坐标为(3,0),∴OP=3.又⊙P的半径为5,∴CO=OD=4,∴点C的坐标为(0,4),点D的坐标为(0,-4).∵⊙P的半径为5,∴AO=2,PB=5,∴点A的坐标为(-2,0),OB=8,∴点B的坐标为(8,0).13.证明:如图所示,取BC的中点F,连结DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形,∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线, ∴DF=EF=BF=CF,∴B,C,D,E四点在以点F为圆心,12BC长为半径的圆上.14.解:(1)∵∠C=90°,∴AB2=AC2+BC2, ∴AB=5 cm.∵⊙B的半径BC=3 cm,∴AB>BC,∴点A在⊙B外.又∵BC=3 cm,∴点C在⊙B上.∵AB=5 cm,E是AB的中点,∴BE=12AB=52cm<3 cm,∴点E在⊙B内.(2)52cm<R<5 cm.15.解:∵点C,D的运动速度相同,相向运动, ⊙C的半径为2 cm,∴当点D第一次在⊙C上时,点D运动了8-21+1=3(s),即t1=3;当点D第二次在⊙C上时,点D运动了8+21+1=5(s),即t2=5.∴当点D在⊙C内部时,t的取值范围是3<t<5.16.解:如图,过点A作AC⊥ON于点C,设火车到B点时开始对A处有噪音影响,直到火车到D点后噪音才消失,连结AB,AD,则AB=AD=200米.∵∠QON=30°,OA=240米,∴AC=120米.当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得BC=160米,同理可得CD=160米,即BD=320米.∵72千米/时=20米/秒,∴A处受到噪音影响的时间应是320÷20=16(秒).。

(专题精选)初中数学圆的难题汇编含答案解析

(专题精选)初中数学圆的难题汇编含答案解析
【点睛】
本题考查了全等三角于证明 .
11.如图, 中,若 ,则 的度数为()
A.33°B.56°C.57°D.66°
【答案】A
【解析】
【分析】
根据垂径定理可得 ,根据圆周角定理即可得答案.
【详解】
∵OA⊥BC,
∴ ,
∵∠AOB=66°,∠AOB和∠ADC分别是 和 所对的圆心角和圆周角,
A.50cm2B.50πcm2C.25 cm2D.25 πcm2
【答案】D
【解析】
【分析】
根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.
【详解】
解:如图所示,
∵等腰三角形的底边和高线长均为10cm,
∴等腰三角形的斜边长= =5 ,即圆锥的母线长为5 cm,圆锥底面圆半径为5,
∴BE= AB,DF= CD,
∴BE=DF,
又∵OB=OD,
∴由勾股定理可知OE=OF,
即A、B、C正确,D错误,
故选:D.
【点睛】
本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键.
8.“直角”在几何学中无处不在,下列作图作出的 不一定是直角的是()
A. B.
C. D.
(专题精选)初中数学圆的难题汇编含答案解析
一、选择题
1.如图,抛物线y=ax2﹣6ax+5a(a>0)与x轴交于A、B两点,顶点为C点.以C点为圆心,半径为2画圆,点P在⊙C上,连接OP,若OP的最小值为3,则C点坐标是( )
A. B.(4,﹣5)C.(3,﹣5)D.(3,﹣4)
【答案】D
【解析】
【分析】
(2)分别以点C,D为圆心,CD长为半径作弧,交 于点M,N;

《常考题》初中九年级数学上册第二十四章《圆》基础练习(含答案解析)

《常考题》初中九年级数学上册第二十四章《圆》基础练习(含答案解析)

一、选择题1.如图,四个水平放置正方形的边长都为4,顶点A、B、C是圆上的点,则此圆的面积为()A.72πB.85πC.100πD.104π2.下列说法:(1)三点确定一个圆;(2)直径所对的圆周角是直角;(3)平分弦的直径垂直于弦,并且平分弦所对的弧;(4)相等的圆心角所对的弧相等;(5)圆内接四边形的对角互补.其中正确的个数为()A.1个B.2个C.3个D.4个3.如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.30°C.36°D.60°4.如图在ABC中,∠B=90°,AC=10,作ABC的内切圆圆O,分别与AB、BC、AC相切于点D、E、F,设AD=x,ABC的面积为S,则S关于x的函数图像大致为()A.B.C .D .5.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切B .在圆外C .在圆上D .在圆内 6.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25 B .43 C .25或45 D .23或43 7.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .π8.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .149.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A.5B.10C.52D.10210.在下列命题中,正确的是( )A.弦是直径B.半圆是弧C.经过三点确定一个圆D.三角形的外心一定在三角形的外部11.如图,⊙O的半径为2,四边形ADBC为⊙O的内接四边形,AB=AC,∠D=112.5°,则弦BC的长为()A.2B.2 C.22D.2312.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为()A.2B.1 C.2 D.2213.如图,AB是⊙的直径,DB、DE分别切⊙O于点B、C,若∠ACE=35°,则∠D的度数是()A.65°B.55°C.60°D.70°14.如图,大半圆中有n个小半圆,若大半圆弧长为1L,n个小半圆弧长的和为2L,大半圆的弦AB,BC,CD的长度和为3L.则()A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>15.如图,四边形ABCD 内接于O ,若108B ∠=︒,则D ∠的大小为( )A .36°B .54°C .62°D .72°二、填空题16.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.17.如图,AB 、AC 、BD 是O 的切线,P 、C 、D 为切点,如果8AB =,5AC =,则BD 的长为_______.18.已知扇形的圆心角为120︒,面积为π,则扇形的半径是___________.19.如图,点A ,B ,C 在O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行∠=________︒.四边形,则AOC20.如图,已知点C是半圆О上一点,将弧BC沿弦BC折叠后恰好经过点,O若半圆O 的半径是2,则图中阴影部分的面积是________________________.21.如图,O的半径为6,AB、CD是互相垂直的两条直径,点P是O上任意一⊥于N,点Q是MN的中点,当点P沿着圆周点,过点P作PM AB⊥于M,PN CD从点D逆时针方向运动到点C的过程中,当∠QCN度数取最大值时,线段CQ的长为______.22.在直径为10cm的⊙O中,弦AB=5cm,则∠AOB的度数为_______.、分别为O的内接正方形、内接正三角形的边,BC是圆内接正n边23.如图,AB AC形的一边,则n的值为_______________________.24.已知圆心O到直线l的距离为5,⊙O半径为r,若直线l与⊙O有两个交点,则r的值可以是________.(写出一个即可)25.如图,ABC10的半圆,AB为直径,点M是弧AC的中点,连结BM交AC于点E,AD平分∠CAB交BM于点D,∠ADB=_____°,当点D恰好为BM的中点时,BM的长为____.26.小红在手工制作课上,用面积为215cm π,半径为15cm 的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为_______cm .三、解答题27.如图,AB 是⊙O 的直径,点C 在⊙O 上,BD 平分ABC ∠交⊙O 于点D ,过点D 作DE BC ⊥,垂足为E .(1)求证:DE 与⊙O 相切;(2)若10AB =,6AD =,求DE 的长.28.如图,AB 是⊙O 的弦,点C 在AB 上,点D 是AB 的中点.将AC 沿AC 折叠后恰好经过点D ,若⊙O 的半径为25,AB =8.则AC 的长是_______.29.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点.求证:AP=BP .30.如图,⊙O 是△ABC 的外接圆,AB 为直径,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC ,分别交AC 、AB 的延长线于点E ,F .(1)求证:EF是⊙O的切线;(2)若AC=6,CE=2,求CB的长.。

