简单线性回归
第12章简单回归分析2

假设检验
例: 用上例资料检验脐带血TSH水平对母血TSH水 平的直线关系是否成立?
Ho:β=0 即母血TSH水平与脐带血TSH水平之间 无线性关系
H1:β≠0 即母血TSH水平与脐带血TSH水平之间有 线性关系
α =0.05
方差分析表
已知 υ1=1, υ2=8,查F界值表,得P<0.05,按 α=0.05水准拒绝Ho,接受H1,故可以认为脐带血 TSH水平与母血TSH水平之间有线性关系
残差(residual)或剩余值,即实测值Y与假定回
归线上的估计值 Y ˆ 的纵向距离 Y Yˆ。
求解a、b实际上就是“合理地”找到一条能最好
地代表数据点分布趋势的直线。
原则:最小二乘法(least sum of squares),即可 保证各实测点至直线的纵向距离的平方和最小。
最小二乘法
两部分构成,即:
(yy)(y ˆy)+(yy ˆ)
上式两端平方,然后对所有的n点求和,则有
(yy)2 [(y ˆy)+(yy ˆ)2 ]
离差平方和的分解
(三个平方和的关系)
1. 从图上看有
y y y y ˆ+ y ˆ y
2. 两端平方后求和有
n
求X,Y,l XX,lYY,l XY X 15.79 8 2.00,Y 249.01 8 31.13
lXX 47.0315.972 8 15.15 lYY 8468.78 249.012 8 718.03
lXY 594.4815.97249.01 8 97.39
另一次抽样研究 50岁年龄组舒张压得总体均数估
回归分析与相关分析

回归分析与相关分析导言回归分析与相关分析是统计学中常用的两种分析方法,用于研究变量之间的关系。
在本文中,我们将对回归分析和相关分析进行详细探讨,并介绍它们的原理、应用和实例。
一、回归分析回归分析是通过建立一个数学模型来描述一个或多个自变量与因变量之间的关系。
它可以帮助我们预测因变量的取值,并理解自变量对因变量的影响程度。
1.1 简单线性回归简单线性回归是回归分析中最常见的一种方法,它假设自变量和因变量之间存在线性关系。
通过最小二乘法,我们可以得到最佳拟合直线,从而预测因变量的取值。
1.2 多元线性回归多元线性回归是对简单线性回归的拓展,它可以同时考虑多个自变量对因变量的影响。
通过最小二乘法,我们可以得到最佳的多元回归方程,从而预测因变量的取值。
1.3 逻辑回归逻辑回归是回归分析在分类问题上的一种应用。
它能够根据自变量的取值,预测因变量的类别。
逻辑回归常用于预测二分类问题,如预测一个学生是否会被大学录取。
二、相关分析相关分析是研究两个或多个变量之间相关关系的一种方法。
它可以帮助我们了解变量之间的关联程度,以及一个变量是否能够作为另一个变量的预测因子。
2.1 皮尔逊相关系数皮尔逊相关系数是一种衡量两个连续变量之间线性相关程度的统计量。
它的取值范围在-1到1之间,当相关系数接近1时,表示两个变量正相关;当相关系数接近-1时,表示两个变量负相关;当相关系数接近0时,表示两个变量无相关关系。
2.2 斯皮尔曼相关系数斯皮尔曼相关系数是一种衡量两个变量之间的非线性相关程度的统计量。
它的取值范围也在-1到1之间,但它适用于衡量非线性关系和顺序关系。
斯皮尔曼相关系数广泛应用于心理学和社会科学领域。
应用实例为了更好地理解回归分析与相关分析的应用,让我们通过一个实际案例来说明。
假设我们想研究某个国家的人均GDP与教育水平之间的关系。
我们收集了10个州的数据,包括每个州的人均GDP和受教育程度指数。
我们可以利用回归分析来建立一个数学模型,从而预测人均GDP与受教育水平之间的关系。
第二章简单线性回归模型

4000
2037 2210 2325 2419 2522 2665 2799 2887 2913 3038 3167 3310 3510
2754
4500
2277 2388 2526 2681 2887 3050 3189 3353 3534 3710 3834
3039
5000 5500
