【尚择优选】TD物理化学简明教程习题答案
简明物理化学第四版答案

简明物理化学第四版答案【篇一:网《物理化学简明教程》第四版相关练习题及答案】txt>一、判断题:1.只有在比表面很大时才能明显地看到表面现象,所以系统表面增大是表面张力产生的原因。
2.对大多数系统来讲,当温度升高时,表面张力下降。
3.比表面吉布斯函数是指恒温、恒压下,当组成不变时可逆地增大单位表面积时,系统所增加的吉布斯函数,表面张力则是指表面单位长度上存在的使表面张紧的力。
所以比表面吉布斯函数与表面张力是两个根本不同的概念。
4.恒温、恒压下,凡能使系统表面吉布斯函数降低的过程都是自发过程。
5.过饱和蒸气之所以可能存在,是因新生成的微小液滴具有很大的比表面吉布斯函数。
6.液体在毛细管内上升或下降决定于该液体的表面张力的大小。
7.单分子层吸附只能是化学吸附,多分子层吸附只能是物理吸附。
8.产生物理吸附的力是范德华力,作用较弱,因而吸附速度慢,不易达到平衡。
10.由于溶质在溶液的表面产生吸附,所以溶质在溶液表面的浓度大于它在溶液内部的浓度。
11.表面活性物质是指那些加人到溶液中,可以降低溶液表面张力的物质。
二、单选题:1.下列叙述不正确的是:(a) 比表面自由能的物理意义是,在定温定压下,可逆地增加单位表面积引起系统吉布斯自由能的增量;(b) 表面张力的物理意义是,在相表面的切面上,垂直作用于表面上任意单位长度功线的表面紧缩力;(c) 比表面自由能与表面张力量纲相同,单位不同;2.在液面上,某一小面积s周围表面对s有表面张力,下列叙述不正确的是:(a) 表面张力与液面垂直; (b) 表面张力与s的周边垂直;(c) 表面张力沿周边与表面相切;(d) 表面张力的合力在凸液面指向液体内部(曲面球心),在凹液面指向液体外部。
(a) 物理意义相同,数值相同; (b) 量纲和单位完全相同;(c) 物理意义相同,单位不同; (d) 前者是标量,后者是矢量。
4.一个玻璃毛细管分别插入25℃和75℃的水中,则毛细管中的水在两不同温度水中上升的高度:(a) 相同; (b) 无法确定;(c) 25℃水中高于75℃水中; (d) 75℃水中高于25℃水中。
第一章习题答案

《物理化学简明教程》第1章习题解答1.1 解:等压p 1= p 2=p exW = -p ex (V 2-V 1)=p 1V 1-p 2V 2=nR (T 1-T 2)= 1⨯ 8.314 ⨯ (-1) = -8.314 J 1.2 解:(1)据理想气体状态方程nRT pV =,得 333m 1094224101000300314810-⨯=⨯⨯⨯==..p nRT V 外压始终维持恒定,系统对环境做功331001024.942102494.2ex W p V J -=-∆=⨯⨯⨯=-(2)2122212213433()()11()11108.31430010010() 2.2510J 10010100010ex ex ex ex W p V p V V nRT nRT p p p nRT p p p =-∆=--=--=--=-⨯⨯⨯⨯-=-⨯⨯⨯(3)等温可逆膨胀:212112334--ln -ln100010-10 3.314300ln10010-5.7410v v W p dVV nRT V p nRT p ===⨯=⨯⨯⨯⨯=⨯⎰1.3 解:(1) W = -p ex (V s -V l ) = p ex m (1/ρl -1/ρs ) = 105 ⨯ 1 ⨯ 18 ⨯ 10 -3 ⨯ ( 1/1⨯103-1/0.92⨯103 ) = -0.157 J(2) W = - p ex (V g -V l ) = pm/ρl - pV g = pnM/ρl –nRT = 105⨯1⨯18⨯10 -3 /11⨯103 -1⨯ 8.314 ⨯373.15 = -3101 J1.4 解: 最少功即为可逆压缩功 (1)对理想气体10 mol ,300 K1000 kPa,V 1 10 mol ,300 K 100 kPa,V 21513221118.314423.15100.035181 m 35.181 L ln 101.08.314423.15ln 35.1814425.45 JnRT V p V W pdV nRT V ⨯⨯=====-=-=-⨯⨯=⎰(2)对范德华气体2002362306310()()422.51037.0710NH a n p V nb nRTVa Pa m molb m mol ----+-==⨯⋅⋅=⨯⋅ 求V 132211101100()0p V nRT nb p V n a b -++=忽略300n a b 项,则有2211101102210110110116556525255321()0()()42(18.314423.15137.071010)210(18.314423.15137.071010)4101422.5102100.035097(m )35.097(L)p V nRT nb p V n a nRT nb p nRT nb p p n a V p W pdV ----++=+++-=⨯⨯+⨯⨯⨯=⨯⨯⨯+⨯⨯⨯-⨯⨯⨯⨯+⨯===-=-⎰220210222000102136326()ln ()1010137.0710422.510118.314423.15ln ()0.0351137.07100.0351(4426.6737.963)4338.71 Ja n nRTdVV nb V V nb a n a n W nRT V nb V V ------⎡⎤-=-+-⎢⎥-⎣⎦⎡⎤⨯-⨯⨯⨯⨯=-⨯⨯+⎢⎥-⨯⨯⎣⎦=--+=⎰ 1.5 解: (1) ,221(H O,g)()135(673.15373.15)10.50KJ p m Q n C T T =⨯-=⨯⨯-= (2)()⎰⎰++==2121d d 2m T T T T ,p T cT bT a n T C n Q()()()⎥⎦⎤⎢⎣⎡-+-+-=31322122123121T T c T T b T T a n ()()()1336223molJ 37367310002231373673104914211004001629mol 1---⋅⎥⎦⎤⎢⎣⎡-⨯⨯--⨯⨯+-⨯=...= 10.85kJ1.6 解:1122522151112,21,21,11536.010*******K1.210()()(1)1.210201014502.5(1)24000.0J290v v m v m v m p V nRT p V nRT p T T p p V p V TQ U nC T T C T T C RT R T R R -==⨯=⨯=⨯=⨯=∆=-=⨯-=⨯-⨯⨯⨯=⨯-=1.7 解 经过计算,列出下列方框图过程(1)=a+b 过程a 为恒压过程 321()101325(11.222.4)101134.84J a W p V V -=--=--⨯=,21213()1()2318.314(136.5273)1702.29J 22837.13Ja v m a a a a U nC T T R T T Q H U W ∆=-=⨯-=⨯⨯-=-=∆=∆-=-过程b 为恒容过程0b W =,21,213()18.314(546136.5)5106.874J25()18.314(546136.5)8511.458J2b b v m b p m U Q nC T T H nC T T ∆==-=⨯⨯-=∆=-=⨯⨯-= 