初中数学圆大题练习题

初中数学圆大题练习题

初中数学圆大题练习题
1. 已知圆的半径为5,求圆的周长和面积。

2. 圆心到圆上任意一点的距离称为半径,若圆心O到点A的距离为8,求圆的半径。

3. 一个圆的直径为10,计算该圆的周长。

4. 已知圆的面积为50π,求该圆的半径。

5. 一个圆的周长为2πr,其中r为圆的半径,若周长为12π,求半
径r的值。

6. 圆的周长公式为C=2πr,若C=16π,求半径r。

7. 一个圆的面积为πr²,若面积为9π,求半径r。

8. 已知圆的半径为3,求该圆的直径。

9. 一个圆的周长为6π,求该圆的半径。

10. 已知圆的面积为4π,求该圆的半径。

11. 一个圆的直径为8,求该圆的面积。

12. 已知圆的周长为4πr,若周长为20π,求半径r。

13. 一个圆的半径为4,求该圆的周长。

14. 已知圆的面积为16π,求该圆的半径。

15. 一个圆的周长为8π,求该圆的半径。

16. 已知圆的半径为2,求该圆的面积。

17. 一个圆的直径为6,求该圆的周长。

18. 已知圆的周长为10π,求该圆的半径。

19. 一个圆的半径为5,求该圆的直径。

20. 已知圆的面积为25π,求该圆的半径。

《常考题》初中九年级数学上册第二十四章《圆》经典练习题(含答案解析)

《常考题》初中九年级数学上册第二十四章《圆》经典练习题(含答案解析)

一、选择题1.在ABC 中,90,4,3C AC BC ∠=︒==,把它绕AC 旋转一周得一几何体,该几何体的表面积为( )A .24πB .21πC .16.8πD .36π 2.下列说法不正确的是( )A .不在同一直线上的三点确定一个圆B .90°的圆周角所对的弦是直径C .平分弦的直径垂直于这条弦D .等弧所对的圆周角相等3.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π 4.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70° 5.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139° 6.如图,在等边ABC 中,点O 在边AB 上,O 过点B 且分别与边AB BC 、相交于点D 、E ,F 是AC 上的点,判断下列说法错误的是( )A .若EF AC ⊥,则EF 是O 的切线B .若EF 是O 的切线,则EF AC ⊥ C .若32BE EC =,则AC 是O 的切线D .若BE EC =,则AC 是O 的切线7.如图,EM 经过圆心O ,EM CD ⊥于M ,若4CD =,6EM =,则CED 所在圆的半径为( )A .103B .83C .3D .48.下列命题中,正确的是( )A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .三角形的外心在三角形的外面D .与某圆一条半径垂直的直线是该圆的切线9.在下列命题中,正确的是( )A .弦是直径B .半圆是弧C .经过三点确定一个圆D .三角形的外心一定在三角形的外部 10.如图,AB 为⊙O 的直径,,C D 为⊙O 上的两点,若7OB BC ==.则BDC ∠的度数是( )A .15︒B .30C .45︒D .60︒11.如图,ABC 的顶点A 是O 上的一个动点,90ACB ∠=︒,30BAC ∠=︒,边AC ,AB 分别交O 于点E ,D ,分别过点E ,D 作O 的切线交于点F ,且点F 恰好在边BC 上,连接OC ,若O 的半径为6,则OC 的最大值为( )A .393+B .2103+C .353+D .5312.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠BOD 等于( )A .20°B .40°C .50°D .60°13.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150° 14.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .615.如图,AB 是⊙O 的直径,AB=AC 且∠BAC=45°,⊙O 交BC 于点D ,交AC 于点E ,DF 与⊙O 相切,OD 与BE 相交于点H .下列结论错误的是( )A .BD=CDB .四边形DHEF 为矩形C .2AE DE= D .BC=2CE 二、填空题16.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.17.如图,点A 、D 、G 、M 在半圆上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC a =,EF b =,NH c =,则a ,b ,c 之间的大小关系是_________________.(用“>”、“<”、“=”连接)18.已知O 的直径10AB =cm ,CD 是O 的弦,AE CD ⊥,垂足为点E ,BF CD ⊥,垂足为点F ,且8CD =cm ,则BF AE -的长为________cm .19.如图,O 的半径为6,AB 、CD 是互相垂直的两条直径,点P 是O 上任意一点,过点P 作PM AB ⊥于M ,PN CD ⊥于N ,点Q 是MN 的中点,当点P 沿着圆周从点D 逆时针方向运动到点C 的过程中,当∠QCN 度数取最大值时,线段CQ 的长为______.20.一点到O 上的最近距离为3cm ,最远距离为11cm ,则这圆的半径是______.21.如图,已知点,,A B C 在O 上,若50ACB ∠=,则AOB ∠=_____________________度.22.如图,AB 是⊙O 的直径,C 是BA 延长线上一点,点D 在⊙O 上,且CD=OA ,CD 的延长线交⊙O 于点E ,若∠BOE=54°,则∠C=______.23.如图,半径为10的扇形AOB 中,∠AOB=90°,C 为AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE=36°,则图中阴影部分的面积为____.24.如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,若以C 为圆心,r 为半径所作的圆与斜边AB 相切,则r 的值是________25.如图,ABC 是等边三角形,180BAD BCD ∠+∠=︒,8BD =,2CD =,则AD =________.26.如图,ABC 内接于半径为10的半圆,AB 为直径,点M 是弧AC 的中点,连结BM 交AC 于点E ,AD 平分∠CAB 交BM 于点D ,∠ADB =_____°,当点D 恰好为BM 的中点时,BM 的长为____.三、解答题27.如图,已知O 的直径AB ⊥弦CD 于点E ,且E 是OB 的中点,连接CO 并延长交AD 于点F .(1)求证:CF AD ⊥;(2)若12AB =,求CD 的长.28.如图:在平面直角坐标系中,直线l 与两坐标轴分别相交,相交于C 、D 两点,且()6,0C ,30OCD ∠=︒,长度为2的线段AB (B 点在A 点右侧)在x 轴上移动,设点A的坐标为()0m ,.发现:(1)当以A 为圆心,AB 为半径的圆与直线l 相切时,求m 的值;应用:(2)当以A 为圆心,AB 为半径的A 与直线l 相交于M 、N 两点,且AMN 是等腰直角三角形,求m 的值.拓展:(3)直线l 上存在点P ,使得90APB ∠=︒,则m 的取值范围是_________(直接写出答案).29.如图,在直角坐标系中,A (0,4)、B (4,4)、C (6,2),(1)写出经过A 、B 、C 三点的圆弧所在圆的圆心M 的坐标:______;(2)判断点()5,2D -与圆M 的位置关系.30.第十届亚运会在广东召开,有三名运动员分别下榻在A 、B 、C 三个宾馆,三个宾馆由三条道路相连,如图所示.(1)为建一个公共活动场地P 到三个宾馆的距离相等.请用尺规作图方法作出点P ,使得点P 落在△ABC 内部.保留作图痕迹,不要求写作法. (2)如果ACB α∠=,那么APB ∠=______.。

