专题06 不等式与线性规划-2019年新课标全国卷(1、2、3卷)理科数学备考宝典

合集下载

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)含详细答案一、选择题(本大题共12小题,共60.0分)1.已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=()A. {x|−4<x<3}B. {x|−4<x<−2}C. {x|−2<x<2}D. {x|2<x<3}2.设复数z满足|z−i|=1,z在复平面内对应的点为(x,y),则()A. (x+1)2+y2=1B. (x−1)2+y2=1C. x2+(y−1)2=1D. x2+(y+1)2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A. a<b<cB. a<c<bC. c<a<bD. b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A. 165cmB. 175cmC. 185cmD. 190cm5.函数f(x)=sinx+xcosx+x2在[−π,π]的图象大致为()A. B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. 516B. 1132C. 2132D.11167.已知非零向量a⃗,b⃗ 满足|a⃗|=2|b⃗ |,且(a⃗−b⃗ )⊥b⃗ ,则a⃗与b⃗ 的夹角为()A. π6B. π3C. 2π3D. 5π68.下图是求12+12+12的程序框图,图中空白框中应填入()A. A=12+AB. A=2+1AC. A=11+2AD. A=1+12A9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A. a n=2n−5B. a n=3n−10C. S n=2n2−8nD. S n=12n2−2n 10.已知椭圆C的焦点为F1(−1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A. x22+y2=1 B. x23+y22=1 C. x24+y23=1 D. x25+y24=111.关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)在区间(π2,π)单调递增③f(x)在[−π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A. ①②④B. ②④C. ①④D. ①③12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A. 8√6πB. 4√6πC. 2√6πD. √6π二、填空题(本大题共4小题,共20.0分)13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .16. 已知双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.设(sinB −sinC)2=sin 2A −sinBsinC . (1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD −A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN//平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程;(2)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.20.已知函数f(x)=sinx−ln(1+x),f′(x)为f(x)的导数.证明:)存在唯一极大值点;(1)f′(x)在区间(−1,π2(2)f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i−1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=−1),b=P(X=0),c= P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1−p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.22.在直角坐标系xOy中,曲线C的参数方程为{x=1−t21+t2y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】【分析】本题考查了一元二次不等式的解法和交集的运算,属基础题.利用一元二次不等式的解法和交集的运算即可得出.【解答】解:∵M={x|−4<x<2},N={x|x2−x−6<0}={x|−2<x<3},∴M∩N={x|−2<x<2}.故选C.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z−i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z−i=x+(y−1)i,∴|z−i|=√x2+(y−1)2=1,∴x2+(y−1)2=1,故选C.3.【答案】B【解析】【分析】本题考查了指数函数和对数函数的单调性运用,属基础题.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选B.4.【答案】B【解析】【分析】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.充分运用黄金分割比例,计算可估计身高.【解答】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,,由头顶至咽喉的长度与咽喉至肚脐的长度之比是√5−12可得咽喉至肚脐的长度小于√5−12=√5−1≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是√5−12,可得肚脐至足底的长度小于26+52√5−1√5−12≈110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×√5−12≈65cm,即该人的身高大于65+105=170cm,故选B.5.【答案】D【解析】【分析】本题考查了函数图象的作法及函数的奇偶性,解题关键是奇偶性和特殊值,属基础题.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C,从而可得结果.【解答】解:∵f(x)=sinx+xcosx+x2,x∈[−π,π],∴f(−x)=−sinx−xcos(−x)+x2=−sinx+xcosx+x2=−f(x),∴f(x)为[−π,π]上的奇函数,因此排除A;又f(π)=sinπ+πcosπ+π2=π−1+π2>0,因此排除B,C,故选D.6.【答案】A【解析】【分析】本题主要考查概率的求法,考查古典概型、组合的应用,考查运算求解能力,属于基础题.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,则该重卦恰有3个阳爻的概率p=mn =2064=516.故选A.7.【答案】B【解析】【分析】本题考查了平面向量的数量积和向量的夹角,属基础题.由(a⃗−b⃗ )⊥b⃗ ,可得(a⃗−b⃗ )⋅b⃗ =0,进一步得到|a⃗||b⃗ |cos<a⃗,b⃗ >−b⃗ 2=0,然后求出夹角即可. 【解答】 解:∵(a ⃗ −b ⃗ )⊥b ⃗ ,∴(a ⃗ −b ⃗ )⋅b ⃗ =a ⃗ ⋅b ⃗ −b ⃗ 2=|a ⃗ ||b ⃗ |cos <a ⃗ ,b ⃗ >−b ⃗ 2=0, ∴cos <a ⃗ ,b ⃗ >=|b⃗ |2|a ⃗ ||b⃗ |=12,∵<a ⃗ ,b ⃗ >∈[0,π],∴<a ⃗ ,b ⃗ >=π3,故选B . 8.【答案】A【解析】【分析】本题考查了程序框图的应用问题,是基础题.模拟程序的运行,由题意,依次写出每次得到的A 的值,观察规律即可得解. 【解答】解:模拟程序的运行,可得: A =12,k =1;满足条件k ≤2,执行循环体,A =12+12,k =2;满足条件k ≤2,执行循环体,A =12+12+12,k =3;此时,不满足条件k ≤2,退出循环,输出A 的值为12+12+12,观察A 的取值规律可知图中空白框中应填入A =12+A . 故选A . 9.【答案】A【解析】【分析】本题考查等差数列的通项公式以及前n 项和公式,关键是求出等差数列的公差以及首项,属于基础题.根据题意,设等差数列{a n }的公差为d ,则有{4a 1+6d =0a 1+4d =5,求出首项和公差,然后求出通项公式和前n 项和即可. 【解答】解:设等差数列{a n }的公差为d , 由S 4=0,a 5=5,得 {4a 1+6d =0a 1+4d =5,∴{a 1=−3d =2, ∴a n =2n −5,S n =n (−3+2n−5)2=n 2−4n ,故选:A .10.【答案】B【解析】【分析】本题考查了椭圆的定义以及方程、余弦定理,属中档题.根据椭圆的定义以及余弦定理列方程可解得a=√3,b=√2,可得椭圆的方程.【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=a2,∴|AF2|=a,|BF1|=32a,则|AF2|=|AF1|=a,所以A为椭圆短轴端点,在Rt△AF2O中,cos∠AF2O=1a,在△BF1F2中,由余弦定理可得cos∠BF2F1=4+(a2)2−(32a)22×2×a2=4−2a22a,根据cos∠AF2O+cos∠BF2F1=0,可得1a +4−2a22a=0,解得a2=3,∴a=√3,b2=a2−c2=3−1=2.所以椭圆C的方程为:x23+y22=1,故选B.11.【答案】C【解析】【分析】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.根据绝对值的应用,结合三角函数的性质分别进行判断即可.【解答】解:f(−x)=sin|−x|+|sin(−x)|=sin|x|+|sinx|=f(x),且f(x)的定义域为R,则函数f(x)是偶函数,故①正确;当x∈(π2,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误;当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0,得2sinx=0,即x=0或x=π,由f(x)是偶函数,得在[−π,0)上还有一个零点x=−π,即函数f(x)在[−π,π]有3个零点,故③错误;当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选C.12.【答案】D【解析】【分析】本题考查多面体外接球体积的求法,是中档题.设∠PAC=θ,PA=PB=PC=2x,EC=y,根据余弦定理以及勾股定理证明三条侧棱两两互相垂直,即可求外接球O的体积.【解答】解:设∠PAC=θ,PA=PB=PC=2x,EC=y,因为E,F分别是PA,AB的中点,所以EF=12PB=x,AE=x,在△PAC中,cosθ=4x2+4−4x22×2x×2=12x,在△EAC中,cosθ=x2+4−y22×2x,整理得x2−y2=−2,①因为△ABC是边长为2的正三角形,所以CF=√3,又∠CEF=90°,则x2+y2=3,②,由①②得x=√22,所以PA=PB=PC=√2,所以PA2+PB2=4=AB2,即PA⊥PB,同理可得PA⊥PC,PB⊥PC,则PA、PB、PC两两垂直,则球O是以PA为棱的正方体的外接球,则外接球的直径为√2+2+2=√6,所以球O的体积为.故选D.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究曲线上某点的切线方程,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y′=3(2x+1)e x+3(x2+x)e x=3e x(x2+3x+1),∴当x=0时,y′=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,属于基础题.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:设等比数列{a n}的公比为q,由a42=a6,得(a1q3)2=a1q5,即q6a12=q5a1,解得q=3,则S5=13(1−35)1−3=1213,故答案为1213.15.【答案】0.18【解析】【分析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,第六场一定是甲胜,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p 1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p 2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p 3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p 4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p =p 1+p 2+p 3+p 4=0.036+0.036+0.054+0.054=0.18. 故答案为:0.18. 16.【答案】2【解析】【分析】本题考查双曲线的简单性质,是中档题.由题意画出图形,结合已知可得F 1B ⊥OA ,可得一条渐近线方程的倾斜角为,从而可得,进而求出离心率.