OLAP概念描述解析

合集下载

数据仓库、OLAP与数据挖掘关系概述

数据仓库、OLAP与数据挖掘关系概述

数据仓库、OLAP与数据挖掘关系概述 摘要:数据仓库、OLAP与数据挖掘是当今的技术热点,数据仓库是一种解决数据使用的高效技术,OLAP则将数据通过多维视角和多种层次向用户进行多方式的呈现,数据挖掘为之提供了更好的决策支持和服务,同时促进了数据仓库技术的发展,本文简单介绍了这三者的概念和应用。 关键词:数据仓库 OLAP 数据挖掘

一、数据仓库 数据仓库是一种资讯系统的资料储存理论,此理论强调利用某些特殊资料储存方式,让所包含的资料,特别有利于分析处理,以产生有价值的资讯并依此作决策。利用数据仓库方式所存放的资料,具有一但存入,便不随时间而更动的特性,同时存入的资料必定包含时间属性,通常一个数据仓库皆会含有大量的历史性资料,并利用特定分析方式,自其中发掘出特定资讯。 1.1 数据仓库的特征 (1)数据仓库的数据是面向主题的。主题是一个抽象的概念,是较高层次上企业信息系统中的数据综合、归类并进行分析利用的抽象。在逻辑意义上,它是对应企业中某一宏观分析领域所涉及的分析对象。面向主题的数据组织方式,就是在较高层次上对分析对象的数据的一个完整、一致的描述,能完整、统一地刻划各个分析对象所涉及的企业的各项数据,以及数据之间的联系。所谓较高层次是相对面向应用的数据组织方式而言的,是指按照主题进行数据组织的方式具有 更高的数据抽象级别。 (2)数据仓库的数据是集成的 。数据仓库的数据是从原有的分散的数据库数据抽取来的。数据仓库的每一个主题所对应的源数据在原有的各分散数据库中有许多重复和不一致的地方,且来源于不同的联机系统的数据都和不同的应用逻辑捆绑在一起;数据仓库中的综合数据不能从原有的数据库系统直接得到。因此在数据进入数据仓库之前,必然要经过统一与综合,这一步是数据仓库建设中最关键、最复杂的一步。 (3)数据仓库的数据是不可更新的。数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一般情况下并不进行修改操作。数据仓库的数据反映的是一段相当长的时间内历史数据的内容,是不同时点的数据库快照的集合,以及基于这些快照进行统计、综合和重组的导出数据,而不是联机处理的数据。 (4)数据仓库的数据是随时间不断变化的。数据仓库的用户进行分析处理时是不进行数据更新操作的。但并不是说,在从数据集成输入数据仓库开始到最终被删除的整个数据生存周期中,所有的数据仓库数据都是永远不变的。 1.2 数据仓库的类型 数据仓库的类型根据数据仓库的数据类型和它们所解决的企业问题范围,一般可将数据仓库分为下列3种类型:企业数据仓库(EDW)、操作型数据库(ODS)和数据集市(Data Marts)。 (1)企业数据仓库为通用数据仓库,它既含有大量详细的数据,也含有大量累赘的或聚集的数据,这些数据具有不易改变性和面向历史性。此种数据仓库被采用进行涵盖多种企业领域上的战略或战术上的决策。 (2)操作型数据库既可以被用来针对工作数据做决策支持,又可用做将数据加载到数据仓库时的过度区域。与EDW相比,ODS是面向主题和面向综合的,易变的,仅含有目前的、详细的数据,不含有累计的、历史性的数据。 (3)数据集市是为了特定的应用目的或应用范围,从而数据仓库中独立出来的一部分数据,也可称为部门数据或主题数据。几组数据集市可以组成一个EDW。 