初中数学圆形专题训练50题-含参考答案

初中数学圆形专题训练50题-含参考答案

初中数学圆形专题训练50题含参考答案一、单选题1.如图,四边形ABCD 内接于O ,若:5:7A C ∠∠=,则C ∠=( )A .210︒B .150︒C .105︒D .75︒2.如图,P 是∠O 外一点,P A 是∠O 的切线,A 为切点,PO 与∠O 相交于B 点,已知∠BCA =34°,C 为∠O 上一点,连接CA ,CB ,则∠P 的度数为( )A .34°B .56°C .22°D .28° 【答案】C 【分析】根据切线的性质可得:90,OAP ∠=︒ 利用圆周角定理可得:2,O ACB ∠=∠ 从而可求出结果.【详解】解:∠P A 是∠O 的切线,A 为切点,∠∠OAP =90°,又∠∠BCA =34°,∠∠O =2∠ACB =68°,∠∠P =90°﹣∠AOB =90°﹣68°=22°.故选:C.【点睛】本题考查的是切线的性质定理,圆周角定理,掌握利用圆周角定理与切线的性质定理求解角的大小是解题的关键.3.如图,AB为∠O直径,CD为弦,AB∠CD于E,连接CO,AD,∠BAD=25°,下列结论中正确的有()∠CE=OE;∠∠C=40°;∠ACD=ADC;∠AD=2OEA.∠∠B.∠∠C.∠∠∠D.∠∠∠∠【答案】B【分析】根据圆周角定理,垂径定理,圆心角、弧、弦的关系以及直角三角形边的关系进行判断即可.【详解】解:∠AB为∠O直径,CD为弦,AB∠CD于E,∠CE=DE,BC BD=,ACB ADB=,∠∠BOC=2∠A=40°,ACB BC ADB BC+=+,即ADC ADC=,故∠正确;∠∠OEC=90°,∠BOC=40°,∠∠C=50°,故∠正确;∠∠C≠∠BOC,∠CE≠OE,故∠错误;作OP∠CD,交AD于P,∠AB∠CD,∠AE<AD,∠AOP=90°,∠OA<PA,OE<PD,∠PA+PD>OA+OE∠OE<OA,∠AD>2OE,故∠错误;故选:B.【点睛】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握性质定理是解题的关键.4.下列命题正确的是()A.相等的圆心角所对的弧是等弧B.等圆周角对等弧C.任何一个三角形只有一个外接圆D.过任意三点可以确定一个圆【答案】C【分析】根据圆周角与弧的关系可判断出各选项,注意在等圆中这个条件.【详解】A、缺少条件,必须是在同圆或等圆中,相等的圆心角所对的弧才相等;故本选项错误;B、缺少条件,必须是在同圆或等圆中,相等的圆周角所对的弧才相等;故本选项错误;C、任何一个三角形只有一个外接圆,故本选项正确;D、缺少条件,过任意不共线的三点才可以确定一个圆,故本选项错误.故选:C.【点睛】本题考查命题与定理的知识,属于基础题,掌握相关的性质定理是解题的关键.5.如图,四边形ABCD为∠O的内接四边形,已知∠BOD=110°,则∠BCD的度数为()A.55°B.70°C.110°D.125°∠四边形ABCD为∠O的内接四边形,∠∠BCD=180°−∠A=125°,故选D【点睛】此题考查圆周角定理及其推论,解题关键在于掌握圆内接四边形的性质. 6.如图,点A,B,C均在圆O上,当∠BOC=120°时,∠BAC的度数是()A.65°B.60°C.55°D.50°7.如图,在O中,AB所对的圆周角∠ACB=50°,D为AB上的点.若∠AOD=35°,则∠BOD的大小为()A.35°B.50°C.55°D.65°【答案】D【分析】在同圆中,由同弧所对的圆周角等于其圆心角的一半解答.【详解】解:∠ACB=50°,AOB∴∠=⨯︒=︒250100BOD AOB AOD∴∠=∠-∠=︒-︒=︒1003565故选:D.【点睛】本题考查圆周角与圆心角的性质,是基础考点,掌握相关知识是解题关键.8.如图,四边形ABCD内接于∠O,∠DAB=140°,连接OC,点P是半径OC上一点,则∠BPD不可能为()A.40°B.60°C.80°D.90°【答案】D【分析】连接OD、OB,根据圆内接四边形的性质求出∠DCB,根据圆周角定理求出∠BOD,求出∠BPD的范围,即可解答.【详解】连接OD、OB,∠四边形ABCD内接于∠O,∠∠DCB=180°﹣∠DAB=40°,由圆周角定理得,∠BOD=2∠DCB=80°,∠40°≤∠BPD≤80°,∠∠BPD不可能为90°,故选D.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.9.如图,已知四边形ABCD 内接于∠O,AB是∠O的直径,EC与∠O 相切于点C,∠ECB=35°,则∠D 的度数是()A.145°B.125°C.90°D.80°【答案】BOC【详解】解:连接.∠EC 与O 相切,35ECB ∠=,55OCB ∴∠=,,OB OC =55OBC OCB ∴∠=∠=,180********.D OBC ∴∠=-∠=-=故选:B.10.如图,AC 是汽车挡风玻璃前的刮雨刷.如果65AO cm =,15CO cm =,当刮雨刷AC 绕点O 旋转90时,则刮雨刷AC 扫过的面积为( )A .225cm πB .21000cm πC .225cmD .21000cm11.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )A.0.5B.1C.2D.412.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.【答案】B【详解】试题分析:根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径,从而求得圆锥的底面周长.解:设底面圆的半径为r,则:2πr==π.∠r=, ∠圆锥的底面周长为, 故选B .考点:圆锥的计算.13.如图,AB 为半圆O 的直径,C 为半圆上一点,且弧AC 为半圆的,设扇形AOC ,∠COB ,弓形BmC 的面积分别为S 1,S 2,S 3,则下列结论正确的是( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 1<S 2<S 3【答案】B 【详解】试题分析:首先根据∠AOC 的面积=∠BOC 的面积,得S 2<S 1.再根据题意,知S 1占半圆面积的.所以S 3大于半圆面积的.解:根据∠AOC 的面积=∠BOC 的面积,得S 2<S 1,再根据题意,知S 1占半圆面积的,所以S 3大于半圆面积的.因此S 2<S 1<S 3.故选B .考点:扇形面积的计算.14.