11111134.84J 2269.74J 3404.584J 5674.33Ja b a b a b a b W W W Q Q Q U U U H H H ∴=+==+=∆=∆+∆=∆=∆+∆=过程(2)= c+d 过程c 为恒温过程ab恒温可逆1mol 理气273K 22.4 L p1mol 理气136.5K ,11.2L ,p1mol 理气273K ,5.6L ,4p1mol 理气 546K 11.2 L 4pcd恒压恒容恒压21005.6ln18.314273ln 3146.503J 22.4c c c c U H V Q W nRT V ∆=∆==-==⨯⨯=- 过程d 为恒压过程321,212222224()4101325(11.2 5.6)102269.68J 5()18.314(546273)5674.305J23404.62J 876.82J 2527.80J 3404.62J 5674.305Jd d d p m d d d c d c d c d W p V V Q H nC T T U Q W W W W Q Q Q U Q W H H H -=--=-⨯-⨯=-=∆=-=⨯⨯-=∆=+=∴=+==+=∆=+=∆=∆+∆=比较两过程数据,有12121212,,,Q Q W W U U H H ≠≠∆=∆∆=∆,说明Q 和W 是途径函数,而U ,H 是状态函数。
(完整word版)物理化学简明教程考试试题及答案

2.指明电泳方向;
3.比较MgSO4,Na2SO4,AlCl3电解质对此溶胶的聚沉能力并简述原因
解:KI过量,稳定剂为KI
正极
AlCl3>MgSO4>Na2SO4
胶团显负电,故由哈迪-叔采规则,反离子价数越高,聚沉能力越强。
4. 40℃时,某反应 为一级反应,设反应初始速率 =1.00×10-3mol·dm-3·min-1,20分钟后,反应速率变为 =0.25×10-3mol·dm-3·min-1,试求40℃时:
5.已知FeO (s) + C (s) = CO (g) + Fe (s),反应的 且都不随温度而变化,欲使反应正向进行,则一定 ( A )
A.高温有利B.低温有利C.与温度无关D.与压力有关
6.1mol理想气体完成从V1,p1到V2,p2的过程后,其熵变应如何计算 ( A )
A, B.
C. D.无公式计算
2.稀溶液的依数性指的是,稀溶液中,溶剂的蒸汽压下降, ----凝固点降低--,--沸点升高--------和渗透压的数值,只与一定量溶液中的溶质的-----质点数------有关.
3. 把反应Ag+ + Cl-→AgCl(s)设计成原电池为
—Ag(s) |AgCl(s)| HCl(aq) || Ag+(aq) | Ag(s)。(4分)
7.典型的复合反应类型有:对行反应、平行反应和连串反应。ຫໍສະໝຸດ 五、应用题(每题10分,共40分)
1.电池Pt︱H2(101.325kPa)︱HCl(0.1mol·kg-1)︱Hg2Cl2(s)︱Hg在25℃时的电动势为0.372V,电动势的温度系数为1.5×10-4V·K-1。
物理学简明教程第五章课后习题答案 高等教出版社

物理学简明教程第五章课后习题答案高等教出版社第五章 气体动理论和热力学5-1 图示两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线.如果2O P )(v 和2H P )(v 分别表示氧气和氢气的最概然速率,则( )(A) 图中a 表示氧气分子的速率分布曲线且4)()(22H P O P =v v (B) 图中a 表示氧气分子的速率分布曲线且41)()(22H P O P =v v (C) 图中b 表示氧气分子的速率分布曲线且41)()(22H P O P =v v (D) 图中b 表示氧气分子的速率分布曲线且4)()(22HP O P =v v分析与解 由MRTv 2P =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率P v 也就不同.因22O H M M <,故氧气比氢气的P v 要小,由此可判定图中曲线a 应是对应于氧气分子的速率分布曲线.又因16122OH =M M ,所以=22HP O P )()(v v 4122OH =M M .故选(B).题 5-1图5-2 在一个体积不变的容器中,储有一定量的某种理想气体,温度为0T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ,当气体温度升高为04T 时,气体分子的平均速率v 、平均碰撞频率Z 和平均自由程λ分别为()(A) 004,4,4λλZ Z ===0v v (B) 0022λλ===,,Z Z 0v v (C)00422λλ===,,Z Z 0v v (D)00,2,4λλ===Z Z 0v v分析与解 理想气体分子的平均速率M RT π/8=v ,温度由0T 升至04T ,则平均速率变为0v 2;又平均碰撞频率v n d Z 2π2=,由于容器体积不变,即分子数密度n 不变,则平均碰撞频率变为0Z 2;而平均自由程nd 2π21=λ,n 不变,则λ也不变.因此正确答案为(B).5 -3 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )(A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强 分析与解 理想气体分子的平均平动动能23k /kT =ε,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程,当两者分子数密度n 相同时,它们压强也相同.故选(C).5—4 一物质系统从外界吸收一定的热量,则( )。
2023年大学_物理化学简明教程(邵谦著)课后答案下载

2023年物理化学简明教程(邵谦著)课后答案下载2023年物理化学简明教程(邵谦著)课后答案下载绪论0.1 物理化学的研究对象及其重要意义0.2 物理化学的研究方法0.3 学习物理化学的方法第一章热力学第一定律(一)热力学概论1.1 热力学的研究对象1.2 几个基本概念(二)热力学第一定律1.3 能量守恒--热力学第一定律1.4 体积功1.5 定容及定压下的热1.6 理想气体的热力学能和焓1.7 热容1.8 理想气体的绝热过程1.9 实际气体的节流膨胀(三)热化学1.10 化学反应的热效应1.11 生成焓及燃烧焓1.12 反应焓与温度的关系--基尔霍夫方程思考题第二章热力学第二定律2.1 自发过程的共同特征2.2 热力学第二定律的经典表述2.3 卡诺循环与卡诺定理2.4 熵的概念2.5 熵变的计算及其应用2.6 熵的物理意义及规定熵的计算2.7 亥姆霍兹函数与吉布斯函数2.8 热力学函数的?