二、OLAP技术 联机分析处理(On-Line Analytical Processing,简称OLAP),是一套以多维度方式分析数据,而能弹性地提供积存上钻(Roll-up)、下钻(Drill-down)、和透视分析(pivot)等操作,呈现集成性决策信息的方法,多用于决策支持系统、商务智能或数据仓库。其主要的功能,在于方便大规模数据分析及统计计算,对决策提供参考和支持。与之相区别的是联机交易处理(OLTP)。 OLAP需以大量历史数据为基础配合上时间点的差异并对多维度及汇整型的信息进行复杂的分析。OLAP需要用户有主观的信息需求定义,因此系统效率较佳。 在实际应用中用广义和狭义两种不同的理解。广义上的理解与字面意思相同,即针对于OLTP而言,泛指一切不对数据进行输入等事务性处理,而基于已有数据进行分析的方法。但更多的情况下OLAP是被理解为其狭义上的含义,即与多维分析相关,基于立方体(CUBE)计算而进行的分析。 2.1 OLAP的多维分析特性 OLAP具有两个重要的特点:一是在线性,体现为对用户请求的快速响应和交互式操作;二是多维分析,也就是说,OLAP展现在用户面前的是一个多维视图,使用者可以对其进行各种多维分析操作。下面我们具体介绍OLAP的多维分析特性。 在实际的决策制定过程中,决策者需要的不是某一指标单一的值,而是希望从多个角度或者从不同的考察范围来观察某一指标或多个指标,通过分析对比,从而找出这些指标间隐藏的内在关系,并预测这些指标的发展趋势,即决策所需的数据总是和一些分析角度和分析指标有关。OLAP的主要工作就是将数据仓库中的数据转换到多维数据结构中,并且对上述多维数据结构执行有效且非常复杂的多维查询。 2.2 OLAP的多维分析操作 多维分析操作是指对以多维形式组织起来的数据采取切片、切块、旋转等各种分析操作,以求剖析数据、使最终用户能从多个角度、多个侧面去观察数据库中的数据、从而深入地了解包含在数据中的信息、内涵。多维分析的基本操作有: (1)切片操作:是在给定的多维数据集的某一个维上选定一维成员,从而得到一个多维数据子集的动作。如果有(维1,维2,„„,维i,„„,维n,度量)多维数据集,对维i选定了某个维成员,那么(维1,维2,„„,维i成员,„„,维n,度量)就是多维数据集(维1,维2,„„,维i,„„,维n,度量)在维i上的一个切片。 (2)切块操作:在多维数据集的某一维上选定某一区间的维成员的操作称为切块,即限制多维数据集的某一维的取值区间。 (3)旋转是一种目视操作,它转动多维数据集的视角,提供数据的替代表示。旋转操作可以将多维数据集的不同维进行交换显示,从而使用户更加直观地观察数据集中不同维之间的关系。 (4)钻取分为向下钻取和向上钻取。下钻操作是由不太详细的高层次汇总数据分解为更详细的低层次数据。上钻是下钻的逆操作,它是通过一个维的概念分层向上攀升,或者通过维归约,在多维数据集上进行聚集。 (5)在OLAP分析操作中,还有“钻过”(drill-across)和“钻透”(drill-through)等。“钻过”涉及多个事实表的查询;“钻透”操作使用关系SQL机制,钻到多维数据集的底层,到后端关系表。 (6)其它的OLAP操作还包括计算统计表中的最高或最低N项、平均值、移动平均值、增长率、各类百分比等。 三、数据挖掘 数据挖掘(Data mining),又译为资料探勘、数据挖掘、数据采矿。