如图,在矩形ABCD 中,2AB =,BC =B 为圆心,BA 长为半径画弧,交CD 于点E ,连接BE ,则扇形BAE 的面积为( )A .3πB .35πC .23πD .34π 【答案】C【分析】解直角三角形求出30CBE ∠=︒,推出60ABE ∠=︒,再利用扇形的面积公式【详解】解:四边形=BA BE∴∠cos CBE∴∠=CBE∴∠ABE∴S15.下列事件中,是随机事件的是()A.∠O的半径为5,OP=3,点P在∠O外B.相似三角形的对应角相等C.任意画两个直角三角形,这两个三角形相似D.直径所对的圆周角为直角【答案】C【分析】根据随机事件的定义进行分析解答即可.【详解】解:(1)点P一定在∠O内,A是不可能事件,故错误.(2) 相似三角形的对应角一定相等,是必然事件,B错误.(3) 任意画两个直角三角形,这两个三角形不一定相似,C正确.(4) 直径所对的圆周角一定为直角,D为为为为为为为错误.综上选C.【点睛】本题考查随机事件的定义,熟悉掌握是解题关键.16.如图,AC是∠O的直径,弦BD∠AO于E,连接BC,过点O作OF∠BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B cm C.2.5cm D cm17.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆形滚木的截面图.有如下四个结论:∠勒洛三角形是中心对称图形;∠在图1中,等边三角形的边长为2,则勒洛三角形的周长为2π;∠在图2中,勒洛三角形的周长与圆的周长相等;∠使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动;上述结论中,所有正确结论的序号是()A.∠∠B.∠∠C.∠∠D.∠∠∠18.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D.连接BD,BE,CE,若∠CBD=33°,则∠BEC=()A.66°B.114°C.123°D.132°【答案】C【分析】根据圆周角定理可求∠CAD=33°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.【详解】在∠O中,∠∠CBD=33°,∠∠CAD=33°,∠点E是△ABC的内心,∠∠BAC=66°,∠∠EBC+∠ECB=(180°﹣66°)÷2=57°,∠∠BEC=180°﹣57°=123°.故选C.【点睛】考查了三角形的内切圆与内心,圆周角定理,三角形内角和定理,关键是得到∠EBC+∠ECB的度数.19.如图,四边形ABCD为正方形,O为AC、BD的交点,∠DCE为Rt∠,∠CED=90°,OE=CE DE=5,则正方形的面积为()A.5B.6C.7D.8∠CE DE=5故选:B【点睛】本题考查了四点共圆的判定及圆周角定理,同弧或等弧所对的圆周角相等,正方形的判定及性质定理,全等三角形的判定及性质.20.如图,AB 是∠O 的直径,弦CD∠AB 于点G ,点F 是CD 上一点,且满足13CF FD ,连接AF 并延长交∠O 于点E ,连接AD 、DE ,若CF =2,AF =3.给出下列结论:∠∠ADF∠∠AED ;∠FG =2;∠tan∠E ;∠S △DEF =结论的个数是( )A .1B .2C .3D .4AFD ADE S S =ADE S =△DEF =AFD ,∠所以正确的结论是∠∠∠.二、填空题21.如图,有4个圆|A ,B ,C ,D ,且圆A 与圆B 的半径之和等于圆C 的半径,圆B 与圆C 的半径之和等于圆D 的半径,现将圆A ,B ,C 摆放如图甲,圆B ,C ,D 摆放如图乙.若图甲和图乙的阴影部分面积分别为4π和12π.则圆D 面积为__________.【答案】28π【分析】根据题意得到圆A 的半径为2,设圆B 的半径为b ,则圆C 的半径为b+2,故圆D 的半径为2b+2,根据乙图得到方程求出b 的关系,再根据圆D 的面积与b 的关系即可求解.【详解】∠图甲阴影部分面积分别为4π,即圆A 的面积为4π,∠圆A 的半径为2,设圆B 的半径为b ,则圆C 的半径为b+2,故圆D 的半径为2b+2,根据乙图可得222(22)12(2)b b b ππππ+=+++化简得226b b +=,∠圆D 的面积为2(22)b π+=4π()22b b ++4π=28π,故填:28π.【点睛】此题主要考查圆的面积求解,解题的关键是根据图形找到等量关系进行列方程求解.22.圆的有关概念:(1)圆两种定义方式:(a )在一个平面内线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做__.线段OA 叫做__.(b )圆是所有点到定点O 的距离__定长r 的点的集合.(2)弦:连接圆上任意两点的__叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦); (3)弧:圆上任意两点间的部分叫__(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)(4)等弧:在同圆与等圆中,能够__的弧叫等弧.(5)等圆:能够__的两个圆叫等圆,半径__的两个圆也叫等圆.【答案】 圆心 半径 等于 线段 弧 完全重合 完全重合 相等【分析】根据圆、弦、弧、等弧、等圆的定义即可作答.【详解】(1)圆两种定义方式:(a )在一个平面内线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心.线段OA 叫做半径.(b )圆是所有点到定点O 的距离等于定长r 的点的集合.(2)弦:连接圆上任意两点的线段叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦);(3)弧:圆上任意两点间的部分叫弧(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)(4)等弧:在同圆与等圆中,能够完全重合的弧叫等弧.(5)等圆:能够完全重合 的两个圆叫等圆,半径相等的两个圆也叫等圆.故答案为:圆心,半径;等于;线段;弧;完全重合;完全重合;相等.【点睛】本题主要考查了圆、弦、弧的定义,牢记相关定义是解答本题的关键. 23.如图,在矩形ABCD 中,8AB =,6AD =,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点不在圆内,则r 的取值范围是 _____.90,Rt ABD 中,由勾股定理得:2AD AB +A 、B 、C 中至少有一个点在圆内,且至少有一个点不在圆内,且CD BD <<10r <<,24.