【解答】 解:如图,∵F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,且F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0, ∴F 1B ⊥F 2B,F 1A =AB , ∴OA ⊥F 1B ,则△AOF 1≌△AOB , 则,所以一条渐近线的斜率为,所以e =c a =√1+b 2a 2=2,故答案为:2.17.【答案】解:(1)∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sinB −sinC)2=sin 2A −sinBsinC .则sin 2B +sin 2C −2sinBsinC =sin 2A −sinBsinC , ∴由正弦定理得:b 2+c 2−a 2=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc =12,∵0<A <π,∴A =π3.(2)∵√2a +b =2c ,A =π3,∴由正弦定理得√2sinA +sinB =2sinC , ∴√62+sin(2π3−C)=2sinC ,即√62+√32cosC +12sinC =2sinC ,即√62+√32cosC −32sinC =0, 即sin(C −π6)=√22,,则,∴C −π6=π4,C =π4+π6, ∴sinC =sin(π4+π6)=sin π4cos π6+cos π4sin π6=√22×√32+√22×12=√6+√24.【解析】本题考查了正弦定理、余弦定理,属于中档题. (1)由正弦定理得:b 2+c 2−a 2=bc ,再由余弦定理求出A .(2)由已知及正弦定理可得:sin(C −π6)=√22,可解得C 的值,由两角和的正弦函数公式即可得解.18.【答案】(1)证明:如图,过N 作NH ⊥AD ,连接BH ,则NH//AA 1,H 是AD 中点,且NH =12AA 1, 又MB//AA 1,MB =12AA 1,∴四边形NMBH 为平行四边形,则NM//BH ,由H 为AD 中点,而E 为BC 中点,∴BE//DH ,BE =DH ,则四边形BEDH 为平行四边形,则BH//DE , ∴NM//DE ,∵NM ⊄平面C 1DE ,DE ⊂平面C 1DE , ∴MN//平面C 1DE ;(2)解:以D 为坐标原点,以平面ABCD 内垂直于DC 的直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A 1(√3,−1,4),NM ⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2), 设平面A 1MN 的一个法向量为m⃗⃗⃗ =(x,y,z),由{m ⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =√32x +32y =0m⃗⃗⃗ ⋅NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x −12y +2z =0,取x =√3,得m ⃗⃗⃗ =(√3,−1,−1), 又平面MAA 1的一个法向量为n ⃗ =(1,0,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=√3√5=√155. ∴二面角A −MA 1−N 的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N 作NH ⊥AD ,证明NM//BH ,再证明BH//DE ,可得NM//DE ,再由线面平行的判定可得MN//平面C 1DE ;(2)以D 为坐标原点建立空间直角坐标系,分别求出平面A 1MN 与平面MAA 1的一个法向量,由两法向量所成角的余弦值可得二面角A −MA 1−N 的正弦值.19.【答案】解:(1)设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2),由题意可得F (34,0),故|AF |+|BF |=x 1+x 2+32, 因为|AF|+|BF|=4, 所以x 1+x 2=52, 联立{y =32x +t y 2=3x,整理得9x 2+12(t −1)x +4t 2=0,由韦达定理可知,x 1+x 2=−12(t−1)9,从而−12(t−1)9=52,解得t =−78,所以直线l 的方程为y =32x −78.(2)设直线l :y =32x +m ,A (x 1,y 1),B (x 2,y 2), 由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2, 联立{y =32x +m y 2=3x,整理得y 2−2y +2m =0,由韦达定理可知,y 1+y 2=2,又y 1=−3y 2,解得y 1=3,y 2=−1, 代入抛物线C 方程得,x 1=3,x 2=13, 即A (3,3),B (13,−1),故|AB |=√(3−13)2+(3+1)2=4√133.【解析】本题考查了抛物线的定义,考查直线与抛物线的位置关系,属于中档题.(1)根据韦达定理以及抛物线的定义可得.(2)由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2,由韦达定理可得y 1+y 2=2,从而解出A 、B 两点坐标,使用弦长公式计算即可.20.【答案】证明:(1)f(x)的定义域为(−1,+∞), 令f′(x )=ℎ(x)=cosx −11+x , ℎ′(x )=−sinx +1(1+x)2,令g(x)=−sinx +1(1+x)2,则g′(x)=−cosx −2(1+x)3<0在(−1,π2)恒成立, ∴ℎ′(x )在(−1,π2)上为减函数,又ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x )在(−1,π2)上存在唯一的零点x 0,结合单调性可得,f′(x )在(−1,x 0)上单调递增,在(x 0,π2)上单调递减, 可得f′(x )在区间(−1,π2)存在唯一极大值点; (2)由(1)知,当x ∈(−1,0)时,f′(x )单调递增, 则f′(x )<f′(0)=0,则f(x)单调递减; 当x ∈(0,x 0)时,f′(x )单调递增, 则f′(x )>f′(0)=0,f(x)单调递增; 由于f′(x )在(x 0,π2)上单调递减, 且f′(x 0)>0,,由零点存在定理可知,函数f′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f′(x )单调递减,则f′(x )>f′(x 1)=0,故f(x)单调递增; 当x ∈(x 1,π2)时,f′(x )单调递减, 则f′(x )<f′(x 1)=0,f(x)单调递减. 当x ∈(π2,π)时,cosx <0,−11+x <0, 于是f′(x )=cosx −11+x <0,f(x)单调递减, 其中f(π2)=1−ln(1+π2)>1−ln(1+3.22)=1−ln2.6>1−lne =0,f(π)=−ln(1+π)<−ln3<0. 于是可得下表:结合单调性可知,函数f(x)在(−1,π2]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(π2,π)上有且只有一个零点x2,当x∈[π,+∞)时,f(x)=sinx−ln(1+x)<1−ln(1+π)<1−ln3<0,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.【解析】本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查逻辑思维能力,难度较大.(1)f(x)的定义域为(−1,+∞),求出原函数的导函数,令f′(x)=ℎ(x)=cosx−11+x,进一步求导,得到ℎ′(x)在(−1,π2)上为减函数,结合ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x)在(−1,π2)上存在唯一得零点x0,结合单调性可得,f′(x)在(−1,x0)上单调递增,在(x0,π2)上单调递减,可得f′(x)在区间(−1,π2)存在唯一极大值点;(2)由(1)知,当x∈(−1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,x0)时,f′(x)> 0,f(x)单调递增;由于f′(x)在(x0,π2)上单调递减,且f′(x0)>0,,可得函数f′(x)在(x0,π2)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f(x)单调递增;当x∈(x1,π2)时,f(x)单调递减.当x∈(π2,π)时,f(x)单调递减,再由f(π2)>0,f(π)<0.然后列x、f′(x)与f(x)的变化情况表得答案.21.【答案】(1)解:X的所有可能取值为−1,0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=α(1−β),(2)(i)证明:∵α=0.5,β=0.8,∴由(1)得,a=0.4,b=0.5,c=0.1.因此p i=0.4p i−1+0.5p i+0.1p i+1(i=1,2,…,7),故0.1(p i+1−p i)=0.4(p i−p i−1),即p i+1−p i=4(p i−p i−1),又∵p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列;(ii)解:由(i)可得,p8=(p8−p7)+(p7−p6)+⋯+(p1−p0)+p0=p1(1−48)1−4=48−13p1,∵p 8=1,∴p 1=348−1,∴p 4=(p 4−p 3)+(p 3−p 2)+(p 2−p 1)+(p 1−p 0)+p 0=44−13p 1=1257.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.【解析】本题主要考查数列的应用,考查离散型随机变量的分布列,属于难题. (1)由题意可得X 的所有可能取值为−1,0,1,再由相互独立试验的概率求P(X =−1),P(X =0),P(X =1)的值,则X 的分布列可求;(2)(i)由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i−1+bp i +cp i+1,得到(p i+1−p i )=4(p i −p i−1),由p 1−p 0=p 1≠0,可得{p i+1−p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列;(ii)由(i)可得,p 8=(p 8−p 7)+(p 7−p 6)+⋯+(p 1−p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=348−1,进一步求得p 4=1257,即可求解. 22.【答案】解:(1)由{x =1−t 21+t 2y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t2, 两式平方相加,得x 2+y 24=1(x ≠−1),∴C 的直角坐标方程为x 2+y 24=1(x ≠−1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0,即直线l 的直角坐标方程为2x +√3y +11=0.(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0,联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2−12=0. 由Δ=16m 2−64(m 2−12)=0, 得m =±4,∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小, 即为直线2x +√3y +4=0与直线2x +√3y +11=0之间的距离√22+3=√7.【解析】本题考查简单曲线的极坐标方程,考查参数方程化为普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x =ρcosθ,y =ρsinθ代入2ρcosθ+√3ρsinθ+11=0,可得直线l 的直角坐标方程.(2)写出与直线l 平行的直线方程为2x +√3y +m =0,与曲线C 联立,化为关于x 的一元二次方程,利用判别式等于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证1a +1b+1c≤a2+b2+c2;因为abc=1.即证:abca +abcb+abcc≤a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即证:2bc+2ac+2ab≤2a2+2b2+2c2;即证:2a2+2b2+2c2−2bc−2ac−2ab≥0,即证(a−b)2+(a−c)2+(b−c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a−b)2≥0;(a−c)2≥0;(b−c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a−b)2+(a−c)2+(b−c)2≥0得证.故1a +1b+1c≤a2+b2+c2得证.(2)已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.a+b≥2√ab;b+c≥2√bc;c+a≥2√ac;当且仅当a=b,b=c,c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a)≥3×8√ab⋅√bc⋅√ac=24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.【解析】本题考查基本不等式的运用,分析法和综合法的证明方法,属于中档题.(1)利用基本不等式和“1”的运用可证;(2)利用综合法可证.。