它是数据库知识发现(Knowledge-Discovery in Databases,缩写:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 3.1 数据挖掘与传统数据分析的区别 数据挖掘与传统的数据分析(如查询、报表、联机应用分析)的本质区别是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。数据挖掘所得到的信息应具有先未知,有效和可实用三个特征。先前未知的信息是指该信息是预先未曾预料到的,既数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识,挖掘出的信息越是出乎意料,就可能越有价值。在商业应用中最典型的例子就是一家连锁店通过数据挖掘发现了小孩尿布和啤酒之间有着惊人的联系。 尽管通常数据挖掘应用于数据分析,但是像人工智能一样,它也是一个具有丰富含义的词汇,可用于不同的领域。 它与KDD的关系是:KDD是从数据中辨别有效的、新颖的、潜在有用的、最终可理解的模式的过程;而数据挖掘是KDD通过特定的算法在可接受的计算效率限制内生成特定模式的一个步骤。 3.2 数据挖掘的分析方法 数据挖掘利用的技术越多,得出的结果精确性就越高。原因很简单,对于某一种技术不适用的问题,其它方法即可能奏效,这主要取决于问题的类型以及数据的类型和规模。数据挖掘方法有多种,其中比较典型的有关联分析、序列模式分析、分类分析、聚类分析等。 (1)关联分析,即利用关联规则进行数据挖掘。在数据挖掘研究领域,对于关联分析的研究开展得比较深入,人们提出了多种关联规则的挖掘算法,如APRIORI、STEM、AIS、DHP等算法。关联分析的目的是挖掘隐藏在数据间的相互关系,它能发现数据库中形如“90%的顾客在一次购买活动中购买商品A的同时购买商品B”之类的知识。 (2)序列模式分析和关联分析相似,其目的也是为了挖掘数据之间的联系,但序列模式分析的侧重点在于分析数据间的前后序列关系。它能发现数据库中形如“在某一段时间内,顾客购买商品A,接着购买商品B,而后购买商品C,即序列A→B→C出现的频度较高”之类的知识,序列模式分析描述的问题是:在给定交易序列数据库中,每个序列是按照交易时间排列的一组交易集,挖掘序列函数作用在这个交易序列数据库上,返回该数据库中出现的高频序列。 (3)分类分析,设有一个数据库和一组具有不同特征的标记,该数据库中的每一个记录都赋予一个类别的标记,这样的数据库称为示例数据库或训练集。分类分析就是通过分析示例数据库中的数据,为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用这个分类规则对其它数据库中的记录进行分类。目前已有多种分类分析模型得到应用,其中几种典型模型是线性回归模型、决策树模型、基本规则模型和神经网络模型。 (4) 聚类分析与分类分析不同,聚类分析输入的是一组未分类记录,并且这些记录应分成几类事先也不知道。聚类分析就是通过分析数据库中的记录数据,根据一定的分类规则,合理地划分记录集合,确定每个记录所在类别。它所采用的分类规则是由聚类分析工具决定的。聚类分析的方法很多,其中包括系统聚类法、分解法、加入法、动态聚类法、模糊聚类法、运筹方法等。采用不同的聚类方法,对于相同的记录集合可能有不同的划分结果。 四、 数据仓库、OLAP与数据挖掘的关系 数据仓库将来自于各种数据源的数据,根据不同的主题进行存储,并对原始数据进行抽取、转换和加载等一系列筛选和清理工作。OLAP则将数据通过多维视角和多种层次向用户进行多方式的呈现。数据挖掘则应用不同的算法,向用户揭示数据间的规律性,从而辅助商业决策。