如图ABC 内接于O ,半径为6,2sin 3A =∠,则BC 的长为___________.【详解】解:作O的直径,∠90D=sin D CD.25.如图,PA、PB分别切∠O于A、B,并与∠O的另一条切线分别相交于D、C两点,已知PA=6,则∠PCD的周长=_______.【答案】12【详解】试题分析:切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线,平分两条切线的夹角.设DC与∠O的切点为E∠PA、PB分别是∠O的切线,且切点为A、B∠PA=PB=6同理可得DE=DA,CE=CB则∠PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=12.考点:切线长定理26.如图,若BC是∠O的弦,OD∠BC于D,且∠BOD=50 o,点A在∠O上(不与B、C重合),则∠BAC=________.27.若圆锥的底面积为16π cm2,母线长为12 cm,则它的侧面展开图的圆心角为__________.【答案】120°【分析】根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【详解】由题意得,圆锥的底面积为16πcm²,28.如图,在等腰直角三角形ABC 中,4AB BC ==,点M 是AB 的中点,将ABC 绕点M 旋转至A B C '''的位置,使AB A C ''⊥,其中点C 的运动路径为弧CC ',连接CM ,则图中阴影部分的面积为_______.29.如图,ABC内接于O,若OAB30∠=,则C∠=______.【详解】OA OB=30OAB=∠=,1803030120=--=,由圆周角定理得,1602C AOB∠=∠=,故答案为60.【点睛】本题考查的是三角形的外接圆与外心,等腰三角形的性质,掌握圆周角定理是解题的关键.30.如图,BC为∠O的直径,弦AD∠BC于点E,直线l切∠O于点C,延长OD交l 于点F,若AE=2,为ABC=22.5°,则CF的长度为31.用一张圆形的纸剪一个边长为4 cm的正六边形,则这个圆形纸片的半径最小应为_______cm.【答案】4【分析】要剪一张圆形纸片完全盖住这个正六边形,这个圆形纸片的边缘即为其外接圆,根据正六边形的边长与外接圆半径的关系即可求出.【详解】∠正六边形的边长是4cm,∠正六边形的半径是4cm,∠这个圆形纸片的最小半径是4cm,故答案为4cm.【点睛】此题主要考查了正多边形与圆的知识,注意正六边形的外接圆半径与边长相等,这是一个需要谨记的内容.32.如图,AB与∠O相切于点A,BO与∠O相交于点C,点D是∠O上一点,∠B=38°.则∠D的度数是_____.33.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD =12cm,则球的半径为______cm.【答案】7.5【分析】首先找到EF的中点M,作MN∠AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是(12﹣x) cm,MF=6 cm,然后在直角三角形MOF中利用勾股定理求得OF的长即可.【详解】解:EF 的中点M ,作MN∠AD 于点M ,取MN 上的球心O ,连接OF ,∠四边形ABCD 是矩形,∠∠C =∠D =90°,∠四边形CDMN 是矩形,∠MN =CD =12 cm设OF =x cm ,则ON =OF ,∠OM =MN ﹣ON = (12﹣x) cm ,MF =6 cm ,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(12﹣x )2+62=x 2,解得:x =7.5,故答案为:7.5.【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确的作出辅助线构造直角三角形.34.已知Rt ABC 中,90ACB ∠=︒,6cm AC =,8cm BC =,以C 为圆心,4.8cm 长度为半径画圆,则直线AB 与O 的位置关系是__________.与O 的位置关系是相切.2268=+与O 的位置关系是相切.故答案为:相切.【点睛】本题考查勾股定理,直角三角形面积,圆的切判定,掌握勾股定理,直角三角形面积,圆的切判定是解题关键.35.如图,一次函数y=x轴、y轴交于A、B两点,P为一次函数=的图像上一点,以P为圆心能够画出圆与直线AB和y轴同时相切,则y x∠BPO=_________.∠∠OBP=15°又∠BOP=45°∠∠BPO=180°-45°-15°=120°相交时,点P即为圆心.(2)当∠ABO的外角平分线与y x如图,同理可求∠OBP=30°+75°=105°∠∠BPO=180°-45°-105°=30°故答案为:30°或120°【点睛】本题主要考查了切线的判定和性质,角平分线的性质及三角形的内角和的应用,正确的对点P的位置进行分类是解题的关键.36.如图,四边形ABCD内接于∠O,点E在AB的延长线上,BF∠AC,AB=BC,∠ADC=130°,则∠FBE=_______°.【答案】65【详解】连接BD,如图所示:∠∠ADB和∠ACB是弧AB所对的圆周角,∠BDC和∠BAC是弧BC所对的圆周角,∠∠ADB=∠ACB,∠BDC=∠BAC,又∠∠BDC+∠ADB=∠ADC,∠ADC=130°,∠∠BAC+∠ACB=130°,又∠AB=BC,∠∠BAC=∠ACB=65°,又∠BF∠AC,∠∠FBE=∠BAC=65°;故答案是:65.37.如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧AB,使点B在O右下方,且4tan3AOB∠=.在优弧AB上任取一点P,且能过P作直线l OB∥交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧AB上一段AP的长为13π,则AOP∠的度数为__________,x的值为__________;(2)x的最小值为__________,此时直线l与弧AB所在圆的位置关系为__________26nπ⨯38.如图,在Rt ABC △中,903cm 4cm C AC BC ∠=︒==,,, 以BC 边所在的直线为轴,将ABC 旋转一周得到的圆锥侧面积是___;此圆锥展开的侧面扇形的圆心角为____.