2019年高考真题《不等式(理) 》Word版含解析

2019年高考真题《不等式(理) 》Word版含解析

2019年高考真题《不等式》1.【2019年高考全国Ⅰ卷理数】已知a ,b ,c 为正数,且满足abc =1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++. 【答案】(1)见解析;(2)见解析.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥.【名师点睛】本题考查利用基本不等式进行不等式的证明问题,考查学生对于基本不等式的变形和应用能力,需要注意的是在利用基本不等式时需注意取等条件能否成立. 2.【2019年高考全国Ⅱ卷理数】已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【答案】(1)(,1)-∞;(2)[1,)+∞【解析】(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----.所以,a 的取值范围是[1,)+∞.【名师点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型. 3.【2019年高考全国Ⅲ卷理数】设,,x y z ∈R ,且1x y z ++=. (1)求222(1)(1)(1)x y z -++++的最小值; (2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 【答案】(1)43;(2)见详解. 【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥, 当且仅当x =53,y =–13,13z =-时等号成立. 所以222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤≤-+-+-⎣⎦,故由已知2222(2)(2)(1)()3a x y z a +-+-+-≥,当且仅当43a x -=,13a y -=,223a z -=时等号成立. 因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a +≥,解得3a ≤-或1a ≥-.【名师点睛】两个问都是考查柯西不等式,属于柯西不等式的常见题型. 4.【2019年高考江苏卷数学】设x ∈R ,解不等式||+|2 1|>2x x -.【答案】1{|1}3x x x <->或.【解析】当x <0时,原不等式可化为122x x -+->,解得x <13-; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.【名师点睛】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力. 5.【重庆西南大学附属中学校2019届高三第十次月考数学】设函数()333()442f x x x g x x a x =-+-=-++,.(1)解不等式()10f x >;(2)若对于任意1x ∈R ,都存在2x ∈R ,使得12()()f x g x =成立,试求实数a 的取值范围. 【答案】(1)4x >或1x <-;(2)40a -≤≤【解析】(1)不等式等价于34610x x >⎧⎨->⎩或13210x x ≤≤⎧⎨>⎩或36410x x <⎧⎨->⎩解得4x >或1x <-.(2)对任意1x ∈R ,都存在2x ∈R ,使得12()=()f x g x 成立,即()g x 的值域包含()f x 的值域.46,3()3332,1364,1x x f x x x x x x ->⎧⎪=-+-=≤≤⎨⎪-<⎩,由图可得1x =时,min ()2f x =,所以()f x 的值域为[2,)+∞.()442(4)(42)2g x x a x x a x a =-++≥--+=+,当且仅当4x a -与42x +异号时取等号,所以()g x 的值域为[2,)a ++∞,由题[2,)+∞⊆[2,)a ++∞,所以22a +≤,解得40a -≤≤.【点睛】本题考查绝对值函数和用绝对值不等式求绝对值函数中参数的范围,是常见考题.6.【山东省郓城一中等学校2019届高三第三次模拟考试数学】已知函数()2f x ax =-,不等式()4f x ≤的解集为{}|26x x -≤≤. (1)求实数a 的值;(2)设()()(3)g x f x f x =++,若存在x ∈R ,使()2g x tx -≤成立,求实数t 的取值范围. 【答案】(1)1;(2)1(,1][,)2t ∈-∞-+∞.【解析】(1)由42ax -≤得-4≤2ax -≤4,即-2≤ax ≤6,当a >0时,26x a a -≤≤,所以2266a a ⎧-=-⎪⎪⎨⎪=⎪⎩,解得a =1;当a <0时,62x a a ≤≤-,所以6226a a⎧=-⎪⎪⎨⎪-=⎪⎩,无解.所以实数a 的值为1.(2)由已知()()(3)g x f x f x =++=|x +1|+|x -2|=()()()211312212x x x x x -+≤-⎧⎪-<<⎨⎪-≥⎩,不等式g (x )-tx ≤2转化成g (x )≤tx +2,由题意知函数()g x 的图象与直线y =tx +2相交,作出对应图象,由图得,当t <0时,t ≤k AM ;当t >0时,t ≥k BM , 又因为k AM =-1,12BM k =, 所以t ≤-1或12t ≥, 即t ∈(-∞,-1]∪[12,+∞). 【点睛】本题主要考查了绝对值不等式的解法及分类思想、方程思想,还考查了思想结合思想及转化能力,考查了作图能力及计算能力,属于中档题.7.【安徽省合肥市2019届高三第一次教学质量检测数学】设函数()|1|f x x =+. (1)若+2>2f x x (),求实数x 的取值范围;(2)设=+>1g x f x f ax a ()()()(),若g x ()的最小值为12,求a 的值. 【答案】(1)13⎛⎫+∞ ⎪⎝⎭,;(2)2a =. 【解析】(1)()22f x x +>,即1>22x x+-⇔101>22x x x +≥⎧⎨+-⎩或10122x x x+<⎧⎨-->-⎩13x ⇔>, ∴实数x 的取值范围是13⎛⎫+∞ ⎪⎝⎭,. (2)∵1a >,∴11a -<-,∴()()()()()121111112a x x g x a x x a a x x a ⎧⎪-+-∈-∞-⎪⎪⎡⎤=-∈--⎨⎢⎥⎣⎦⎪⎪⎛⎫++∈-+∞⎪ ⎪⎝⎭⎩,,,,,,, 易知函数()g x 在1a ⎛⎫-∞- ⎪⎝⎭,单调递减,在1a ⎛⎫-+∞ ⎪⎝⎭,单调递增, ∴()min 111g x g a a ⎛⎫=-=- ⎪⎝⎭. ∴1112a -=,解得2a =. 【点睛】本道题考查了含绝对值不等式的解法,考查了结合单调性计算函数最值,关键得到函数解析式,难度中等.8.【河南省中原名校(即豫南九校)2018届高三第六次质量考评理科数学】已知函数21f x x a g x x =+=-(),().(1)若2f x g x +()()的最小值为1,求实数a 的值; (2)若关于x 的不等式1f x g x +<()()的解集包含112⎡⎤⎢⎥⎣⎦,,求实数a 的取值范围.【答案】(1)8a =-或4.(2)312⎛⎫ ⎪⎝⎭,. 【解析】(1)当1b =时,()()1|||1||1||1|2222a a af xg x x x x x +=-++≥---=+, 因为()()12f xg x +的最小值为3,所以132a +=,解得8a =-或4.(2)当1b =-时,()()1f x g x +<即211x a x -+-<,当112x ⎡⎤∈⎢⎥⎣⎦,时,211x a x -+-<2112x a x x a x ⇔-+-<⇔-<,即3ax a <<, 因为不等式()()1f x g x +<的解集包含112⎡⎤⎢⎥⎣⎦,,所以1a >且132a <, 即312a <<,故实数a 的取值范围是312⎛⎫ ⎪⎝⎭,. 【点睛】本题考查不等式的解法及不等式的性质,考查转化思想以及计算能力. 9.【河南省顶级名校2019届高三质量测评数学】已知函数()121f x x x =++-. (1)解不等式()2f x x ≤+;(2)若()3231g x x m x =-+-,对12x x ∀∈∃∈R R ,,使()()12f x g x =成立,求实数m 的取值范围.【答案】(1){}|01x x ≤≤;(2)1544⎡⎤-⎢⎥⎣⎦,.【解析】(1)不等式等价于132x x x ≤-⎧⎨-≤+⎩或11222x x x ⎧-<≤⎪⎨⎪-+≤+⎩或1232x x x >≤+⎧⎪⎨⎪⎩, 解得x φ∈或102x ≤≤或112x <≤, 所以不等式2f x x ≤+()的解集为{}|01x x ≤≤.(2)由311()212132x x f x x x x x ⎧⎪-≤-⎪⎪=-+-<≤⎨⎪⎪>⎪⎩,,,知,当12x =时,min 13()()22f x f ==, 323121g x x m x m ≥---=-()()(),当且仅当(32)(31)0x m x --≤时取等号,所以3212m -≤,解得1544m -≤≤.故实数m 的取值范围是1544⎡⎤-⎢⎥⎣⎦,. 【点睛】本题考查方程有解问题,考查不等式的解法,考查转化思想以及计算能力. 10.【吉林省吉大附中2018届高三第四次模拟考试数学(理)试卷】已知函数()f x x a =-.(1)当2a =-时,解不等式()1621f x x ≥--;(2)若关于x 的不等式()1f x ≤的解集为[0,2],求证:()(2)2f x f x ++≥. 【答案】(1)17{|3x x ≤-或5}x ≥(2)见解析 【解析】(1)当2a =-时,不等式为22116x x ++-≥, 当2x ≤-时,原不等式可化为22116x x ---+≥,解得173x ≤-, 当122x -<≤时,原等式可化为22116x x +-+≥,解得13x ≤-,不满足,舍去; 当12x >时,原不等式可化为22116x x ++-≥,解得5x ≥; 不等式的解集为17{|3x x ≤-或5}x ≥.(2)()1f x ≤即1x a -≤,解得11a x a -≤≤+,而()1f x ≤解集是[]02,,所以1012a a -=⎧⎨+=⎩,解得1a =,从而()1f x x =-. 