些重要关系式2.9 厶C的计算__2.10 非平衡态热力学简介思考题第三章化学势3.1 偏摩尔量3.2 化学势3.3 气体物质的化学势3.4 理想液态混合物中物质的化学势 3.5 理想稀溶液中物质的化学势3.6 不挥发性溶质理想稀溶液的依数性 3.7 非理想多组分系统中物质的化学势思考题第四章化学平衡4.1 化学反应的方向和限度4.2 反应的标准吉布斯函数变化4.3 平衡常数的各种表示法4.4 平衡常数的实验测定4.5 温度对平衡常数的影响4.6 其他因素对化学平衡的影响思考题第五章多相平衡5.1 相律(一)单组分系统5.2 克劳修斯一克拉佩龙方程5.3 水的相图(二)二组分系统5.4 完全互溶的双液系统__5.5 部分互溶的双液系统__5.6 完全不互溶的双液系统5.7 简单低共熔混合物的固一液系统 5.8 有化合物生成的固一液系统__5.9 有固溶体生成的固一液系统(三)三组分系统5.10 三角坐标图组成表示法__5.11 二盐一水系统__5.12 部分互溶的三组分系统思考题第六章统计热力学初步6.1 引言6.2 玻耳兹曼分布6.3 分子配分函数6.4 分子配分函数的求算及应用第七章电化学(一)电解质溶液7.1 离子的迁移7.2 电解质溶液的电导7.3 电导测定的应用示例7.4 强电解质的活度和活度系数__7.5 强电解质溶液理论简介(二)可逆电池电动势7.6 可逆电池7.7 可逆电池热力学7.8 电极电势7.9 由电极电势计算电池电动势7.10 电极电势及电池电动势的应用(三)不可逆电极过程7.11 电极的.极化7.12 电解时的电极反应7.13 金属的腐蚀与防护__7.14 化学?源简介第八章表面现象与分散系统(一)表面现象8.1 表面吉布斯函数与表面张力 8.2 纯液体的表面现象8.3 气体在固体表面上的吸附 8.4 溶液的表面吸附8.5 表面活性剂及其作用(二)分散系统8.6 分散系统的分类8.7 溶胶的光学及力学性质8.8 溶胶的电性质8.9 溶胶的聚沉和絮凝8.10 溶胶的制备与净化__8.11 高分子溶液思考题第九章化学动力学基本原理9.1 引言9.2 反应速率和速率方程9.3 简单级数反应的动力学规律9.4 反应级数的测定9.5 温度对反应速率的影响9.6 双分子反应的简单碰撞理论9.7 基元反应的过渡态理论大意__9.8 单分子反应理论简介思考题第十章复合反应动力学10.1 典型复合反应动力学10.2 复合反应近似处理方法10.3 链反应__10.4 反应机理的探索和确定示例10.5 催化反应10.6 光化学概要__10.7 快速反应与分子反应动力学研究方法简介思考题附录Ⅰ.某些单质、化合物的摩尔热容、标准摩尔生成焓、标准摩尔生成吉布斯函数及标准摩尔熵Ⅱ.某些有机化合物的标准摩尔燃烧焓(298K)Ⅲ.不同能量单位的换算关系Ⅳ.元素的相对原子质量表Ⅴ.常用数学公式Ⅵ.常见物理和化学常数物理化学简明教程(邵谦著):内容简介本教材自8月出版以来,受到了广大读者,特别是相关高校师生的厚爱,并被许多高校选作教材。
物理化学简明教程第四版答案

生物常识1、遗传变异与特种演化是生物界中存在的普遍现象,这种现象产生的原因是( 基因的重组或突变 )2、鳄鱼流泪的原因是(鳄鱼的肾脏发育不完全,需要靠眼睛附近的腺体排除盐分 )3、人体消化道中很长的器官是(小肠)。
4、葡萄传入中国的时间是( 西汉)5、心脏血流方向是( 左心房→左心室→体循环→右心房→右心室→肺循环→左心房)6、临床上以(血红蛋白值)作为判断贫血的依据。
7、覆盖在大脑半球表面的一层灰质称为(大脑皮层)。
8、医学伦理学具体原则包括(自主原则、不伤害原则、尊重原则、有利原则和公正原则)。
9、心肺复苏的正确步骤是(胸外按压→开放气道→人工呼吸)?10、(《黄帝内经》《难经》《伤寒杂病论》《神农本草经》)是我国传统医学的四大经典著作。
11、“杂交水稻之父”袁隆平培育出高产的杂交水稻新品种,是利用了( 基因的多样性)。
12、红药水能否和碘酒一起使用( 不能,会有毒性物质产生 )?13、人的泪水里的咸味是从哪里来的( 血液中来的 )?14、建国后,我国发行的第一枚生肖邮票的图案是哪种动物( 猴 )?15、坐长途车要注意揉搓小腿、大腿这是为防止( 脚浮肿 )?16、绿色食品是指(无污染的安全、优质、营养类食品。
)。
17、误食重金属盐会引起中毒,可用于急救的解毒方法是(服用大量的牛奶或豆浆)。
18、( 单选题 )绿色食品是指经专门机构认定,许可使用绿色食品标志的无污染的安全、优质、营养食品,绿色食品标志是由中国绿色食品发展中心在国家工商行政管理总局正式注册的质量证明商标。
绿色食品标志由三部分组成,即上方的太阳、下方的叶片和中心的蓓蕾,标志为( A )。
A. 正圆形,意为保护B. 椭圆形,意为安全C. 正方形,意为安全D. 长方形,意为保护19、哪种维生素可促进钙的吸收( D )?20、人体含水量很高的器官是(眼球) 。
21、具有止血功能的维生素是(维生素K)。
化学常识1、被称为“化学的圣经”的元素周期表是由俄国化学家( 门捷列夫 )首先系统提出的。
物理化学简明教程习题附答案
第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.2 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度。
解:将甲烷(M w=16.042g/mol)看成理想气体:PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT=101.32516.042/8.3145273.15(kg/m3)=0.716 kg/m31.3 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为25.0163g。
试估算该气体的摩尔质量。
水的密度1g·cm3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)×8.314×298.15/(13330×100×10-6)M w =30.31(g/mol)1.4 两个容积均为V 的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.5 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作p p -ρ图,用外推法求氯甲烷的相对分子质量。
1.6 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。
试求该混合气体中两种组分的摩尔分数及分压力。
解:将乙烷(M w=30g/mol,y1),丁烷(M w=58g/mol,y2)看成是理想气体:PV=nRT n=PV/RT=8.3147⨯10-3mol(y1⨯30+(1-y1) ⨯58)⨯8.3147⨯10-3=0.3897y1=0.401P1=40.63kPay2=0.599P2=60.69kPa1.7 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
物理学简明教程1-9章课后习题答案