边所在的直线为轴,将ABC 旋转一周得到的圆锥侧面积是此圆锥展开的侧面扇形的扇形弧长是底面圆周长,此圆锥展开的侧面扇形的圆心角度数为【点睛】本题考查了勾股定理,圆锥的计算;得到几何体的组成是解决本题的突破39.如图,在平面直角坐标系xOy 中,一次函数y +4的图象与x 轴、y 轴交于A 、B 点,点C 在线段OA 上,点D 在直线AB 上,且CD =2,∠DEC 是直角三角形(∠EDC =90°),DE ,连接AE ,则AE 的最大值为_________.∠+∠=______度,阴影四边形的面积为______.【答案】 105︒##105度 1##1-+∠90ABD ,AB BD =90ABC BAC ∠+∠=︒=BAC DBE ∠=∠,(AAS BAC DBE ≌△△AC BE =,BC DE =三、解答题41.如图,在∠O 中,直径AB 与弦CD 相交于点E ,连接AC 、BD .(1)求证:AEC DEB △∽△;(2)连接AD ,若3AD =,30C ∠=︒,求∠O 的半径.【答案】(1)证明见解析(2)∠O 的半径为3Rt ADB 中,26AD ==,132AB ==的半径为【点睛】本题考查圆的基本知识,相似三角形的判定,以及含42.如图,在O 中,AB 为直径,AC 为弦.过BC 延长线上一点G ,作GD AO ⊥于点D ,交AC 于点E ,交O 于点F ,M 是GE 的中点,连接CF ,CM .(1)判断CM 与O 的位置关系,并说明理由;(2)若ECF 2A ∠∠=,CM 6=,CF 4=,求MF 的长.与O 相切;理由见解析;3343.已知:如图,线段BC 与经过点C 的直线l .求作:在直线l 上求作点D ,使150CDB ∠=︒.作法:∠分别以点B ,C 为圆心,BC 长为半径画弧,两弧交于BC 上方的点A ,连接AB ,AC ;∠以点A 为圆心,以AB 长为半径画圆交直线l 于点D (不同于点C ),连接BD .则点D 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∠分别以点B ,C 为圆心,BC 长为半烃画弧,两弧交于BC 上方的点A . ∠AB BC CA ==∠ABC 为等边三角形.∠60BAC ∠=︒.在A 中,在优弧BC 上任取点E ,连接BE ,CE .∠30CEB ∠=︒.(_________________________)(填推理依据)∠点B ,D ,C ,E 在A 上.∠180CDB CEB ∠+∠=︒.(_________________________)(填推理依据)即150CDB ∠=︒. 【答案】(1)见解析(2)圆周角定理;圆内接四边形对角互补【分析】(1)根据题意作出图形即可求解;(2)根据圆周角定理,以及圆内接四边形对角互补,即可求解.【详解】(1)解;如图所示,(2)证明:∠分别以点B ,C 为圆心,BC 长为半烃画弧,两弧交于BC 上方的点A . ∠AB BC CA ==∠ABC 为等边三角形.∠=60?BAC ∠.在A 中,在优弧BC 上任取点E ,连接BE ,CE .∠=30?CEB ∠(圆周角定理)∠点B ,D ,C ,E 在A 上.∠+=180CDB CEB ∠∠︒.(圆内接四边形对角互补)即150CDB ∠=︒.故答案为:圆周角定理;圆内接四边形对角互补.【点睛】本题考查了等边三角形的判定和性质,圆周角定理,圆内接四边形的性质,掌握圆周角定理是解题的关键.44.某市政府计划修建一处公共服务设施,使它到三所公寓A 、B 、C 的距离相等. (1)若三所公寓A 、B 、C 的位置如图所示,请你在图中确定这处公共服务设施(用点P 表示)的位置(尺规作图,保留作图痕迹,不写作法);(2)若∠BAC =56°,则∠BPC =【答案】(1)见解析;(2)112°【分析】(1)连接AB 、BC 、AC ,作线段AB 和AC 的垂直平分线,交点P 即为所求; (2)利用三角形外心的性质结合圆周角定理得出答案.【详解】解:(1)如图所示:P 点即为所求;(2)连接PB 、PC ,∠点P 是三角形ABC 的外心,∠∠BPC =2∠BAC =112°.【点睛】此题主要考查了应用设计与作图,掌握线段垂直平分线的性质,得出P 点是三角形ABC 的外心是解题关键.45.如图ABC 内接于O ,60B ∠=,CD 是O 的直径,点P 是CD 延长线上一点,且AP AC =.()1求证:P A 是O 的切线;()2若PD =O 的直径.)O 的直径为30,继而根据等腰三角形的性质可得出30,继而由P ,可得出30的直角三角形的性质求出PD OD =,可得出O 的直径.连接OA ,如图,B 60∠=,AOC 2B 120∠∠∴=,又OA OC =,OAC 30∠∠∴=,又AP AC =P ACP 30∠∠=,90,是O的切线.Rt OAP中,P30∠=,=+,2OA OD PD=,又OA OD=,PD OA=,PD5∴=2OA2PD∴的直径为O【点睛】本题考查了切线的判定、圆周角定理、含掌握切线的判定定理、圆周角定理及含46.如图,已知等边∠ABC,AB=2,以AB为直径的半圆与BC边交于点D,过点D 作DF∠AC,垂足为F,过点F作FG∠AB,垂足为G,连结GD.(1)求证:DF是∠O的切线;(2)求FG的长.22447.九年级学生小刚是一个喜欢看书的好学生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:PA•PB=PC•PD,小刚很想知道是如何证明的,可异证明部分污损看不清了,只看到辅助线的做法,分别连结AC、BD.聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程.小刚又看到一道课后习题,如图2,AB是∠O弦,P是AB上一点,AB=10cm,PA=4cm,OP=5cm,求∠O的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程.【答案】(1)见解析;(2)∠O的半径R为7.【分析】(1)连结AC,BD,根据圆周角定理得到∠C=∠B,∠A=∠D,再根据三角形相似的判定定理得到△APC∠∠DPB,利用相似三角形的性质得AP:DP=CP:BP,变形有AP•BP=CP•DP;由此得到相交弦定理;(2)由AB=10,PA=4,OP=5,易得PB=10-4=6,PC=OC-OP=R-5,PD=OD+OP=R+5,根据相交弦定理得到PA•PB=PC•PD,即4×6=(R-5)×(R+5),解方程即可得到R的值.【详解】(1)圆的两条弦相交,这两条弦被交点分成的两条线段的积相等.