2469 2924 2889 3338 3090 3650 3156 3802 3300 4087 3321 4298 3654 4312 3842 4413 4074 4165
Yi 与 E(Yi Xi )不应有偏差。若偏
差u i 存在,说明还有其他影响因素。
Xi
X
u i实际代表了排除在模型以外的所有因素对 Y 的影
响。 u i
◆性质 是其期望为 0 有一定分布的随机变量
重要性:随机扰动项的性质决定着计量经济分析结19
果的性质和计量经济方法的选择
引入随机扰动项 u i 的原因
特点:
●总体相关系数只反映总体两个变量 X 和 Y 的线性相关程度 ●对于特定的总体来说,X 和 Y 的数值是既定的,总体相关系
数 是客观存在的特定数值。
●总体的两个变量 X 和 Y的全部数值通常不可能直接观测,所
以总体相关系数一般是未知的。
7
X和Y的样本线性相关系数:
如果只知道 X 和 Y 的样本观测值,则X和Y的样本线性
计量经济学
第二章 一元线性回归模型
1
未来我国旅游需求将快速增长,根据中国政府所制定的 远景目标,到2020年,中国入境旅游人数将达到2.1亿人 次;国际旅游外汇收入580亿美元,国内旅游收入2500亿 美元。到2020年,中国旅游业总收入将超过3000亿美元, 相当于国内生产总值的8%至11%。
各种线性回归模型原理

各种线性回归模型原理线性回归是一种广泛应用于统计学和机器学习领域的方法,用于建立自变量和因变量之间线性关系的模型。
在这里,我将介绍一些常见的线性回归模型及其原理。
1. 简单线性回归模型(Simple Linear Regression)简单线性回归模型是最简单的线性回归模型,用来描述一个自变量和一个因变量之间的线性关系。
模型方程为:Y=α+βX+ε其中,Y是因变量,X是自变量,α是截距,β是斜率,ε是误差。
模型的目标是找到最优的α和β,使得模型的残差平方和最小。
这可以通过最小二乘法来实现,即求解最小化残差平方和的估计值。
2. 多元线性回归模型(Multiple Linear Regression)多元线性回归模型是简单线性回归模型的扩展,用来描述多个自变量和一个因变量之间的线性关系。
模型方程为:Y=α+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,X1,X2,...,Xn是自变量,α是截距,β1,β2,...,βn是自变量的系数,ε是误差。
多元线性回归模型的参数估计同样可以通过最小二乘法来实现,找到使残差平方和最小的系数估计值。
3. 岭回归(Ridge Regression)岭回归是一种用于处理多重共线性问题的线性回归方法。
在多元线性回归中,如果自变量之间存在高度相关性,会导致参数估计不稳定性。
岭回归加入一个正则化项,通过调节正则化参数λ来调整模型的复杂度,从而降低模型的过拟合风险。
模型方程为:Y=α+β1X1+β2X2+...+βnXn+ε+λ∑βi^2其中,λ是正则化参数,∑βi^2是所有参数的平方和。
岭回归通过最小化残差平方和和正则化项之和来估计参数。
当λ=0时,岭回归变为多元线性回归,当λ→∞时,参数估计值将趋近于0。
4. Lasso回归(Lasso Regression)Lasso回归是另一种用于处理多重共线性问题的线性回归方法,与岭回归不同的是,Lasso回归使用L1正则化,可以使得一些参数估计为0,从而实现特征选择。
第12章_简单线性回归

x-x均值 -12
-8 -6 -6 -2 2 6 6 8 12
y-y 均值
(x-x均值)*(yy均值)
(x-x均 值)^2
-72
-25 -42 -12 -13 7 27 39 19 72
864
200 252 72 26 14 162 234 152 864 SUM 2840 SUM
144
64 36 36 4 4 36 36 64 144
对于考察变量与变量之间关系时,我们 采用回归分析的方法建立模型或方程进 行变量间关系的分析。 因变量:被预测的变量 自变量:进行预测的变量
简单线性回归模型(对总体而言)
Y 0 1 X
1, 2为未知参数, 为随机误差项,反映其 它未列入回归模型的变量对因变量的影响。