物理学简明教程1-9章课后习题答案(总115页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式ts d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -4 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v 0x =-10 m·s-1 , v 0y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v 设v 0与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==t a x x v , 2s m 40d d -⋅-==ta y y v 则加速度的大小为222s m 1.72-⋅=+=y x a a a 设a 与x 轴的夹角为β,则32tan -==x y a a β β=-33°41′(或326°19′)1 -5 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=tt a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=tx x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得v 0=-1 m·s-1, x 0= m于是可得质点运动方程为75.0121242+-=t t x1 -6 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远 (2) 投放物品时,驾驶员看目标的视线和水平线成何角度(3) 物品投出s后,它的法向加速度和切向加速度各为多少?题 1-13 图分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan==x y θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx y arctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g g a n α1 -7 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b (3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -8 一升降机以加速度 m·s-2上升,当上升速度为 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m 716.0='-=h h d题 1-8 图1 -9 一无风的下雨天,一列火车以v 1= m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)题 1-19 图分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1o 12s m 36.575tan -⋅==v v 1 -10 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足h l αarctan≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.题 1-20 图解 由122v v v -='[图(b)],有θθcos sin arctan221v v v -=α 而要使h l αarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -11 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( )(A) 不为零,但保持不变(B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).1 -12 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).1-13 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rm θmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*1 -14 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( )(A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解本题可考虑对A、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B 两物体受力情况如图(b)所示,图中a′为A、B 两物体相对电梯的加速度,m a为惯性力.对A、B 两物体应用牛顿第二定律,可解得FT=5/8 mg.故选(A).讨论对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A和a B均应对地而言,本题中a A和a B的大小与方向均不相同.其中a A应斜向上.对a A、a B、a和a′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.1 -15 在如图(a)所示的轻滑轮上跨有一轻绳,绳的两端连接着质量分别为1 kg和2 kg的物体A和B,现以50 N的恒力F向上提滑轮的轴,不计滑轮质量及滑轮与绳间摩擦,求A和B的加速度各为多少?题 1-15 图分析 在上提物体过程中,由于滑轮可以转动,所以A 、B 两物体对地加速度并不相同,故应将A 、B 和滑轮分别隔离后,运用牛顿定律求解,本题中因滑轮质量可以不计,故两边绳子张力相等,且有T 2F F =.解 隔离后,各物体受力如图(b )所示,有滑轮 02T =-F FA A A A T a m g m F =-B B B B T a m g m F =-联立三式,得 2.15A =a 7.2s m B 2=⋅-a ,2s m -⋅讨论 如由式a m m g m m F )()(B A B A +=+-求解,所得a 是A 、B 两物体构成的质点系的质心加速度,并不是A 、B 两物体的加速度.上式叫质心运动定理.1 -16 一质量为m 的小球最初位于如图(a)所示的A 点,然后沿半径为r 的光滑圆轨道ADCB 下滑.试求小球到达点C 时的角速度和对圆轨道的作用力.题 1-16 图分析 该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度a t,与其相对应的外力F t是重力的切向分量mg sin α,而与法向加速度a n 相对应的外力是支持力F N 和重力的法向分量mg cos α.由此,可分别列出切向和法向的动力学方程F t=m d v/d t 和F n =ma n .由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得t m αmg F t d d sin v =-= (1) Rm m αmg F F N n 2cos v =-= (2) 由tαr t s d d d d ==v ,得v αr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有()⎰⎰-=απαα2/sin 0d rg d vv v v得 αrg cos 2=v则小球在点C 的角速度为r αg rω/cos 2==v 由式(2)得 αmg αmg rm m F N cos 3cos 2=+=v 由此可得小球对圆轨道的作用力为αmg F F N Ncos 3-=-=' 负号表示F ′N 与e n 反向.1 -17 光滑的水平桌面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v 0 ,求:(1) t 时刻物体的速率;(2) 当物体速率从v 0减少2/0v 时,物体所经历的时间及经过的路程.题 1-17 图分析 运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题.