于是只需证明()(2)2f x f x ++≥, 即证112x x -++≥,因为111x x x -++=-1112x x x ++≥-++= 所以112x x -++≥,证毕.【点睛】本题主要考查了绝对值不等式的解法和证明,主要注意先确定参数的值,进而对定义域进行分类讨论,确定解所在的区间,属于中档题.11.【河北衡水金卷2019届高三12月第三次联合质量测评数学】设函数()2f x x x a =--+.(1)当1a =时,求不等式()2f x <-的解集;(2)当x y ∈R ,时,2()()2()f y f x f y -+≤≤+,求a 的取值范围. 【答案】(1)3{|}2x x >;(2)[]31--,【解析】(1)当a =1时,31()121232x f x x x x ≤-⎧⎪=--<≤⎨⎪->⎩,,,, 可得()2f x <-的解集为3{|}2x x >; (2)当x y ∈R ,时,[][]ma min 2()()2()()()2()()2x f y f x f y f x f y f x f x -+≤≤+⇔-≤⇔-≤,因为()()222x x a x x a a --+≤--+=+, 所以()222a a +--+≤. 所以21a +≤,所以31a -≤≤-. 所以a 的取值范围是[–3,–1].【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用. 12.【河北省衡水中学2019届高三第一次摸底考试数学】已知函数2f x x =-().(1)求不等式1f x x x <++()的解集;(2)若函数()2log 32f x f x f x a ⎡⎤=++-⎣⎦()()的定义域为R ,求实数a 的取值范围.【答案】(1)13⎛⎫+∞ ⎪⎝⎭,;(2)32⎛⎫-∞ ⎪⎝⎭,.【解析】(1)由已知不等式()1f x x x <++,得21x x x -<++, 当2x >时,绝对值不等式可化为21x x x -<++,解得3x >-,所以2x >; 当12x -≤≤时,绝对值不等式可化为21x x x -<++,解得13x >,所以123x <≤; 当1x <-时,由21x x x -<--得3x >,此时无解. 综上可得所求不等式的解集为13⎛⎫+∞ ⎪⎝⎭,.(2)要使函数()()2log 32y f x f x a ⎡⎤=++-⎣⎦的定义域为R , 只需()()()32g x f x f x a =++-的最小值大于0即可.又()12212232g x x x a x x a a =++--≥+-+-=-,当且仅当[]12x ∈-,时取等号. 所以只需320a ->,即32a <. 所以实数a 的取值范围是32⎛⎫-∞ ⎪⎝⎭,. 【点睛】绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.13.【甘肃省兰州市第一中学2019届高三6月最后高考冲刺模拟数学】已知函数()211f x x x =-++.(1)解不等式()3f x ≥;(2)记函数()f x 的最小值为m ,若,,a b c 均为正实数,且232a b c m ++=,求222a b c ++的最小值.【答案】(1){}11x x x ≤-≥或;(2)914.【解析】(1)由题意,3,11()2,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩,所以()3f x ≥等价于133x x ≤-⎧⎨-≥⎩或11223x x ⎧-<<⎪⎨⎪-≥⎩或1233x x ⎧≥⎪⎨⎪≥⎩.解得1x ≤-或1x ≥,所以不等式的解集为{}11x x x ≤-≥或; (2)由(1)可知,当12x =时,()f x 取得最小值32, 所以32m =,即233a b c ++=, 由柯西不等式得2222222()(123)(23)9a b c a b c ++++≥++=, 整理得222914a b c ++≥, 当且仅当123a b c ==时,即369,,141414a b c ===时等号成立. 所以222a b c ++的最小值为914.【点睛】本题主要考查含绝对值不等式的解法,以及柯西不等式的应用,熟记不等式解法以及柯西不等式即可,属于常考题型.14.【四川省成都市第七中学2019届高三二诊模拟考试数学】已知000a b c >>>,,设函数f x x b x c a x =-+++∈R (),.(1)若1a b c ===,求不等式5f x <()的解集; (2)若函数f x ()的最小值为1,证明:14918a b c a b b c c a++≥+++++(). 【答案】(1)(2,2)-;(2)详见解析.【解析】(1)1a b c ===,不等式()5f x <,即|1||1|4x x -++<, 当1x ≤-时,11421x x x ---<⇒-<≤-, 当11x -<<时,11411x x x -+-<⇒-<<, 当1x ≥时,11412x x x -++<⇒≤<,∴解集为(2,2)-;(2)()f x x b x c a =-+++x c x b a ≥+--+()()b c a =++,∵000a b c >>>,,,∴min ()1f x a b c =++=, ∴149a b b c c a ++=+++149a b b c c a ⎛⎫++ ⎪+++⎝⎭a b c ++() 11492a b b c c a ⎛⎫=++ ⎪+++⎝⎭a b b c a c +++++()22212⎡⎤=++⎢⎥⎢⎥⎣⎦222⎡⎤++⎣⎦212≥1818a b c ==++(). 【点睛】考查了含绝对值不等式的解法,考查了基本不等式,考查了不等式的证明,难度中等偏难.15.【四川省成都市第七中学2019届高三一诊模拟考试数学】已知函数()21f x x x =-+,且a b c ∈R ,,. (1)若1a b c ++=,求()()()f a f b f c ++的最小值;(2)若1x a -<,求证:()()()21f x f a a -<+.【答案】(1)73;(2)见解析 【解析】(1)由柯西不等式得,()22221433a b c a b c ++≥++=(当且仅当23a b c ===时取等号),所以()()()()()222473133f a f b f c a b c a b c ++=++-+++≥+=, 即()()()f a f b f c ==的最小值为73; (2)因为1x a -<,所以()()()()22•11f x f a x a x a x a x a x a -=---=-+-<+-()()()()212112121x a a x a a a a =-+-≤-+-<++=+,故结论成立.【点睛】本题考查了利用柯西不等式求最值,考查了利用绝对值三角不等式证明的问题,属于中等题.16.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)数学】已知函数()25f x x a x =-+,其中实数0a >.(1)当3a =时,求不等式()51f x x ≥+的解集;(2)若不等式()0f x ≤的解集为{|1}x x ≤-,求a 的值.【答案】(1)不等式()51f x x ≥+的解集为{|12}x x x ≤≥或;(2)3a =【解析】(1)当3a =时,()51f x x ≥+可化为231x -≥,由此可得1x ≤或2x ≥,故不等式()51f x x ≥+的解集为{|12}x x x ≤≥或;(2)法一:(从去绝对值的角度考虑)由()0f x ≤,得25x a x -≤-, 此不等式化等价于2250a x x a x ⎧≥⎪⎨⎪-+≤⎩或()2250a x x a x ⎧<⎪⎨⎪--+≤⎩, 解得27a x a x ⎧≥⎪⎪⎨⎪≤⎪⎩或23a x a x ⎧<⎪⎪⎨⎪≤-⎪⎩, 因为0a >,所以不等式组的解集为{|}3ax x ≤-, 由题设可得13a -=-,故3a =. 法二:(从等价转化角度考虑)由()0f x ≤,得25x a x -≤-,此不等式化等价于525x x a x ≤-≤-,即为不等式组5225x x a x a x ≤-⎧⎨-≤-⎩,解得37a x a x ⎧≤-⎪⎪⎨⎪≤⎪⎩, 因为0a >,所以不等式组的解集为{|}3a x x ≤-, 由题设可得13a -=-,故3a =. 法三:(从不等式与方程的关系角度突破)因为{|1}x x ≤-是不等式()0f x ≤的解集,所以1x =-是方程()0f x =的根,把1x =-代入250x a x -+=得37a a ==-或,因为0a >,所以3a =.【点睛】本题考查解绝对值不等式,不等式问题中求参数范围的问题,难度较小.17.【广东省揭阳市2019届高三高考二模数学】已知正实数x ,y 满足x +y =1.(1)解关于x 的不等式522x y x y ++-≤; (2)证明:2211(1)(19x y --≥). 【答案】(1)1[16,).(2)见解析. 【解析】(1)∵1x y +=,且0x >,0y >, ∴0152522212x x y x y x x <<⎧⎪++-≤⇔⎨-+-≤⎪⎩, 01011112121222x x x x x x x <<<<⎧⎧⎪⎪⇔⇔⎨⎨-≤+-+≤-≤+⎪⎪⎩⎩(), 解得116x ≤<,所以不等式的解集为1[16,). (2)解法1:∵1x y +=,且00x y >>,, ∴2222222211()()(1)(1)x y x x y y x y x y+-+---=⋅ 222222xy y xy x x y ++=⋅222222()()y y x x x x y y =++225x y y x =++59≥=. 当且仅当12x y ==时,等号成立. 解法2:∵1x y +=,且00x y >>,, ∴2222221111(1)(1)x y x y x y----=⋅ 22(1)(1)(1)(1)x x y y x y +-+-=⋅22(1)(1)x y y x x y ++=⋅1x y xy xy+++=21xy =+2219()2x y ≥+=+,当且仅当12x y ==时,等号成立. 【点睛】主要考查了绝对值不等式的求解、不等式证明、以及基本不等式的应用,属于中档题.对于绝对值不等式的求解,主要运用零点分段法,也可以运用图像法.而不等式的证明,关键是灵活运用不等式的性质以及基本不等式.。