-6
-2 2 6 6 8 12 SUM
-12
-13 7 27 39 19 72 SUM 2840
关于简单线性回归模型的标准假设: E(Y ) 0 1 X E ( ) 0 1. ,可推知, 该方程称为回归方程。 2 2. 对于所有的X,误差项 的方差 一样:即同 方差假定。 i j ) 0 3.误差项 独立。其协方差为零,cov( 4.自变量是给定的变量,与误差项线性无关。 5.误差项 服从正态分布,从而说明Y服从正态分 布
1 2 3 4 5 6 7 8 9 10
2
6
8
8
12
16
20
20
22
26
58
105
88
118
117
137
157
169
149
202
序号 1
简单线性回归模型

简单线性回归模型在一个回归模型中,我们需要关注或预测的变量叫做因变量,我们选取的用来解释因变量变化的变量叫做自变量。
一元线性回归模型y=w0+w1x+ε,其中w0,w1为回归系数,ε为随机误差项,假设ε~N(0,σ2),则随机变量y~N(w0+w1x,σ2)。
面对一个具体问题,给定样本集合D={(x1,y1),…,(x n.yn)},我们的目标是找到一条直线y=w0+w1x使得所有样本点尽可能落在它的附近。
数据模型为( w 0 ^ , w 1 ^ ) = a r g m i n ( w 0 ^ , w 1 ^ ) ∑ i = 1 n ( y i − w 0 − w 1 x i ) 2(\hat{w_{0}},\hat{w_{1}})=argmin_{(\hat{w_{0}},\hat{w_{1}})}\sum_{i=1}^{n}(y_{i}-w_{0}-w_{1}x_{i})^{2}(w0^,w1^)=argmin(w0^ ,w1^)i=1∑n(yi−w0−w1xi)2多元线性回归模型y=w0x0+w1x1+w2x2+…+w dxd+ε或y=wT x+ε,其中x=(x1,x2,…,x d)为自变量,w=(w1,w2,…,w d)为回归系数。
假设将训练集中的输入特征部分记为n*d维矩阵X,矩阵第一列值全为1,训练数据的输出特征部分写成向量形式y=(y1,y2,…,yn)T。
在多元线性模型中,输入X对应的模型输出为y ^ = X w \hat{y}=Xwy^=Xw线性回归的问题实际数据可能不是线性的●使用R2等指标进行模型诊断,R2越接近1,证明模型拟合的越好。
多重共线性●正则化、主成分回归、偏最小二乘回归过度拟合问题当模型的变量过多时,线性回归可能会出现过度拟合问题。
假如在房价预测问题中,假设x表示房屋面积,如果将x2,x3等作为独立变量可能出现以下情况简单线性回归通常对模型作了以下假设:1.输入特征是非随机的且互相不相关;2.随机误差具有零均值,同方差的特点,且彼此不相关;3.输入特征与随机误差不相关;4.随机误差项服从正态分布N(0, σ2 ).。
庞浩计量经济学第二章简单线性回归模型
最小二乘法的应用
在统计学和计量经济学中,最 小二乘法广泛应用于估计线性 回归模型,以探索解释变量与 被解释变量之间的关系。
通过最小二乘法,可以估计出 解释变量的系数,从而了解各 解释变量对被解释变量的影响 程度。
最小二乘法还可以用于时间序 列分析、预测和数据拟合等场 景。
最小二乘法的局限性
最小二乘法假设误差项是独立同分布 的,且服从正态分布,这在实际应用 中可能不成立。
最小二乘法无法处理多重共线性问题, 当解释变量之间存在高度相关关系时, 最小二乘法的估计结果可能不准确。
最小二乘法对异常值比较敏感,异常 值的存在可能导致参数估计的不稳定。
04
模型的评估与选择
R-squared
总结词
衡量模型拟合优度的指标
详细描述
R-squared,也称为确定系数,用于衡量模型对数据的拟合程度。它的值在0到1之间,越接近1表示模型拟合越 好。R-squared的计算公式为(SSreg/SStot)=(y-ybar)2 / (y-ybar)2 + (y-ybar)2,其中SSreg是回归平方和, SStot是总平方和,y是因变量,ybar是因变量的均值。