物体在作圆周运动的过程中,促使其运动状态发生变化的是圆环内侧对物体的支持力F N 和环与物体之间的摩擦力F f ,而摩擦力大小与正压力F N ′成正比,且F N 与F N ′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程.解 (1) 设物体质量为m ,取图中所示的自然坐标,按牛顿定律,有Rm ma F n N 2v == tma F t d d f v -=-= 由分析中可知,摩擦力的大小F f=μF N ,由上述各式可得tR μd d 2v v -= 取初始条件t =0 时v =v 0 ,并对上式进行积分,有⎰⎰-=v v v v 020d d μR t t tμR R 00v v v += (2) 当物体的速率从v 0 减少到2/0v 时,由上式可得所需的时间为v μR t =' 物体在这段时间内所经过的路程⎰⎰''+==t t t tμR R t s 0000d d v v v 2ln μR s =第二章动量守恒定律和能量守恒定律2 -1对质点系有以下几种说法:(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.下列对上述说法判断正确的是( )(A) 只有(1)是正确的(B) (1)、(2)是正确的(C) (1)、(3)是正确的 (D) (2)、(3)是正确的分析与解在质点组中内力总是成对出现的,它们是作用力与反作用力.由于一对内力的冲量恒为零,故内力不会改变质点组的总动量.但由于相互有作用力的两个质点的位移大小以及位移与力的夹角一般不同,故一对内力所作功之和不一定为零,应作具体分析,如一对弹性内力的功的代数和一般为零,一对摩擦内力的功代数和一般不为零,对于保守内力来说,所作功能使质点组动能与势能相互转换,因此保守内力即使有可能改变质点组的动能,但也不可能改变质点组的机械能.综上所述(1)(3)说法是正确的.故选(C).2 -2有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则( )(A) 物块到达斜面底端时的动量相等(B) 物块到达斜面底端时动能相等(C) 物块和斜面(以及地球)组成的系统,机械能不守恒(D) 物块和斜面组成的系统水平方向上动量守恒分析与解对题述系统来说,由题意知并无外力和非保守内力作功,故系统机械能守恒.物体在下滑过程中,一方面通过重力作功将势能转化为动能,另一方面通过物体与斜面之间的弹性内力作功将一部分能量转化为斜面的动能,其大小取决其中一个内力所作功.由于斜面倾角不同,故物体沿不同倾角斜面滑至底端时动能大小不等.动量自然也就不等(动量方向也不同).故(A)(B)(C)三种说法均不正确.至于说法(D)正确,是因为该系统动量虽不守恒(下滑前系统动量为零,下滑后物体与斜面动量的矢量和不可能为零.由此可知,此时向上的地面支持力并不等于物体与斜面向下的重力),但在水平方向上并无外力,故系统在水平方向上分动量守恒.2 -3如图所示,质量分别为m1和m2的物体A和B,置于光滑桌面上,A和B之间连有一轻弹簧.另有质量为m1和m2的物体C和D分别置于物体A与B 之上,且物体A和C、B和D之间的摩擦因数均不为零.首先用外力沿水平方向相向推压A和B,使弹簧被压缩,然后撤掉外力,则在A和B弹开的过程中,对A、B、C、D 以及弹簧组成的系统,有( )(A) 动量守恒,机械能守恒(B) 动量不守恒,机械能守恒(C) 动量不守恒,机械能不守恒 (D) 动量守恒,机械能不一定守恒分析与解由题意知,作用在题述系统上的合外力为零,故系统动量守恒,但机械能未必守恒,这取决于在A、B 弹开过程中C 与A 或D 与B 之间有无相对滑动,如有则必然会因摩擦内力作功,而使一部分机械能转化为热能,故选(D).2 -4 如图所示,子弹射入放在水平光滑地面上静止的木块后而穿出.以地面为参考系,下列说法中正确的说法是( )(A) 子弹减少的动能转变为木块的动能(B) 子弹-木块系统的机械能守恒(C) 子弹动能的减少等于子弹克服木块阻力所作的功(D) 子弹克服木块阻力所作的功等于这一过程中产生的热分析与解 子弹-木块系统在子弹射入过程中,作用于系统的合外力为零,故系统动量守恒,但机械能并不守恒.这是因为子弹与木块作用的一对内力所作功的代数和不为零(这是因为子弹对地位移大于木块对地位移所致),子弹动能的减少等于子弹克服阻力所作功,子弹减少的动能中,一部分通过其反作用力对木块作正功而转移为木块的动能,另一部分则转化为热能(大小就等于这一对内力所作功的代数和).综上所述,只有说法(C)的表述是完全正确的.2 -5 质量为m 的物体,由水平面上点O 以初速为v 0 抛出,v 0与水平面成仰角α.若不计空气阻力,求:(1) 物体从发射点O 到最高点的过程中,重力的冲量;(2) 物体从发射点到落回至同一水平面的过程中,重力的冲量.分析 重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可.由抛体运动规律可知,物体到达最高点的时间gαt sin Δ01v =,物体从出发到落回至同一水平面所需的时间是到达最高点时间的两倍.这样,按冲量的定义即可求得结果.另一种解的方法是根据过程的始、末动量,由动量定理求出.解1 物体从出发到达最高点所需的时间为gαt sin Δ01v = 则物体落回地面的时间为gt t αsin Δ2Δ0122v == 于是,在相应的过程中重力的冲量分别为 j j F I αsin Δd 011Δ1v m t mg t t -=-==⎰j j F I αsin 2Δd 022Δ2v m t mg t t -=-==⎰解2 根据动量定理,物体由发射点O 运动到点A 、B 的过程中,重力的冲量分别为j j j I αm y m mv Ay sin 001v v -=-=j j j I αm y m mv By sin 2002v v -=-=2 -6 高空作业时系安全带是非常必要的.假如一质量为 kg 的人,在操作时不慎从高空竖直跌落下来,由于安全带的保护,最终使他被悬挂起来.已知此时人离原处的距离为 m ,安全带弹性缓冲作用时间为 s .求安全带对人的平均冲力. 分析 从人受力的情况来看,可分两个阶段:在开始下落的过程中,只受重力作用,人体可看成是作自由落体运动;在安全带保护的缓冲过程中,则人体同时受重力和安全带冲力的作用,其合力是一变力,且作用时间很短.为求安全带的冲力,可以从缓冲时间内,人体运动状态(动量)的改变来分析,即运用动量定理来讨论.事实上,动量定理也可应用于整个过程.但是,这时必须分清重力和安全带冲力作用的时间是不同的;而在过程的初态和末态,人体的速度均为零.这样,运用动量定理仍可得到相同的结果.解1 以人为研究对象,按分析中的两个阶段进行讨论.在自由落体运动过程中,人跌落至2 m 处时的速度为 gh 21=v (1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有()12Δv v m m t -=+P F (2)由式(1)、(2)可得安全带对人的平均冲力大小为()N 1014.1Δ2ΔΔ3⨯=+=+=tgh mg t m Δmg F v 解2 从整个过程来讨论.根据动量定理有N 1014.1/2Δ3⨯=+=mg g h tmg F 2 -7 如图所示,在水平地面上,有一横截面S = m 2 的直角弯管,管中有流速为v = m·s-1 的水通过,求弯管所受力的大小和方向.