不等式选讲-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析+Word版含解析

不等式选讲-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析+Word版含解析

2019年新课标全国卷1理科数学考点讲评与真题分析10.不等式选讲一、考试大纲(一)不等式选讲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+ (2)a b a c c b -≤-+-(3)会利用绝对值的几何意义求解以下类型的不等式:ax b c +≤;ax b c +≥;x a x b c -+-≥2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明. (1)a b a b ⋅≥⋅;(2)22222()()()a b c d ac bd ++≥+;(3)222222121223231313()()()()()()x x y y x x y y x x y y -+-+-+-≥-+-. (此不等式通常称为平面三角不等式.)3.会用参数配方法讨论柯西不等式的一般情形:222111()n nni ii i i i i a ba b ===⋅≥∑∑∑4.会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题. 6.会用数学归纳法证明伯努利不等式:(1)1n x nx +>+ (1x >-,0x ≠,n 为大于1的正整数),了解当n 为大于1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. (二)基本不等式 1.基本不等式:(a ≥0,b ≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.二、考点讲评与真题分析不等式选讲部分主要以考查以考查绝对值不等式的解法为主,偶尔也考查不等式证明的方法,经常与函数结合,考查数形结合和转化与化归思想是,考查去绝对值的方法是试题变化中不变的规律,基本不等式是考查不等式证明方法的主要依据;在求解过程中考查绝对值三角不等式的灵活应用能力。

2019年高考新课标(全国卷3)理数真题(word版,含解析)(2)(2021年整理)

2019年高考新课标(全国卷3)理数真题(word版,含解析)(2)(2021年整理)

(完整)2019年高考新课标(全国卷3)理数真题(word版,含解析)(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2019年高考新课标(全国卷3)理数真题(word版,含解析)(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2019年高考新课标(全国卷3)理数真题(word版,含解析)(2)(word版可编辑修改)的全部内容。

2019年高考新课标全国3卷理科数学一、选择题:本题共12小题,每小题5分,共60分。

1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著。

某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0。

6C .0.7D .0。

84.(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3= A . 16B . 8C .4D . 26.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-,B .a=e,b =1C .1e 1a b -==,D .1e a -=,1b =-7.函数3222x x x y -=+在[]6,6-的图象大致为A .B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0。

2019年全国卷高三上期末考试理科数学分类汇编---不等式与线性规划

2019年全国卷高三上期末考试理科数学分类汇编---不等式与线性规划

2019年全国卷高三上期末考试理科数学分类汇编---不等式与线性规划1.(2019福建宁德市期末)已知点,为不等式组所表示平面区域上的任意一点,则的最小值为()A. B. C. 1 D.【答案】B【解析】【分析】本道题结合不等式组,绘制可行域,则最小值即为点A到距离,即可。

【详解】结合不等式组,绘制可行域,则的最小值即为点A到距离,利用点到直线距离公式,故选B。

【点睛】本道题考查了线性规划问题,难度中等。

2.(2019河南开封期末)已知函数若,则的取值范围是A. B. C. D.【答案】B【解析】【分析】依题意,对a分a与a讨论,再解相应的不等式即可.【详解】∵,∴或即或即∴的取值范围是故选:B【点睛】本题考查分段函数的图象与性质的应用,突出考查分类讨论思想与方程思想的综合应用,属于中档题.3.(2019河南开封期末)若,满足约束条件则的取值范围为A. B. C. D.【答案】A【解析】【分析】问题转化为在约束条件下目标函数的取值范围,作出可行域由斜率公式数形结合可得.【详解】作出x,y满足约束条件的可行域如图:△ABC,表示区域内的点与点(﹣2,0)连线的斜率,联方程组可解得B(2,﹣2),同理可得A(2,4),当直线经过点B时,M取最小值:,当直线经过点A时,M取最大值1.则的取值范围:[,1].故选:A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.4.(2019河南郑州期末)已知变量,满足则的取值范围是__________.【答案】【解析】【分析】由约束条件作出可行域,再由z的几何意义求解得答案.【详解】由变量x,y满足作出可行域如图:A(2,3),解得B(,),z的几何意义为可行域内动点与定点D(3,﹣1)连线的斜率.∵k DA4,k DB13.∴z的取值范围是[﹣13,﹣4].故答案为:[﹣13,﹣4].【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.5.(2019湖北宜昌市期末)若,满足约束条件,则的最大值为__________.【答案】6【解析】【分析】作出不等式对应的平面区域,利用z的几何意义,利用直线平移法进行求解即可.【详解】作出不等式组对应的平面区域如图:由z=﹣x+y,得y=x+z表示,斜率为1纵截距为Z的一组平行直线,平移直线y=x+z,当直线y=x+z经过点A时,直线y=x+z的截距最大,此时z最大,此时﹣x+y=6,即此时z=6,故答案为:6.【点睛】本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.6.(2019江西新余市期末)已知x,y满足不等式组则z=2x+y的最大值与最小值的比值为A. B. C. D. 2【答案】D【解析】解:因为x,y满足不等式组,作出可行域,然后判定当过点(2,2)取得最大,过点(1,1)取得最小,比值为2,选D7.(2019山东泰安市期末)若A为不等式组表示的平面区域,则当a 从﹣2连续变化到1时,则直线x+y=a扫过A中的那部分区域的面积为()A.1 B.C.D.【考点】简单线性规划.【分析】先由不等式组画出其表示的平面区域,再确定动直线x+y=a的变化范围,最后由三角形面积公式解之即可.【解答】解:如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=﹣x+a)在y轴上的截距从﹣2变化到1.知△ADC是斜边为3的等腰直角三角形,△EOC是直角边为1等腰直角三角形,所以区域的面积S阴影=S△ADC﹣S△EOC=×3×﹣×1×1=故答案为:D.8.(2019山东泰安市期末)已知x>0,y>0,lg2x+lg8y=lg2,则+的最小值是 4 .【考点】基本不等式在最值问题中的应用;对数的运算性质.【分析】由对数的运算性质,lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,结合题意可得,x+3y=1;再利用1的代换结合基本不等式求解即可.【解答】解:lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,又由lg2x+lg8y=lg2,则x+3y=1,进而由基本不等式的性质可得,=(x+3y)()=2+≥2+2=4,当且仅当x=3y时取等号,故答案为:4.9.(2019山东泰安市期末)定义在R上的函数f(x)满足f(4)=1,f′(x)为f(x)的导函数,已知函数y=f′(x)的图象如图所示.若两正数a,b满足f(2a+b)<1,则的取值范围是.【考点】简单线性规划的应用;导数的运算;利用导数研究函数的单调性.【分析】先根据导函数的图象判断原函数的单调性,从而确定a、b的范围,最后利用不等式的性质得到答案.【解答】解:由图可知,当x>0时,导函数f'(x)>0,原函数单调递增,∵两正数a,b满足f(2a+b)<1,又由f(4)=1,即f(2a+b)<4,即2a+b<4,又由a>0.b>0;点(a,b)的区域为图中阴影部分,不包括边界,的几何意义是区域的点与A(﹣2,﹣2)连线的斜率,直线AB,AC的斜率分别是,3;则∈(,3);故答案为:().10.(2019山东泰安市期末)已知一家电子公司生产某种电子产品的月固定成本为20万元,每生产1千件需另投入5.4万元,设该公司一月内生产该电子产品x千件能全部销售完,每千件的销售收入为g(x)万元,且g(x)=(Ⅰ)写出月利润y(万元)关于月产量x(千件)的函数解析式;(Ⅱ)月产量为多少千件时,该公司在这一产品的生产中所获利润最大?并求出最大利润.【考点】函数模型的选择与应用.【分析】(Ⅰ)根据年利润=年销售收入﹣年总成本,可得年利润y(万元)关于年产量x(万件)的函数关系式;(Ⅱ)由(Ⅰ)的解析式,我们求出各段上的最大值,即利润的最大值,然后根据分段函数的最大值是各段上最大值的最大者,即可得到结果.【解答】解:(Ⅰ)当0<x≤10时,y=x(13.5﹣x2)﹣20﹣5.4x=8.1x﹣x3﹣20,当x>10时,y=(﹣﹣)x﹣20﹣5.4x=148﹣2(+2.7x),∴y=,(Ⅱ)①当0<x≤10时,y′=8.1﹣x2,令y′=0可得x=9,x∈(0,9)时,y′>0;x∈(9,10]时,y′<0,=28.6万元;∴x=9时,ymax②当x>10时,y=148﹣2(+2.7x)≤148﹣120=22(万元)(当且仅当x=时取等号)…综合①②知:当x=9时,y取最大值…故当年产量为9万件时,服装厂在这一高科技电子产品的生产中获年利润最大…11.(2019山东潍坊市期末)若实数x,y满足,则z=x﹣2y的最大值是()A.2B.1C.﹣1D.﹣4【分析】作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.【解答】解:作出实数x,y满足对应的平面区域如图:由z=x﹣2y得y=x﹣z,平移直线y=x﹣z,由图象可知当直线y=x﹣z,经过点A时,直线y=x﹣z,的截距最小,此时z最大,由,解得A(﹣1,﹣1),z=1.故选:B.【点评】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.12.(2019山东潍坊市期末)由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验标准(GB/T19522﹣2010)》于2011年7月1日正式实施.车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阀值见表1.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”见图1,且图1表示的函数模型f(x)=,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:ln15≈2.71,ln30≈3.40)()表1 车辆驾驶人员血液酒精含量阀值A.5B.6C.7D.8【分析】由图知车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时x>2;令90•e﹣0.5x+14<20,解得x的取值范围,结合题意求得结果.【解答】解:由图知0≤x<2时,函数f(x)取得最大值,此时f(x)=40sin(x)+13,x≥2时,函数f(x)=90•e﹣0.5x+14;当车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时x>2;由90•e﹣0.5x+14<20,得e﹣0.5x<,两边取自然对数,得lne﹣0.5x<ln,即﹣0.5x<﹣ln15,解得x>≈=5.42,所以喝啤酒后需6个小时后才可以合法驾车.注:如果根据图象可猜出6个小时.故选:B.【点评】本题考查了散点图的应用问题,也考查了分段函数与不等式的应用问题,是中档题.。