数据来源
本案例的数据来源于某大型电商 平台的销售数据,包括商品的销 售量、价格、评价等。
数据处理
对原始数据进行清洗和预处理, 包括处理缺失值、异常值和重复 值,对分类变量进行编码,对连 续变量进行必要的缩放和转换。
模型建立与评估
模型建立
基于处理后的数据,使用简单线性回 归模型进行建模,以商品销售量作为 因变量,价格和评价作为自变量。
线性回归模型是一种数学模型, 用于描述因变量与一个或多个 自变量之间的线性关系。它通 常表示为:Y = β0 + β1X1 + β2X2 + ... + ε
线性模型知识点总结
线性模型知识点总结一、线性模型概述线性模型是统计学中一类简单而又常用的模型。
在线性模型中,因变量和自变量之间的关系被描述为一个线性方程式。
线性模型被广泛应用于各种领域,如经济学、医学、社会科学等。
线性模型的简单和普适性使得它成为数据分析中的一种重要工具。
线性模型可以用来建立预测模型、对变量之间的关系进行建模和推断、进行变量选择和模型比较等。
在实际应用中,线性模型有多种形式,包括简单线性回归、多元线性回归、广义线性模型、岭回归、逻辑回归等。
这些模型在不同的情况下可以更好地满足数据的特点和要求。
二、线性回归模型1. 简单线性回归简单线性回归是最基本的线性模型之一,它描述了一个因变量和一个自变量之间的线性关系。
简单线性回归模型可以用如下的方程式来表示:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1分别是截距项和斜率项,ε是误差项。
简单线性回归模型基于最小二乘法估计参数,从而得到最优拟合直线,使得观测值和拟合值的离差平方和最小。
简单线性回归模型可以用来分析一个自变量对因变量的影响,比如身高和体重的关系、学习时间和考试成绩的关系等。
2. 多元线性回归多元线性回归是在简单线性回归的基础上发展而来的模型,它能够同时描述多个自变量对因变量的影响。
多元线性回归模型可以用如下的方程式来表示:Y = β0 + β1X1 + β2X2 + ... + βpXp + ε其中,X1、X2、...、Xp是p个自变量,β0、β1、β2、...、βp分别是截距项和各自变量的系数,ε是误差项。
多元线性回归模型通过估计各系数的值,可以得到各自变量对因变量的影响情况,以及各自变量之间的相关关系。
3. 岭回归岭回归是一种用来处理多重共线性问题的线性回归方法。
在多元线性回归中,如果自变量之间存在较强的相关性,会导致参数估计不准确,岭回归通过对参数加上一个惩罚项来避免过拟合,从而提高模型的稳定性和泛化能力。
岭回归模型可以用如下的方程式来表示:Y = β0 + β1X1 + β2X2 + ... + βpXp + ε - λ∑(β^2)其中,λ是岭参数,用来平衡参数估计和惩罚项之间的关系。
第二章 简单线性回归模型
第二章 简单线性回归第一节 概述一 两个变量之间的关系让我们在给定一个变量的条件下,研究另一个变量与给定变量的关系。
在给定变量条件下,变量Y 与给定变量X 的关系主要有两种关系:一种是变量Y 与变量X 由方程)(X f Y =所决定的确定性函数关系。
对于变量X 的定义域中的任一给定值,在变量Y 的值域中都有一个唯一确定的值与给定值相对应。
这种关系是我们在数学中早已研究过的函数关系,而且我们在宏观经济学和微观经济学中的研究的变量之间的关系在形式上往往以函数关系的形式出现。
另一种关系是在变量X 的值给定的条件下,变量Y 的值并不是完全确定的,而是以某个值为中心的一个完整的概率分布,而这个中心与给定变量X 的关系则是完全确定的。
我们称这种关系为随机性关系。
显然,这两种关系是全然不同的。
为了明确这两种关系的区别我们通过一个假想的例子来说明。
假设我们在课堂上进行一系列实验以决定某种玩具在不同价格的需求量。
用t p 表示该种玩具在时刻t 的价格,t q 表示该种玩具在时刻t 的需求量.首先,我们假设经过实验得到如下结果。
上述结果表示在价格为25的任何时刻,需求量都为1,在价格为20的任何时刻,需求量都为3,在价格为15的任何时刻,需求量都为5,等等。