已知,如图1,∠O的两弦AB、CD相交于E,求证:AP•BP=CP•DP.证明如下:连结AC,BD,如图1,∠∠C=∠B,∠A=∠D,∠∠APC∠∠DPB,∠AP:DP=CP:BP,∠AP•BP=CP•DP;所以两条弦相交,被交点分成的两条线段的积相等.(2)过P作直径CD,如图2,∠AB=10,PA=4,OP=5,∠PB=10﹣4=6,PC=OC﹣OP=R﹣5,PD=OD+OP=R+5,由(1)中结论得,PA•PB=PC•PD,∠4×6=(R﹣5)×(R+5),解得R=7(R=﹣7舍去).所以∠O的半径R=7.【点睛】本题考查的是圆,熟练掌握相交弦定理和相似三角形的判定与性质是解题的关键.48.如图,点C在以AB为直径的∠O上.AE与过点C的切线垂直,垂足为D,AD 交∠O于点E,过B作BF∠AE交∠O于点F,连接CF.(1)求证:∠B=2∠F;(2)已知AE=8,DE=2,过B作BF∠AE交∠O于F,连接CF,求CF的长.49.如图,已知∠O的直径AB=8,过A、B两点作∠O的切线AD、BC.(1)当AD=2,BC=8时,连接OC、OD、CD.∠求∠COD的面积.∠试判断直线CD与∠O的位置关系,并说明理由.(2)若直线CD与∠O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.50.在平面直角坐标系xOy 中,对于线段MN 及点P 、Q ,若60MPN ∠=︒且线段MN 关于点P 的中心对称线段M N ''恰好经过点Q ,则称点Q 是点P 的线段60MN -︒对经点.(1)设点()0,2A .∠()1Q ,()24,0Q ,312Q ⎫-⎪⎪⎝⎭,其中为某点P 的线段60OA -︒对经点的是______.∠已知()0,1B ,设∠B 的半径为r ,若∠B 上存在某点P 的线段60OA -︒对经点,求r 的取值范围.(2)若点()4,0Q 同时是相异两点1P 、2P 的线段60OD -︒对经点,直接写出线段OD 长的取值范围. 为边的等边三角形的外接圆C 上优弧上的横纵坐标的最值,根据定义以及中点坐标公的方法作出图形,作M 的切线关于P 中心对N 为圆心,矩形对角线长度为半径两圆组成的图两直线之间的部分,除公共部分以外的图形,即图中阴影部分,包括边轴上的部分,根据图形求得)作辅助线,设,M N 在OD 同时是相异两点1P 、2P 的线段33DM x =,OM 长,解一元一次不等式组求解即可.Q 为边的等边三角形的外接圆C 上优弧上的一点,()0,2A2OA ∴=C 为AOP 的外心,则过点C 分别作CG 2OC33GC =3GC ∴=33C x ∴=∴P 的横坐标最大值为Qx交M于点S作M的是C的直径)AA交M于点F1根据对称性,同理可得过N的r的最值也为M N在OD)作辅助线,设,T 为,M N 的交点,2MT NT OM ∴===11=22TH MN OD ∴==在Rt NTH 中, NH OH ON NH =+OR ON NR =+()4,0D236+∴解得433即433≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学圆的练习题 初中数学圆的练习题集锦 同学们赶快过来证明下你们的实力吧。喜欢数学科目的同学们都知道,在初中数学题的解答中我们经常会遇到圆的相关题型,小编为大家精选了几道关于圆的初中数学题。 关于因式分解同步练习知识学习,下面的题目需要同学们认真完成哦。 因式分解同步练习(解答题) 解答题 9.把下列各式分解因式: ①a2+10a+25 ②m2-12mn+36n2 ③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2 10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值. 11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值. 答案: 9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2 通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。 因式分解同步练习(填空题) 同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。 因式分解同步练习(填空题) 填空题 5.已知9x2-6xy+k是完全平方式,则k的值是________. 6.9a2+(________)+25b2=(3a-5b)2 7.-4x2+4xy+(_______)=-(_______). 8.已知a2+14a+49=25,则a的值是_________. 答案: 5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12 通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。 因式分解同步练习(选择题) 同学们认真学习,下面是老师提供的关于因式分解同步练习题目学习哦。 因式分解同步练习(选择题) 选择题 1.已知y2+my+16是完全平方式,则m的值是( ) A.8 B.4 C.±8 D.±4 2.下列多项式能用完全平方公式分解因式的是( ) A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1 3.下列各式属于正确分解因式的是( ) A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2 C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2 4.把x4-2x2y2+y4分解因式,结果是( ) A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2 答案: 1.C 2.D 3.B 4.D 以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。 整式的乘除与因式分解单元测试卷(填空题) 下面是对整式的乘除与因式分解单元测试卷中填空题的练习,希望同学们很好的完成。 填空题(每小题4分,共28分) 7.(4分)(1)当x _________ 时,(x﹣4)0=1;(2)(2/3)2002×(1.5)2003÷(﹣1)2004= _________ 8.(4分)分解因式:a2﹣1+b2﹣2ab= _________ . 