2011年—2019年高考全国卷(1卷、2卷、3卷)理科数学试题分类汇编——6.不等式与线性规划

2011年—2019年高考全国卷(1卷、2卷、3卷)理科数学试题分类汇编——6.不等式与线性规划

2011年—2019年全国卷(Ⅰ、Ⅱ、Ⅲ卷)理科数学试题分类汇编6.不等式与线性规划一、选择题(2017·新课标Ⅱ,5)设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9 (2014·新课标Ⅰ,9)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P(2014·新课标Ⅱ,9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A .10B .8C .3D .2(2013·新课标Ⅱ,9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .2二、填空题(2018·新课标Ⅰ,理13) .若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.(2018·新课标Ⅱ,理14)若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.(2017·新课标Ⅰ,14)设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .(2017·新课标Ⅲ,13)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为__________.(2016·新课标Ⅰ,16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. (2016·新课标Ⅲ,13)设x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则z x y =+的最大值为________.(2015·新课标Ⅰ,15)若x ,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .(2015·新课标Ⅱ,14)若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为_______.(2014·新课标Ⅱ,14)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为 . (2012·新课标Ⅰ,14)设x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的取值范围为___________.(2011·新课标Ⅰ,13)若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为 .(2011·新课标Ⅱ,13)若变量x , y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .2011年—2019年全国卷(Ⅰ、Ⅱ、Ⅲ卷)理科数学试题分类汇编6.不等式与线性规划(解析版)一、选择题(2017·新课标Ⅱ,5)设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9【答案】A 解析:根据约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩画出可行域(图中阴影部分), 作直线:20l x y +=,平移直线l ,将直线平移到点A 处Z 最小,点A 的坐标为()6,3--,将点A 的坐标代到目标函数2Z x y =+,可得15Z =-,即min 15Z =-.解法二:直接求法对于封闭的可行域,我们可以直接求三条直线的交点,代入目标函数中,三个数种选其最小的 为最小值即可,点A 的坐标为()6,3--,点B 的坐标为()6,3-,点C 的坐标为()0,1,所求值分 别为15-﹑9﹑1,故min 15Z =-,max 9Z =. (2014·新课标Ⅰ,9)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】C 解析:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.(2014·新课标Ⅱ,9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A .10B .8C .3D .2【答案】B 解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩所表示的平面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值.当y =2x -z 经过C 点时,z 取最大值.由31070x y x y -+=⎧⎨+-=⎩得C (5,2),此时z 取最大值为2×5-2=8.(2013·新课标Ⅱ,9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .2【答案】B 解析:由题意作出13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩所表示的区域如图阴影部分所示,当目标函数表示的直线经过点A 时,取得最小值,而点A 的坐标为(1, -2a ),所以2-2a =1,解得12a =. 故选B.二、填空题(2018·新课标Ⅰ,理13) .若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.【答案】6 解析:约束条件可行域如下图:l 0 l 13x-y-5=0yxo 12x-3y+1=0l 2x+y-7=052CA BA (1, -2a )2x +y +1=0可行域如上图阴影部分:目标函数32z x y =+可化为322z y x =-+ 将32y x =-进行平移,可得在(2,0)B 处距最大,即z 最大,将2,0x y ==,代入得max 6z = 【基本解法2】(交点法)将方程22022010,,1000x y x y x y x y y y --=--=-+⎧⎧⎧⎨⎨⎨-+===⎩⎩⎩≥两两求解得交点坐标为(4,3),(2,0),(1,0)---,代入一一检验即可,max 6z =.(2018·新课标Ⅱ,理14)若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.【解析】9 解法一:求点法:2505,050x y x y x +-=⎧⇒==⎨-=⎩,2305,450x y x y x -+=⎧⇒==⎨-=⎩, 2301,2250x y x y x y -+=⎧⇒==⎨+-=⎩,将上述点的坐标代入目标函数中可知:max 9z =. (2017·新课标Ⅰ,14)设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .【答案】5-解析:(解析)不等式组21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩由32z x y =-得322z y x =-,求z 的最小值,即求直线322zy x =-的纵截距的最大值,当直线322zy x =-过图中点A 时,纵截距最大, 由2121x y x y +=-⎧⎨+=⎩解得A 点坐标为(1,1)-,此时3(1)215z =⨯--⨯=-;(法二)由线性规划知,32z x y =-在可行域的端点取到,即211(1,1)211x y x A x y y +==-⎧⎧⇒⇒-⎨⎨+=-=⎩⎩,325A z x y =-=-,10113(,)211333x x y B x y y ⎧=⎪-=⎧⎪⇒⇒⎨⎨+=-⎩⎪=⎪⎩,1323B z x y =-=, 21111(,)0133x y x C x y y +=-=-⎧⎧⇒⇒--⎨⎨-==⎩⎩,1323C z x y =-=-,{}min min ,,5A B C z z z z ==-; (2017·新课标Ⅲ,13)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为__________.【答案】1- 解析:由题意,画出可行域如图:目标函数为34z x y =-,则直线344zy x =-纵截距越大,z 值越小.由图可知:z 在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.(2016·新课标Ⅰ,16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000解析:设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为**1.50.51500.3905360000x y x y x y x y x N y N⎧+⎪+⎪⎪+⎪⎪⎨⎪⎪⎪∈⎪∈⎪⎩≤≤≤≥≥目标函数2100900z x y =+; 作出可行域为图中的四边形,包括边界,顶点为(60,100)(0,200)(0,0)(90,0),在(60,100)处取得最大值,210060900100216000z =⨯+⨯=(2016·新课标Ⅲ,13)设x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则z x y =+的最大值为________.【答案】32解析:三条直线的交点分别为()()12,1,1,,0,12⎛⎫-- ⎪⎝⎭,代入目标函数可得33,,12-,故最小值为32.(2015·新课标Ⅰ,15)若x ,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .【答案】3解析:根据约束条件画出可行域,如图所示;yx的几何意义可以看做可行域内一点与坐标原点连线的斜率,因此可知在点(1,3)A 处取到最大值,且求得最大值为3.(2015·新课标Ⅱ,14)若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为_______.【答案】32解析:画出可行域,如图所示,将目标函数变形为y =-x +z ,当z 取到最大时,直线y = -x + z 的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,则z =x +y 的最大值为32.(2014·新课标Ⅱ,14)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为 . 【答案】[3,3]-解析:画出可行域,易知当直线2Z x y =-经过点(1,2)时,Z 取最小值-3;当直线2Z x y =-经过点(3,0)时,Z 取最大值3. 故2Z x y =-的取值范围为[3,3]-.(2011·新课标Ⅱ,13)若变量x , y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .【答案】6- 解析:画出可行域如图,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.。