这些结果所表明的需求量与价格之间的关系就是确定性关系。
这种关系可用下列线性方程表示:t t p q 4.011-= (2.1)其次,我们假设经过实验得到下列结果。
表2.1t p t q25 ⎪⎩⎪⎨⎧的时刻实验中有的时刻实验中有的时刻实验中有25% 2%05 125% 020 ⎪⎩⎪⎨⎧的时刻实验中有的时刻实验中有的时刻实验中有25% 4%05 325% 25 ⎪⎩⎪⎨⎧的时刻实验中有的时刻实验中有的时刻实验中有25% 10%05 925% 8上述结果表示在价格为25的时刻中,有25%的需求量为0,50%的需求量为1,25%的需求量为2;在价格为20的时刻中,有25%的需求量为2,50%的需求量为3,25%的需求量为4;……;在价格为5的时刻中,有25%的需求量为8,50%的需求量为9,25%的需求量为10。
简单线性回归
简单线性回归
简单线性回归作为统计学中常用的模型,受到了很多研究者的关注。
它可以用来描述和分析两种变量之间的相关性,从而解释影响它们变化的内在原因。
简单线性回归模型可以简单地表示如下:一个被称为自变量(x)和另一个称为因变量(y)之间关系的函数。
它可以用来推测因变量(y)的未知值,并预测不同自变量(x)所表示值的概率。
它还可以被用来检验对自变量和因变量的假设,确定自变量对因变量的影响有多大,以及因变量是否和已知的自变量有关。
简单线性回归的应用可以帮助人们理解和预测复杂的关系。
比如在广告行业,广告客户可以根据投放的媒体渠道、受众类型以及其他相关因素,对广告投入提出投放策略和分析效果。
甚至在生活娱乐方面也有应用,大数据分析可以通过收集和分析现象中的多个变量,帮助我们更好地了解影响某个行为的内在关系,从而更有针对性地策划活动,圆满完成目标。
总之,简单线性回归是一种有用的统计模型,能够有效地提取和解释关于变量间关系的信息,尤其在生活娱乐活动中,简单线性回归都是十分实用的工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
消费支出Y的分布是确定的,即以X的给定值为条件
的Y的条件分布(Conditional distribution)是已
知的,
如: P(Y=561|X=800)=1/4。
因此,给定收入X的值Xi,可得消费支出Y的条件 均值(conditional mean)或条件期望(conditional expectation):
使用相关系数要注意:
简单线性相关包含了其他变量的影响。
X,Y都是随机变量,相关系数只说明其 线性相关程度,不说明其非线性关系, 也不反映他们之间的因果关系;
样本相关系数是总体相关系数的样本估 计量;
相关系数具有对称性,即 xy yx ;
相关系数取值区间[-1,1]。
1.3 回归分析和相关分析
正相关(我国人均消费函数)
Y
1200
1000
800
600
400
200 0
500 1000 1500 2000 2500 X
Y为我国人均消费 X为我国人均国民收入
相关系数:0.98
Y
负相关
80
70
60
50
40
30
20 0
10
20
30
40
X
Y与X的相关系数: -0.92
不相关(不排除存在曲线相关)
E(Y|X=Xi) 该例中:E(Y | X=800)=561
描出散点图发现:随着收入的增加,消费 “平均地说”也在增加,且Y的条件均值均落在 一根正斜率的直线上。这条直线称为总体回归线。
3500
每 月 消 费 支 出
Y (元)
3000 2500 2000 1500 1000
500
0
500
1000
1500 2000 2500 3000 每月可支配收入X(元)
935 1012 1210 1408 1650 1848 2101 2354 2860 968 1045 1243 1474 1672 1881 2189 2486 2871
1078 1254 1496 1683 1925 2233 2552 1122 1298 1496 1716 1969 2244 2585 1155 1331 1562 1749 2013 2299 2640 1188 1364 1573 1771 2035 2310 1210 1408 1606 1804 2101