题 3-12 图分析 对于弯曲部分AB 段内的水而言,由于流速一定,在时间Δt 内,从其一端流入的水量等于从另一端流出的水量.因此,对这部分水来说,在时间Δt 内动量的增量也就是流入与流出水的动量的增量Δp =Δm (v B -v A );此动量的变化是管壁在Δt 时间内对其作用冲量I 的结果.依据动量定理可求得该段水受到管壁的冲力F ;由牛顿第三定律,自然就得到水流对管壁的作用力F′=-F .解 在Δt 时间内,从管一端流入(或流出) 水的质量为Δm =ρυS Δt ,弯曲部分AB 的水的动量的增量则为Δp =Δm (v B -v A ) =ρυS Δt (v B -v A )依据动量定理I =Δp ,得到管壁对这部分水的平均冲力()A B t S ρt v v v -==ΔΔI F 从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='v S ρF F作用力的方向则沿直角平分线指向弯管外侧.2 -8 质量为m′ 的人手里拿着一个质量为m 的物体,此人用与水平面成α角的速率v 0 向前跳去.当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出.问:由于人抛出物体,他跳跃的距离增加了多少(假设人可视为质点)分析 人跳跃距离的增加是由于他在最高点处向后抛出物体所致.在抛物的过程中,人与物之间相互作用力的冲量,使他们各自的动量发生了变化.如果把人与物视为一系统,因水平方向不受外力作用,故外力的冲量为零,系统在该方向上动量守恒.但在应用动量守恒定律时,必须注意系统是相对地面(惯性系)而言的,因此,在处理人与物的速度时,要根据相对运动的关系来确定.至于,人因跳跃而增加的距离,可根据人在水平方向速率的增量Δv 来计算.解 取如图所示坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有()()u m m αm m -+'='+v v v cos 0式中v 为人抛物后相对地面的水平速率, v -u 为抛出物对地面的水平速率.得u m m m α'++=cos 00v v 人的水平速率的增量为u m m m α'+=-=cos Δ0v v v 而人从最高点到地面的运动时间为gαt sin 0v = 所以,人跳跃后增加的距离()gm m αm t x '+==sin ΔΔ0v v 2 -9 一质量为 kg 的球,系在长为 m 的细绳上,细绳的另一端系在天花板上.把小球移至使细绳与竖直方向成30°角的位置,然后从静止放开.求:(1) 在绳索从30°角到0°角的过程中,重力和张力所作的功;(2) 物体在最低位置时的动能和速率;(3) 在最低位置时的张力.题 2-9 图分析 (1) 在计算功时,首先应明确是什么力作功.小球摆动过程中同时受到重力和张力作用.重力是保守力,根据小球下落的距离,它的功很易求得;至于张力虽是一变力,但是,它的方向始终与小球运动方向垂直,根据功的矢量式⎰⋅=s d F W ,即能得出结果来.(2) 在计算功的基础上,由动能定理直接能求出动能和速率.(3) 在求最低点的张力时,可根据小球作圆周运动时的向心加速度由重力和张力提供来确定.解 (1) 如图所示,重力对小球所作的功只与始末位置有关,即。
物理化学简明教程第四版课后习题答案
物理化学简明教程第四版课后习题答案物理化学简明教程第四版课后习题答案物理化学是一门研究物质的性质、结构和变化规律的学科。
它是化学和物理学的交叉领域,涉及到了许多基本概念和理论。
为了帮助学生更好地理解和掌握物理化学的知识,教材通常会提供一些课后习题。
下面是物理化学简明教程第四版课后习题的答案。
1. 习题一:化学平衡答案:化学平衡是指化学反应在一定条件下达到动态平衡的状态。
在平衡状态下,反应物和生成物的浓度保持不变,但是反应仍在进行。
平衡常数K是描述平衡状态的一个重要参数,它的大小决定了反应的方向和强度。
平衡常数的计算方法是根据反应物和生成物的浓度之比来确定。
2. 习题二:热力学答案:热力学是研究能量转化和能量传递的学科。
热力学第一定律是能量守恒定律,它表明能量可以从一种形式转化为另一种形式,但总能量守恒。
热力学第二定律是热力学不可逆性原理,它表明自然界中存在着一种趋势,即熵增加的趋势。
熵是描述系统无序程度的物理量,熵增加意味着系统的无序程度增加。
3. 习题三:电化学答案:电化学是研究电与化学反应之间相互作用的学科。
电化学反应可以分为两类:电解反应和电池反应。
电解反应是指在外加电势的作用下,将化学物质分解成离子的反应。
电池反应是指利用化学反应产生电能的反应。
电化学反应的关键是电子的转移,它通过氧化还原反应来实现。
4. 习题四:量子力学答案:量子力学是研究微观世界的物理学理论。
它描述了微观粒子的运动和相互作用。
量子力学的基本假设是波粒二象性,即微观粒子既可以表现出波动性,又可以表现出粒子性。
量子力学的基本方程是薛定谔方程,它描述了微观粒子的波函数演化规律。
波函数可以用来计算微观粒子的位置、动量和能量等物理量。
5. 习题五:分子动力学答案:分子动力学是研究分子运动的理论和方法。
它基于牛顿力学和统计力学的原理,通过求解分子运动方程来描述分子的运动轨迹。
分子动力学可以用来研究分子的结构、动力学性质和相互作用。
物理学简明教程章课后习题答案
第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t d d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -4 质点的运动方程为式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向. 解 (1) 速度的分量式为当t =0 时, v 0x =-10 m·s-1 , v 0y =15 m·s-1 ,则初速度大小为设v 0与x 轴的夹角为α,则α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为设a 与x 轴的夹角为β,则 β=-33°41′(或326°19′)1 -5 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有得 03314v v +-=t t (1) 由 ⎰⎰=tx x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得v 0=-1 m·s-1, x 0=0.75 m于是可得质点运动方程为 1 -6 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?