OLAP技术资料

OLAP技术资料
SQL ROLAP Server Info. Request
Front-end Tool
R
DBMS
Result Set
Metadata Request Processing
Result Set
ROALP Architecture
11/21/2018
OLAP技术简介
OLAP分类(七)
MOLAP Architecture:
不支持有关预计算的读写操作。
SQL无法完成部分计算。
MOLAP的缺点:
增加系统复杂度,增加系统培训与维护费用。 需要进行预计算,可能导致数据急剧膨胀。 支持维的动态变化比较困难。
11/21/2018
OLAP技术简介
OLAP分类(六)
ROLAP Architecture:
Database Server
11/21/2018
OLAP技术简介
OLAP分类(三)
MOLAP的逻辑存储模型:
以多维立方体和预计算来存储,实际数据的稀疏分布以及预计算是导致MOLAP空 间急剧膨胀的主要因素。
X X
X
X
X
11/21/2018
OLAP技术简介
OLAP分类(二)
ROLAP存储模式:ROLAP数据以星型模式(Star Schema)或雪花型模式存储: 事实表:用来存储事实的度量值和各个维的码值。 。
OLAP工具在移动业务分析中 是否能发挥作用,为什么 ?
11/21/2018
OLAP技术简介
发展背景(一)
60年代,关系型数据库之父E.F.Codd提出了关系模型,促进了OLTP( OnLine Transaction Processing,联机事务处理)模型的发展。 1993年,E.F.Codd提出了OLAP(OnLine Analytical Processing联机分析处理)概念,认为 OLTP已不能满足终端用户对数据库查询分析的需要,SQL对大型数据库进行的简单查询也 不能满足终端用户分析的要求。用户的决策分析需要对关系数据库进行大量计算才能得到 结果,而查询的结果并不能满足决策者提出的需求。因此,E.F.Codd提出了多维数据库和 多维分析的概念,即OLAP。

数据仓库与OLAP技术

数据仓库与OLAP技术
例:在有关商品销售的数据仓库中可以建立多个不同 主题的数据集市: 商品采购数据集市 库房使用数据集市 商品销售数据集市
数据挖掘
数据集市类型
按照数据获取来源: 独立型:直接从操作型环境获取数据; 从属型:从企业级数据仓库获取数据;
数据挖掘
建设途径
从 全局数据仓库 到 数据集市 从 数据集市 到 全局数据仓库
数据挖掘
数据粒度
粒度是指数据仓库的数据单位中保存数据的细 化或综合程度的级别;
粒度影响存放在数据仓库中的数据量的大小;同 时影响数据仓库所能回答查询问题的细节程度; 是设计数据仓库的一个最重要方面;
粒度可以分为两种形式: 按时问段综合数据的粒度 按采样率高低划分的样本数据库;
数据挖掘
粒度的一个例子
小的时间段粒度统计而成的数据;其数据量较细节及 数据少得多 当前细节级:存储最近时期的业务数据;反映当前业 务的情况;数据量大;是数据仓库用户最感兴趣的部 分 早期细节级:存储过去的详细数据;反映真实的历史 情况;这类数据随着时间增加;数据量很大;使用频率 低;一般存储在转换介质如磁带中
数据挖掘
2 3 数据组织结构和形式
分割问题的焦点不是该不该分割而是如何去分 割的问题;
数据挖掘
数据分割
一般在进行实际的分析处理时;对于存在某种相关性的 数据集合的分析是最常见的;如对某时间或某时段的数 据的分析;对某一地区的数据的分析;对特定业务领域 的数据的分析等;将其有这种相关性的数据组织在一起; 就会提高效率;
数据挖掘
数据分割的好处
数据挖掘
面向主题
主题Subject:特定的数据分析领域与目标; 面向主题:为特定的数据分析领域提供数据支持; 主题是一个抽象的概念;是在较高层次上将企业信息系