2019年全国高考新课标3卷理科数学试题(解析版)【杨顺国】

2019年普通高等学校招生全国统一考试新课标3卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x-1NO},B={0,l,2},则ADB=()A.{0}B.{1}C.{1,2}D.{0,1,2}解析:选C2.(l+i)(2-i)=()A.-3-iB.-3+iC.3-iD.3+i解析:选D3.中国古建筑借助样卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A BCD解析:选A4.若sin a日,则cos2a=()7-97-9-C.8-9-D.]8解析:选B cos2a=l-2sin2 a=1--=-y y25・或+-)5的展开式中x,的系数为()xA.10B.20C.40D.809解析:选C展开式通项为Tr+i=C5r x10-2r(-)r=C5r2r x10-3r,r=2,T3=。

522七[故选C6.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y=2±,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[血3艘]D.[2近,3也]解析:选A,线心距d=2带,P到直线的最大距离为3彖,最小距离为^2,|AB|=2V2,S min=2,S max=67,函数y=-x4+x,+2的图像大致为()解析:选D原函数为偶函数,设t=x2,tNO,f(t)=-t2+t+2,故选D8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.3解析:选B X〜B(10,p),DX=10p(l-p)=2.4,解得p=0.4或p=0.6,p=0.4时,p(X=4)=Cio4(0.4)4(0.6)6>P(X=6)= Cio6(O.4)6(0.6)4,不合。

2019年全国1卷省份高考模拟理科数学分类---不等式与线性规划

2019年全国1卷省份高考模拟理科数学分类----不等式与线性规划1.(2019安徽理科模拟)若x,y满足约束条件,则z=2x+y的最小值为.解:作出x,y满足约束条件,所表示的平面区域,B(2,2)作出直线2x+y=0,对该直线进行平移,可以发现经过点A(1,3)时,z取得最小值,Z取得最小值:5;故答案为:5.2.(2019河南百校联盟理科模拟)已知实数x,y满足不等式组201030yx yx y-≤⎧⎪--≤⎨⎪+-≥⎩,则yx取值范围为.解:如图,实数x,y满足不等式组,表示的平面区域△ABC(包括边界),所以表示(x,y)与(0,0)连线的斜率,因为A(1,2),B(2,1),所以,故.故答案为:.1[,2]2yx3.(2019福建理科模拟)若实数,满足约束条件,设的最大值与最小值分别为,,则__________.【答案】【解析】画出可行域,平移基准直线到可行域边界位置,由此求得最大值以及最小值,进而求得的比值.【详解】画出可行域如下图所示,由图可知,当直线过点时,取得最大值7;过点时,取得最小值2,所以.【点睛】本小题主要考查利用线性规划求线性目标函数的最值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画出可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.4.(2019福建理科模拟)已知函数的图象如图所示.(1)求的值;(2)设,的最大值为,若正数,满足,证明:.【答案】(1);(2)见解析【解析】(1)由图知和,得;(2)写出的分段形式,求得函数的最大值,由展开利用基本不等式即可得证.【详解】(1)解:由,得,即.由,得,所以.(2)证明:由(1)知,所以,显然的最大值为6,即.因为,所以.因为(当且仅当,时取等号),所以.【点睛】本题主要考查了绝对值函数性质的研究,基本不等式的应用,属于中档题.5.(2019安徽淮南理科模拟)若x,y满足约束条件则的最小值为______.【答案】5【解析】解:作出不等式组对应的平面区域,z的几何意义为区域内的点到定点的距离的平方,则由图象可知,DA距离最小,此时的最小值为5,故答案为:5.作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.本题主要考查线性规划的应用,利用数形结合以及直线和圆的位置公式是解决本题的关键.6.(2019福建漳州理科模拟)设x,y满足约束条件则的最大值是A. B. 0 C. 8 D. 12【答案】C【解析】解:先根据x,y满足约束条件画出可行域,然后平移直线,当直线过点,解得时,z最大值为8.故选:C.先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线过点时,z最大值即可.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题.7.(2019广州理科模拟)已知实数x, y满足20,350,0,0,x yx yxy-≤⎧⎪-+≥⎪⎨>⎪>⎪⎩则1142x yz⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的最小值为____________.答案:1 16考点:线性规划,指数运算。

2019年高考理科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

数学试卷第1页(共50页)数学试卷第2页(共50页)绝密★启用前2019年普通高等学校招生全国统一考试·全国Ⅰ卷理科数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合}242{60{}Mx x N x x x =-<<=--<,,则M N =()A .}{43x x -<< B.}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为()x y ,,则()A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32 log 0.220.2a b c ===,,,则()A .a b c<<B .a c b<<C .c a b <<D .b c a<<4之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是()A .165cmB .175cmC .185cmD .190cm5.函数()2sin cos x xf x x x +=+在[,]-ππ的图象大致为()A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-⊥a b b ,则a 与b 的夹角为()A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入()A .12A A =+B .12A A =+C .112A A =+D .112A A=+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则()A .25n a n =-B . 310n a n =-C .228n S n n=-D .2122n S n n =-毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共50页)数学试卷第4页(共50页)10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=11.关于函数()sin |||sin |f x x x =+有下述四个结论:()①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③12.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A.B.C.D二、填空题:本题共4小题,每小题5分,共20分.13.曲线23()e x y x x =+在点(0)0,处的切线方程为.14.记n S 为等比数列{}n a 的前n 项和.若214613a a a ==,,则5S =.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是.16.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB = ,120F B F B ⋅=,则C 的离心率为.三、解答题:共70分。

2019年新课标Ⅲ高考数学理科试题含答案(Word版)