1.1 经济变量之间的关系
确定的函数关系:y=f(x) 不确定性的统计关系——相关关系
y=f(x)+u (u为随机变量) 没有关系
变量间的函数关系和相关关系在一定条件下可 以互相转化。
1.2 相关关系
1.2.1 分类: 只有两个变量:简单相关;
三个及三个以上:多重相关(复相关);
线性相关、非线性相关; 正相关、负相关、不相关
1.3.1 回归分析 是对一个应变量对若干解释变量依存 关系的研究; 其目的是:由固定的解释变量去估计 和预测应变量的平均值等。
1.3.2 回归函数、回归线
应变量Y的条件期望E(Y/X i )随着解释变量 X的变化而有规律地变化。把这种变化关 系用函数表示出来,就是回归函数:
E(Y/X i ) f(X i )
1430 1650 1870 2112 1485 1716 1947 2200
2002 2420 4950 11495 16445 19305 23870 25025 21450 21285 15510
分析:
(1)由于不确定因素的影响,对同一收入水平 X,不同家庭的消费支出不完全相同;
(2)但由于调查的完备性,给定收入水平X的
3500 4000
概念:
在给定解释变量Xi条件下被解释变量Yi的期望 轨迹称为总体回归线(population regression line), 或更一般地称为总体回归曲线(population regression curve)。
何谓简单线性回归模型
只有两个变量的线性回归模型,称为简单 线性回归模型,也叫做双变量模型,或者 一元线性回归模型。
模型形式为:
Y 1 2 X u
或者等价表示为:
Yi 1 2 Xi ui
第一节 回归分析和回归方程
本节主要介绍: 1.1 经济变量之间的关系。 1.2 相关关系:分类、度量。 1.3 回归分析:概念、回归线、回归函数 1.4 总体回归函数 1.5 随机扰动项 1.6 样本回归函数
例2.1:一个假想的社区有100户家庭组成,要研 究该社区每月家庭消费支出Y与每月家庭可支配收 入X的关系。
即如果知道了家庭的月收入,能否预测该社区 家庭的平均月消费支出水平。
为达到此目的,将该100户家庭划分为组内收入差 不多的10组,以分析每一收入组的家庭消费支出。
每 月 家 庭 消 费 支 出 Y (元)
Y
60 40 20
0 -20 -40 -60
-60 -40 -20 0 20 40 60 X
相关系数为: 4.24E-18
.2.2 线性相关程度的度量 ——线性相关系数
总体相关系数:
XY
Cov(X ,Y ) Var(X )Var(Y )
样本相关系数:
rXY
(Xi X )(Yi Y ) ( Xi X )2 (Yi Y )2
回归函数在坐标系中用图形表示出来就 是回归线。它表示了应变量和解释变量 之间的平均关系。
回归线图示
概率密度函数 f(Yi)
Y
x1 xi Xk
PRF
X
注意:
一般地,在重复抽样中解释变量被假定 为固定的。所以回归分析中,解释变量 一般当作非随机变量处理。
1.4 总体回归函数
由于变量间关系的随机性,回归分析关心的是 根据解释变量的已知或给定值,考察被解释变量的总 体均值,即当解释变量取某个确定值时,与之统计相 关的被解释变量所有可能出现的对应值的平均值。
共计
表 2.1.1 某社区家庭每月收入与消费支出统计表 每月家庭可支配收入X(元)
800 1100 1400 1700 2000 2300 2600 2900 3200 3500 561 638 869 1023 1254 1408 1650 1969 2090 2299 594 748 913 1100 1309 1452 1738 1991 2134 2321 627 814 924 1144 1364 1551 1749 2046 2178 2530 638 847 979 1155 1397 1595 1804 2068 2266 2629