第4章联机分析处理(OLAP)new精品PPT课件

第4章联机分析处理(OLAP)new精品PPT课件

2 OLAP多维数据结构
2.2 两种结构的使用
• 两者的实际使用情况
– 一般来说,多立方结构灵活性较大,但超立方结构更易于理 解。
– 终端用户更容易接近超立方结构,它可以提供高水平的报告 和多维视图。但具有多维分析经验的MIS专家更喜欢多立方 结构,因为它具有良好的视图翻转性和灵活性。
– 多立方结构是存储稀疏矩阵的一个更有效方法,并能减少计 算量。因此,复杂的系统及预先建立的通用应用倾向于使用 多立方结构,以使数据结构能更好地得到调整,满足常用的 应用需求。
– 用户的决策分析需要对关系数据库进行大量计算才能得 到结果,而OLTP查询的结果并不能满足决策者提出的需 求。因此,E.F.Codd提出了多维数据库和多维分析的概 念,即OLAP。
1 OLAP定义和特性 1.2 OLAP与OLTP的比较
事务型处理数据 细节的 在存取瞬间是准确的 可更新 操作需求事先可知道 生命周期符合SDLC 对性能要求高 一个时刻操作一个单元 事务驱动 面向应用 一次操作数据量小 支持日常操作
分析型处理数据 综合的,或提炼的 代表过去的数据 不可更新,只读的 操作需求事先不知 完全不同的生命周期 对性能要求宽松 一个时刻操作一组数据 分析驱动 面向分析 一次操作数据量大 支持管理需求
1 OLAP定义和特性
1.3 OLAP定义和目标
• 定义1
– OLAP (Online Analytical Processing)是针对特定问题的联机数 据访问和分析。通过对信息(维数据)的多种可能的观察形式进 行快速、稳定一致和交互性的存取,允许管理决策人员对数据 进行深入观察。
1 OLAP定义和特性
1.5 OLAP特性
• 快速性
– 用户对OLAP的快速反应能力有很高的要求。系统应能在5秒内对用户 的大部分分析要求做出反应。

第4章联机分析处理(OLAP)new精品PPT课件

第4章联机分析处理(OLAP)new精品PPT课件
• 信息性
– 不论数据量有多大,也不管数据存储在何处,OLAP系统应能及时获 得指导性的信息,并且管理大容量信息。
2 OLAP多维数据结构
2.1 两种OLAP多维数据结构
• 超立方结构(Hypercube)
– 超立方结构指用三维或更多的维数来描述一个对象,每个维 彼此垂直。数据的测量值发生在维的交叉点上,数据空间的 各个部分都有相同的维属性。
– 以多维数据组织方式为核心,也就是说, MOLAP使用多维 数组存储数据。
– 多维数据在存储中将形成“立方块(Cube)”的结构, 在 MOLAP 中 对 “ 立 方 块 ” 的 “ 旋 转 ” 、 “ 切 块 ” 、 “切片”是产生多维数据报表的主要技术。
4 OLAP分类 4.3 MOLAP
4 OLAP分类 4.3 MOLAP
(维度1,维度2,…,维成员Vi,…,维度n,度量) 为多维数组在维度i上的切片(Vi表示维度i的维成员)
– 定义1中,一次切片一定使原来维数减1,因此所得切片结果并不 一定是二维的“平面”,切片结果维数取决于原来的多维数组的 维数。这个定义不够通俗,还有另外一个定义
– 定义2:选定多维数组中两个维:维i和维j,在这两个维上取一区 间或者任意的维成员,而将其他维都分别取定一个维成员的动作, 称为多维数组在维i和维j上的一个切片。
员类别等维的描述信息。 • 维表和事实表通过主关键字和外关键字联系在一起,形成了“星
型模式”。对于层次复杂的维,为避免冗余数据占用过大的存储 空间,可以使用多个表来描述,这种星型模式的扩展称为“雪花模 式”。 • 星座模型和雪暴模型:有多个事实表的星型模型和雪花模型
4 OLAP分类 4.2 ROLAP
1 OLAP定义和特性