绝密★启用前试题类型:2019年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =-( ) (A)1 (B) -1 (C) i (D)-i(3)已知向量13(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC=( ) (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是( )(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均最高气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= ( ) (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c <<(C )b c a <<(D )c a b <<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =( )(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = ( ) (A )31010 (B )1010 (C )1010- (D )31010-(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )(A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分(13)若x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年新课标全国卷(1、2、3卷)理科数学备考宝典6.不等式与线性规划一、考试大纲1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. 2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系. (3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. 3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. (3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决. 4.基本不等式:(a ≥0,b ≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.二、新课标全国卷命题分析线性规划问题一般比较简单,考试大纲对线性规划问题的要求为,要求考生理解二元一次不等式组的几何意义,能准确画出二元一次不等式组表示的平面区域;理解线性目标函数的含义,明白线性目标函数只能在由二元一次不等式组约束条件确定的区域的边界才能达到最优;会从实际问题的情景中抽象出一些简单的二元线性规划问题,并能加以解决.线性规划问题注重对数形结合的考查,运算量相对较大,所以此类问题难度适中,命题比较基本,一般不与其它知识结合,为了避免很多同学解出交点代入的情况,对于“形’的考查力度较多,常通过目标函数的最值作为条件反求可行域内的参数问题,或者利用一些含有几何意义的目标函数(斜率、距离等).三、典型高考试题讲评题型1 不等式的性质及大小比较例1.(2016全国卷1,理8)若101a b c >><<,,则( ).A.c c a b <B.c cab ba < C.log log b a a c b c < D.log log a b c c <解析:选C. 对于选项A ,由于01c <<,所以函数cy x =在()0,+∞上单调递增.由1a b >>,得c c a b >.故A 错误;对于选项B ,要比较cab 与cba 的大小,只需比较a b 与c a b ⎛⎫ ⎪⎝⎭的大小.构造函数xa yb ⎛⎫= ⎪⎝⎭,因为1a b >>,所以1a b >,因此函数x a y b ⎛⎫= ⎪⎝⎭在R 上单调递增.又01c <<,所以ca ab b⎛⎫< ⎪⎝⎭,即c c ba ab <.故B 错误;对于选项C ,要比较log b a c 与log a b c 的大小关系,只需比较ln ln c b b 与ln ln ca a的大小,即比较ln b b 与ln a a 的大小.构造辅助函数()ln f x x x =,()ln 1f x x '=+.令()0f x '=,得1ex =.函数()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,因此,若1a b >>,得ln ln a a b b >,故11ln ln a a b b <. 又ln 0c <,所以ln ln ln ln c c a a b b >,即ln ln ln ln b c a ca b>,得log log a b b c a c >.故选项C 正确; 对于选项D ,比较log a c 与log b c 的大小,只需比较ln ln c a 与ln ln cb的大小,即比较ln a 与ln b 的大小.又1a b >>,得ln ln 0a b >>,所以11ln ln a b <.又ln 0c <,得ln ln ln ln c ca b>,即log log a b c c >.故选项D 不正确.综上可得,故选C.题型2 求解目标函数的取值范围或最值例2 (2018·新课标Ⅰ,理13) .若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.【答案】6 解析:约束条件可行域如下图:可行域如上图阴影部分:目标函数32z x y =+可化为322z y x =-+ 将32y x =-进行平移,可得在(2,0)B 处距最大,即z 最大,将2,0x y ==,代入得max 6z = 【基本解法2】(交点法)将方程22022010,,1000x y x y x y x y y y --=--=-+⎧⎧⎧⎨⎨⎨-+===⎩⎩⎩≥两两求解得交点坐标为(4,3),(2,0),(1,0)---,代入一一检验即可,max 6z =.【解题技巧】目标函数最值的求法(1)线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:①准确无误地作出可行域;②画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;③一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2)求z =ax +by 的最值时,一般先化为y =-a b x +z b 的形式.z b 为直线y =-a b x +zb 在y 轴上的截距,当b>0时将直线上移z 变大,当b<0时将直线下移z 变大.(3)代数式(x -a)2+(y -b)2为点(x ,y)与点(a ,b)距离的平方;y -bx -a 为点(x ,y)与点(a ,b)连线的斜率;|Ax +By +C|表示点(x ,y)到直线Ax +By +C =0的距离的A 2+B 2倍.2011—2018年新课标全国卷理科数学试题分类汇编6.不等式与线性规划一、选择题(2017·新课标Ⅱ,5)设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9 (2014·新课标Ⅰ,9)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P(2014·新课标Ⅱ,9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A .10B .8C .3D .2(2013·新课标Ⅱ,9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .2二、填空题(2018·新课标Ⅰ,理13) .若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.(2018·新课标Ⅱ,理14)若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.(2017·新课标Ⅰ,14)设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .(2017·新课标Ⅲ,13)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为__________.(2016·新课标Ⅰ,16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. (2016·新课标Ⅲ,13)设x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则z x y =+的最大值为________.(2015·新课标Ⅰ,15)若x ,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .(2015·新课标Ⅱ,14)若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为_______.(2014·新课标Ⅱ,14)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为 . (2012·新课标Ⅰ,14)设x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的取值范围为___________.(2011·新课标Ⅰ,13)若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为 .(2011·新课标Ⅱ,13)若变量x , y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .2011年—2018年新课标全国卷理科数学试题分类汇编6.不等式与线性规划(解析版)一、选择题(2017·新课标Ⅱ,5)设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9【答案】A 解析:根据约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩画出可行域(图中阴影部分), 作直线:20l x y +=,平移直线l ,将直线平移到点A 处Z 最小,点A 的坐标为()6,3--,将点A 的坐标代到目标函数2Z x y =+,可得15Z =-,即min 15Z =-.解法二:直接求法对于封闭的可行域,我们可以直接求三条直线的交点,代入目标函数中,三个数种选其最小的 为最小值即可,点A 的坐标为()6,3--,点B 的坐标为()6,3-,点C 的坐标为()0,1,所求值分 别为15-﹑9﹑1,故min 15Z =-,max 9Z =.(2014·新课标Ⅰ,9)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P 【答案】C 解析:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.(2014·新课标Ⅱ,9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A .10B .8C .3D .2l 0 l13x-y-5=0yxo12x-3y+1=0l 2x+y-7=052CAB【答案】B 解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩所表示的平面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值.当y =2x -z 经过C 点时,z 取最大值.由31070x y x y -+=⎧⎨+-=⎩得C (5,2),此时z 取最大值为2×5-2=8.(2013·新课标Ⅱ,9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .2【答案】B 解析:由题意作出13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩所表示的区域如图阴影部分所示,当目标函数表示的直线经过点A 时,取得最小值,而点A 的坐标为(1, -2a ),所以2-2a =1,解得12a =. 故选B.二、填空题(2018·新课标Ⅰ,理13) .若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.【答案】6 解析:约束条件可行域如下图:可行域如上图阴影部分:目标函数32z x y =+可化为322z y x =-+ A (1, -2a )2x +y +1=0将32y x =-进行平移,可得在(2,0)B 处距最大,即z 最大,将2,0x y ==,代入得max 6z = 【基本解法2】(交点法)将方程22022010,,1000x y x y x y x y y y --=--=-+⎧⎧⎧⎨⎨⎨-+===⎩⎩⎩≥两两求解得交点坐标为(4,3),(2,0),(1,0)---,代入一一检验即可,max 6z =.(2018·新课标Ⅱ,理14)若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.【解析】9 解法一:求点法:2505,050x y x y x +-=⎧⇒==⎨-=⎩,2305,450x y x y x -+=⎧⇒==⎨-=⎩, 2301,2250x y x y x y -+=⎧⇒==⎨+-=⎩,将上述点的坐标代入目标函数中可知:max 9z =. (2017·新课标Ⅰ,14)设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .【答案】5-解析:(解析)不等式组21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩由32z x y =-得322z y x =-,求的最小值,即求直线322zy x =-的纵截距的最大值,当直线322zy x =-过图中点A 时,纵截距最大, 由2121x y x y +=-⎧⎨+=⎩解得A 点坐标为(1,1)-,此时3(1)215z =⨯--⨯=-;(法二)由线性规划知,32z x y =-在可行域的端点取到,即211(1,1)211x y x A x y y +==-⎧⎧⇒⇒-⎨⎨+=-=⎩⎩,325A z x y =-=-,10113(,)211333x x y B x y y ⎧=⎪-=⎧⎪⇒⇒⎨⎨+=-⎩⎪=⎪⎩,1323B z x y =-=, 21111(,)0133x y x C x y y +=-=-⎧⎧⇒⇒--⎨⎨-==⎩⎩,1323Cz x y =-=-,{}min min ,,5A B C z z z z ==-;(2017·新课标Ⅲ,13)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为__________.【答案】1- 解析:由题意,画出可行域如图:目标函数为34z x y =-,则直线344zy x =-纵截距越大,值越小.由图可知:在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.(2016·新课标Ⅰ,16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000解析:设生产A 产品件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为**1.50.51500.3905360000x y x y x y x y x N y N⎧+⎪+⎪⎪+⎪⎪⎨⎪⎪⎪∈⎪∈⎪⎩≤≤≤≥≥目标函数2100900z x y =+; 作出可行域为图中的四边形,包括边界,顶点为(60,100)(0,200)(0,0)(90,0),在(60,100)处取得最大值,210060900100216000z =⨯+⨯= (2016·新课标Ⅲ,13)设x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则z x y =+的最大值为________.【答案】32解析:三条直线的交点分别为()()12,1,1,,0,12⎛⎫-- ⎪⎝⎭,代入目标函数可得33,,12-,故最小值为32.(2015·新课标Ⅰ,15)若x ,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .【答案】3解析:根据约束条件画出可行域,如图所示;yx的几何意义可以看做可行域内一点与坐标原点连线的斜率,因此可知在点(1,3)A 处取到最大值,且求得最大值为3.(2015·新课标Ⅱ,14)若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y=+的最大值为_______. 【答案】32解析:画出可行域,如图所示,将目标函数变形为y =-x +z ,当z 取到最大时,直线y = -x + z 的纵截距最大,故将直线尽可能地向上平移到)2D32.(2014·新课标Ⅱ,14)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为 .【答案】[3,3]-解析:画出可行域,易知当直线2Z x y =-经过点(1,2)时,Z 取最小值-3;当直线2Z x y =-经过点(3,0)时,Z 取最大值3. 故2Z x y =-的取值范围为[3,3]-.(( (2011·新课标Ⅱ,13)若变量x , y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 . 【答案】6- 解析:画出可行域如图,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.。

相关文档
最新文档