题 1-13 图分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =v t , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离(2) 视线和水平线的夹角为(3) 在任意时刻物品的速度与水平轴的夹角为取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为1 -7 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为其方向与切线之间的夹角为(2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为因此质点运行的圈数为1 -8 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为当螺丝落至底面时,有y 1 =y 2 ,即(2) 螺丝相对升降机外固定柱子下降的距离为解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有(2) 由于升降机在t 时间内上升的高度为则 m 716.0='-=h h d题 1-8 图1 -9 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)题 1-19 图分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1 -10 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1. 题 1-20 图解 由122v v v -='[图(b)],有 而要使hl αarctan ≥,则 1 -11 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( )(A) 不为零,但保持不变(B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).1 -12 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定 分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).1-13 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rm θmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*1 -14 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( )(A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中a A 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.1 -15 在如图(a )所示的轻滑轮上跨有一轻绳,绳的两端连接着质量分别为1 kg 和2 kg 的物体A 和B ,现以50 N 的恒力F 向上提滑轮的轴,不计滑轮质量及滑轮与绳间摩擦,求A 和B 的加速度各为多少?题 1-15 图分析 在上提物体过程中,由于滑轮可以转动,所以A 、B 两物体对地加速度并不相同,故应将A 、B 和滑轮分别隔离后,运用牛顿定律求解,本题中因滑轮质量可以不计,故两边绳子张力相等,且有T 2F F =. 解 隔离后,各物体受力如图(b )所示,有滑轮 02T =-F FA A A A T a m g m F =-B B B B T a m g m F =-联立三式,得 2.15A =a 7.2s m B 2=⋅-a ,2s m -⋅讨论 如由式a m m g m m F )()(B A B A +=+-求解,所得a 是A 、B 两物体构成的质点系的质心加速度,并不是A 、B 两物体的加速度.上式叫质心运动定理.1 -16 一质量为m 的小球最初位于如图(a)所示的A 点,然后沿半径为r 的光滑圆轨道ADCB 下滑.试求小球到达点C 时的角速度和对圆轨道的作用力.题 1-16 图分析 该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度a t,与其相对应的外力F t是重力的切向分量mg sin α,而与法向加速度a n 相对应的外力是支持力F N 和重力的法向分量mg cos α.由此,可分别列出切向和法向的动力学方程F t=m d v /d t 和F n =ma n .由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得tm αmg F t d d sin v =-= (1) Rm m αmg F F N n 2cos v =-= (2) 由tαr t s d d d d ==v ,得v αr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有 得 αrg cos 2=v 则小球在点C 的角速度为由式(2)得 αmg αmg rm m F N cos 3cos 2=+=v 由此可得小球对圆轨道的作用力为负号表示F ′N 与e n 反向.1 -17 光滑的水平桌面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v 0 ,求:(1) t 时刻物体的速率;(2) 当物体速率从v 0减少2/0v 时,物体所经历的时间及经过的路程.题 1-17 图分析 运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题.物体在作圆周运动的过程中,促使其运动状态发生变化的是圆环内侧对物体的支持力F N 和环与物体之间的摩擦力F f ,而摩擦力大小与正压力F N ′成正比,且F N 与F N ′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程.解 (1) 设物体质量为m ,取图中所示的自然坐标,按牛顿定律,有由分析中可知,摩擦力的大小F f=μF N ,由上述各式可得取初始条件t =0 时v =v 0 ,并对上式进行积分,有(2) 当物体的速率从v 0 减少到2/0v 时,由上式可得所需的时间为物体在这段时间内所经过的路程第二章 动量守恒定律和能量守恒定律2 -1 对质点系有以下几种说法:(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.下列对上述说法判断正确的是( )(A) 只有(1)是正确的 (B) (1)、(2)是正确的(C) (1)、(3)是正确的 (D) (2)、(3)是正确的分析与解 在质点组中内力总是成对出现的,它们是作用力与反作用力.由于一对内力的冲量恒为零,故内力不会改变质点组的总动量.但由于相互有作用力的两个质点的位移大小以及位移与力的夹角一般不同,故一对内力所作功之和不一定为零,应作具体分析,如一对弹性内力的功的代数和一般为零,一对摩擦内力的功代数和一般不为零,对于保守内力来说,所作功能使质点组动能与势能相互转换,因此保守内力即使有可能改变质点组的动能,但也不可能改变质点组的机械能.综上所述(1)(3)说法是正确的.故选(C).2 -2 有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则( )(A) 物块到达斜面底端时的动量相等(B) 物块到达斜面底端时动能相等(C) 物块和斜面(以及地球)组成的系统,机械能不守恒(D) 物块和斜面组成的系统水平方向上动量守恒分析与解 对题述系统来说,由题意知并无外力和非保守内力作功,故系统机械能守恒.物体在下滑过程中,一方面通过重力作功将势能转化为动能,另一方面通过物体与斜面之间的弹性内力作功将一部分能量转化为斜面的动能,其大小取决其中一个内力所作功.由于斜面倾角不同,故物体沿不同倾角斜面滑至底端时动能大小不等.动量自然也就不等(动量方向也不同).故(A)(B)(C)三种说法均不正确.