OLAP技术

OLAP技术

6/3/2015
OLAP技术简介
OLAP定义
定义1 :OLAP(联机分析处理)是针对特定问题的联机数据访问和分析。通过对信息(维数据) 的多种可能的观察形式进行快速、稳定一致和交互性的存取,允许管理决策人员对数据进 行深入观察。 定义2 :OLAP(联机分析处理) 是使分析人员、管理人员或执行人员能够从多种角度对从原 始数据中转化出来的、能够真正为用户所理解的、并真实反映企业维特性的信息进行快速、 一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。(OLAP委员会的定义) 。
6/3/2015
OLAP技术简介
OLAP分类(三)
MOLAP的逻辑存储模型:
以多维立方体和预计算来存储,实际数据的稀疏分布以及预计算是导致MOLAP空 间急剧膨胀的主要因素。
X X
X
X
X
6/3/2015
OLAP技术简介
OLAP分类(二)
ROLAP存储模式:ROLAP数据以星型模式(Star Schema)或雪花型模式存储: 事实表:用来存储事实的度量值和各个维的码值。 。
"Dimension Table"
OLAP技术简介
OLAP分类(四)
ROLAP的优势:
没有大小限制。(因为Star Schema本身不需要额外的存储空间) 。
现有的关系数据库的技术可以沿用。
可以通过SQL实现详细数据与概要数据的存储。 现有关系型数据库已经对OLAP做了很多优化,包括并行存储、并行查询、并行数据管理、
6/3/2015
OLAP技术简介
OLAP的基本特征
快速性:用户对OLAP的快速反应能力有很高的要求。系统对用户的大部分分析要求的响应 速度应该为秒级。 可分析性:OLAP系统能处理与应用有关的任何逻辑分析和统计分析。 多维性:多维性是OLAP的关键属性。系统提供对数据的多维视图和分析,包括对层次维和 多重层次维的完全支持。 信息性:不论数据量有多大,也不管数据存储在何处,OLAP系统应能及时获得信息,并且 具有管理大容量信息的能力

OLAP 技术


服装切片
产品
北京 上海 江苏
销售数量: 10000
1
2
3
4
化妆品 玩具 服装 电器 时间(月)
3.维成员 维成员
维的一个取值、 维的一个取值、不同维层次取值的组合 、维成员描 述所关心的主题在维中的位置 数据单元可以表示为:(维1维成员,维2维成员, 维3维成员,维4维成员,观察变量值)
4.多维数据集的度量值 多维数据集的度量值
4.2 OLAP 与多维分析
4.2.1 多维基本概念 维的层次、维成员、多维数据集、数据单元、 维、维的层次、维成员、多维数据集、数据单元、 多维数据集的度量值和聚集 销售地区 1.维 维 “上卷” “下钻”
华东 华中 西南
上海
江苏
湖北
河南
云南
四川
4.2 OLAP 与多维分析
2.多维数据集 多维数据集
4.4.3 多维数据库与数据仓库
问题: 直接从业务处理系统中抽取数据 问题: 1.增加数据抽取部分的工作量 增加数据抽取部分的工作量 2.缺乏统一的数据源和结论 缺乏统一的数据源和结论 3.加大系统的维护工作量 加大系统的维护工作量 4.缺乏对元数据的有效管理 缺乏对元数据的有效管理 5.加大 加大OLAP系统的开发投入 加大 系统的开发投入
2.多维的切块 多维的切块
在(维1,维2,……,维i,……,维k,……,维n,观察变 量)多维数据集上,对维i,……,维k,选定了维成员, 那(维1,维2,……,维i成员,……,维k成员,……, 维n,观察变量)就是多维数据集(维1,维2,……,维 i,……,维k,……,维n,观察变量)在维i,……,维k 上的一个切块
2.ROLAP的功能 的功能
提供基于关系数据的商业视图 维层次支持 模型的自定义 细剖细节层次 数据的备分恢复和安全功能 元数据导航 OLAP服务器性能的协调等功能 服务器性能的协调等功能

数据仓库和OLAP的基本概念

一数据仓库与OLAP技术1 数据仓库的定义与特征1.1 数据仓库的定义数据仓库已被多种方式定义,使得很难给出一种严格的定义。

宽松地来讲,数据仓库是一个数据库,它与组织机构的操作数据库分别维护,数据仓库系统允许将各种应用系统集成在一起,为统一的历史数据分析提供坚实的平台,为信息处理提供支持。

下面给出数据仓库之父对数据仓库的定义:数据仓库是面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于经营管理中的决策支持。