9.(4分)(2004万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要 _________ .(单位:mm)(用含x、y、z的代数式表示) 10.(4分)(2004郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为 _________ . 11.(4分)(2002长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数. (a+b)1=a+b; (a+b)2=a2+2ab+b2; (a+b)3=a3+3a2b+3ab2+b3; (a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4. 12.(4分)(2004荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a) 第n年12345… 老芽率aa2a3a5a… 新芽率0aa2a3a… 总芽率a2a3a5a8a… 照这样下去,第8年老芽数与总芽数的比值为 _________ (精确到0.001). 13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为 _________ . 答案: 7. 考点:零指数幂;有理数的乘方。1923992 专题:计算题。 分析:(1)根据零指数的意义可知x﹣4≠0,即x≠4; (2)根据乘方运算法则和有理数运算顺序计算即可. 解答:解:(1)根据零指数的意义可知x﹣4≠0, 即x≠4; (2)(2/3)2002×(1.5)2003÷(﹣1)2004=(2/3×3/2)2002×1.5÷1=1.5. 点评:主要考查的知识点有:零指数幂,负指数幂和平方的运算,负指数为正指数的倒数,任何非0数的0次幂等于1. 8. 考点:因式分解-分组分解法。1923992 分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中a2+b2﹣2ab正好符合完全平方公式,应考虑为一组. 解答:解:a2﹣1+b2﹣2ab =(a2+b2﹣2ab)﹣1 =(a﹣b)2﹣1 =(a﹣b+1)(a﹣b﹣1). 故答案为:(a﹣b+1)(a﹣b﹣1). 点评:此题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组,要考虑分组后还能进行下一步分解. 9. 考点:列代数式。1923992 分析:主要考查读图,利用图中的信息得出包带的'长分成3个部分:包带等于长的有2段,用2x表示,包带等于宽有4段,表示为4y,包带等于高的有6段,表示为6z,所以总长时这三部分的和. 解答:解:包带等于长的有2x,包带等于宽的有4y,包带等于高的有6z,所以总长为2x+4y+6z. 点评:解决问题的关键是读懂题意,找到所求的量的等量关系. 10. 考点:平方差公式。1923992 分析:将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的值. 解答:解:∵(2a+2b+1)(2a+2b﹣1)=63, ∴(2a+2b)2﹣12=63, ∴(2a+2b)2=64, 2a+2b=±8, 两边同时除以2得,a+b=±4. 点评:本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体. 11 考点:完全平方公式。1923992 专题:规律型。 分析:观察本题的规律,下一行的数据是上一行相邻两个数的和,根据规律填入即可. 解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4. 点评:在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解. 12 考点:规律型:数字的变化类。1923992 专题:图表型。 分析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律计算出第8年的老芽数是21a,新芽数是13a,总芽数是34a,则比值为 21/34≈0.618. 解答:解:由表可知:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和, 所以第8年的老芽数是21a,新芽数是13a,总芽数是34a, 则比值为21/34≈0.618. 点评:根据表格中的数据发现新芽数和老芽数的规律,然后进行求解.本题的关键规律为:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和. 13. 考点:整式的混合运算。1923992 分析:运用完全平方公式计算等式右边,再根据常数项相等列出等式,求解即可. 解答:解:∵(x+2)2﹣1=x2+4x+4﹣1, ∴a=4﹣1, 解得a=3. 故本题答案为:3. 点评:本题考查了完全平方公式,熟记公式,根据常数项相等列式是解题的关键. 以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工作。 整式的乘除与因式分解单元测试卷(选择题) 下面是对整式的乘除与因式分解单元测试卷中选择题的练习,希望同学们很好的完成。 整式的乘除与因式分解单元测试卷 选择题(每小题4分,共24分) 1.(4分)下列计算正确的是( ) A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6 2.(4分)(x﹣a)(x2+ax+a2)的计算结果是( ) A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a3 3.(4分)下面是某同学在一次检测中的计算摘录: ①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2 其中正确的个数有( ) A.1个B.2个C.3个D.4个 4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是( ) A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+1 5.(4分)下列分解因式正确的是( ) A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)

相关文档
最新文档