随着数据库技术的应用和发展,人们尝试对数据库DB中的数据进行再加工,形成一个综合的,面向分析的环境,以更好支持决策分析,从而形成了数据仓库技术。

其中,作为决策支持系统,数据仓库系统如图1.1包括:1. 数据仓库技术2. 联机分析处理技术3. 数据挖掘技术图1.1 数据仓库系统结构图1.2 数据仓库的特征数据仓库的四个主要特征。

1. 面向主题(subject-oriented)数据仓库中的数据是根据面向主题的方式组织的。

主题是用户所关心的数据对象,每个主题对应一个客观分析领域,如客户、商店等。

在系统中数据是根据业务流程进行组织的,同一主题的数据往往存放在多个数据表中,用户查询时需要在不同的数据表之间切换。

而在数据仓库中数据是根据主题组织的,同一主题的数据往往在一个事实表中,并且只有符合主题的数据才可进入数据仓库。

2. 集成(integrated)指在数据进入数据仓库之前,必须经过数据加工和集成,这是建立数据仓库的关键步骤,首先要统一原始数据中的矛盾之处,还要将原始数据结构做一个从面向应用向面向主题的转变。

通常构造数据仓库是将多个数据源,如关系数据库、文件和一些外部数据源,集成在一起。

使用数据清理和数据集成技术,确保命名约定、编码结构、属性度量等的一致性。

3. 时变(time-variant)数据仓库是不同时间的数据集合,数据存储从历史的角度提供信息。

它要求数据仓库中的数据保存时限能满足进行决策分析的需要,而且数据仓库中的数据都要标明该数据的历史时期。

微软 OLAP的定义与配置


Deploy an AS Project

expand the SQL queries

Browse the cube


Browse Dimension
Browse Cube
OLAP Cube Design

Modify Measures

FormatString Rename measure names

广义的定义与一些早期术语基本相同,例 如:决策支持、商业智能、执行信息系统
OLAP = 多维数据库

OLAP的基本概念--维度和度量
二维到多维
度量
维度
层次
•Analysis Server Cube存储
MOLAP Storage Mode

Details and Aggregations Stored in Multidimensional Format Fastest Storage Option for Queries Often the Most Efficient in Terms of Disk Storage, Due to Compression


关系模型与OLAP的集成 主动缓冲技术

将 MOLAP 的最好方面引入 ROLAP KPIs, MDX 脚本, 转换, 通货…


高级商业智能

Web服务

本地化的XML/A,
关系与 OLAP之间的桥梁
分析服务 –
可扩展的,高性能的UDM服务器
数据源 工具
OLAP Browser (1) OLAP Browser (2) Reporting Tool (1) Reporting Tool (1) BI Applications

OLAP开发指南

OLAP开发指南目录介绍..................................................................................OLAP系统的基本原理....................................................................微软数据仓储策略 .......................................................................微软数据仓储框架(Microsoft Data Warehousing Framework) .................................数据复杂性 .............................................................................组织的价值 .............................................................................OLAP术语和概念........................................................................ OLAP 数据模型 ..........................................................................总和及存储模型 .........................................................................OLAP 服务体系结构.....................................................................实现OLAP的挑战........................................................................创建OLAP数据模型 .......................................................................直观的用户界面 .........................................................................利用总和来管理数据爆炸(Data Explosion) .................................................灵活的存储选择 .........................................................................智能型预先求和功能 .....................................................................性能和可伸缩性 .........................................................................向用户提交OLAP信息 .....................................................................行业标准 ...............................................................................脱线和基于Web的信息提交 ................................................................微软数据透视表服务(Microsoft PivotTable Service ) ......................................提供OLAP工具 ........................................................................... Microsoft Office 集成 ..................................................................第三方客户工具 .........................................................................结论..................................................................................介绍OLAP(Online analytical processing:联机分析处理)是一个日益普及的技术,它可以显著地改善商业分析,但历史上它却具有价格昂贵、难于实现,且不能进行灵活部署的特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档