至于说法(D)正确,是因为该系统动量虽不守恒(下滑前系统动量为零,下滑后物体与斜面动量的矢量和不可能为零.由此可知,此时向上的地面支持力并不等于物体与斜面向下的重力),但在水平方向上并无外力,故系统在水平方向上分动量守恒.2 -3 如图所示,质量分别为m 1 和m 2 的物体A 和B ,置于光滑桌面上,A 和B 之间连有一轻弹簧.另有质量为m 1 和m 2 的物体C 和D 分别置于物体A 与B 之上,且物体A 和C 、B 和D 之间的摩擦因数均不为零.首先用外力沿水平方向相向推压A 和B ,使弹簧被压缩,然后撤掉外力,则在A 和B 弹开的过程中,对A 、B 、C 、D 以及弹簧组成的系统,有( )(A) 动量守恒,机械能守恒 (B) 动量不守恒,机械能守恒(C) 动量不守恒,机械能不守恒 (D) 动量守恒,机械能不一定守恒分析与解 由题意知,作用在题述系统上的合外力为零,故系统动量守恒,但机械能未必守恒,这取决于在A 、B 弹开过程中C 与A 或D 与B 之间有无相对滑动,如有则必然会因摩擦内力作功,而使一部分机械能转化为热能,故选(D).2 -4 如图所示,子弹射入放在水平光滑地面上静止的木块后而穿出.以地面为参考系,下列说法中正确的说法是( )(A) 子弹减少的动能转变为木块的动能(B) 子弹-木块系统的机械能守恒(C) 子弹动能的减少等于子弹克服木块阻力所作的功(D) 子弹克服木块阻力所作的功等于这一过程中产生的热分析与解 子弹-木块系统在子弹射入过程中,作用于系统的合外力为零,故系统动量守恒,但机械能并不守恒.这是因为子弹与木块作用的一对内力所作功的代数和不为零(这是因为子弹对地位移大于木块对地位移所致),子弹动能的减少等于子弹克服阻力所作功,子弹减少的动能中,一部分通过其反作用力对木块作正功而转移为木块的动能,另一部分则转化为热能(大小就等于这一对内力所作功的代数和).综上所述,只有说法(C)的表述是完全正确的.2 -5 质量为m 的物体,由水平面上点O 以初速为v 0 抛出,v 0与水平面成仰角α.若不计空气阻力,求:(1) 物体从发射点O 到最高点的过程中,重力的冲量;(2) 物体从发射点到落回至同一水平面的过程中,重力的冲量. 分析 重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可.由抛体运动规律可知,物体到达最高点的时间gαt sin Δ01v ,物体从出发到落回至同一水平面所需的时间是到达最高点时间的两倍.这样,按冲量的定义即可求得结果.另一种解的方法是根据过程的始、末动量,由动量定理求出.解1 物体从出发到达最高点所需的时间为则物体落回地面的时间为于是,在相应的过程中重力的冲量分别为解2 根据动量定理,物体由发射点O 运动到点A 、B 的过程中,重力的冲量分别为2 -6 高空作业时系安全带是非常必要的.假如一质量为51.0 kg 的人,在操作时不慎从高空竖直跌落下来,由于安全带的保护,最终使他被悬挂起来.已知此时人离原处的距离为2.0 m ,安全带弹性缓冲作用时间为0.50 s .求安全带对人的平均冲力.分析 从人受力的情况来看,可分两个阶段:在开始下落的过程中,只受重力作用,人体可看成是作自由落体运动;在安全带保护的缓冲过程中,则人体同时受重力和安全带冲力的作用,其合力是一变力,且作用时间很短.为求安全带的冲力,可以从缓冲时间内,人体运动状态(动量)的改变来分析,即运用动量定理来讨论.事实上,动量定理也可应用于整个过程.但是,这时必须分清重力和安全带冲力作用的时间是不同的;而在过程的初态和末态,人体的速度均为零.这样,运用动量定理仍可得到相同的结果.解1 以人为研究对象,按分析中的两个阶段进行讨论.在自由落体运动过程中,人跌落至2 m 处时的速度为gh 21=v (1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有()12Δv v m m t -=+P F (2)由式(1)、(2)可得安全带对人的平均冲力大小为解2 从整个过程来讨论.根据动量定理有2 -7 如图所示,在水平地面上,有一横截面S =0.20 m 2 的直角弯管,管中有流速为v =3.0 m·s-1 的水通过,求弯管所受力的大小和方向.题 3-12 图分析 对于弯曲部分AB 段内的水而言,由于流速一定,在时间Δt 内,从其一端流入的水量等于从另一端流出的水量.因此,对这部分水来说,在时间Δt 内动量的增量也就是流入与流出水的动量的增量Δp =Δm (v B -v A );此动量的变化是管壁在Δt 时间内对其作用冲量I 的结果.依据动量定理可求得该段水受到管壁的冲力F ;由牛顿第三定律,自然就得到水流对管壁的作用力F′=-F .解 在Δt 时间内,从管一端流入(或流出) 水的质量为Δm =ρυS Δt ,弯曲部分AB 的水的动量的增量则为Δp =Δm (v B -v A ) =ρυS Δt (v B -v A )依据动量定理I =Δp ,得到管壁对这部分水的平均冲力从而可得水流对管壁作用力的大小为作用力的方向则沿直角平分线指向弯管外侧.2 -8 质量为m′ 的人手里拿着一个质量为m 的物体,此人用与水平面成α角的速率v 0 向前跳去.当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出.问:由于人抛出物体,他跳跃的距离增加了多少? (假设人可视为质点)分析 人跳跃距离的增加是由于他在最高点处向后抛出物体所致.在抛物的过程中,人与物之间相互作用力的冲量,使他们各自的动量发生了变化.如果把人与物视为一系统,因水平方向不受外力作用,故外力的冲量为零,系统在该方向上动量守恒.但在应用动量守恒定律时,必须注意系统是相对地面(惯性系)而言的,因此,在处理人与物的速度时,要根据相对运动的关系来确定.至于,人因跳跃而增加的距离,可根据人在水平方向速率的增量Δv 来计算.解 取如图所示坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有 式中v 为人抛物后相对地面的水平速率, v -u 为抛出物对地面的水平速率.得人的水平速率的增量为而人从最高点到地面的运动时间为所以,人跳跃后增加的距离2 -9 一质量为0.20 kg 的球,系在长为2.00 m 的细绳上,细绳的另一端系在天花板上.把小球移至使细绳与竖直方向成30°角的位置,然后从静止放开.求:(1) 在绳索从30°角到0°角的过程中,重力和张力所作的功;(2) 物体在最低位置时的动能和速率;(3) 在最低位置时的张力.题 2-9 图分析 (1) 在计算功时,首先应明确是什么力作功.小球摆动过程中同时受到重力和张力作用.重力是保守力,根据小球下落的距离,它的功很易求得;至于张力虽是一变力,但是,它的方向始终与小球运动方向垂直,根据功的矢量式⎰⋅=s d F W ,即能得出结果来.(2) 在计算功的基础上,由动能定理直接能求出动能和速率.(3) 在求最低点的张力时,可根据小球作圆周运动时的向心加速度由重力和张力提供来确定.解 (1) 如图所示,重力对小球所作的功只与始末位置有关,即在小球摆动过程中,张力F T 的方向总是与运动方向垂直,所以,张力的功(2) 根据动能定理,小球摆动过程中,其动能的增量是由于重力对它作功的结果.初始时动能为零,因而,在最低位置时的动能为小球在最低位置的速率为(3) 当小球在最低位置时,由牛顿定律可得2 -10 一质量为m 的质点,系在细绳的一端,绳的另一端固定在平面上.此质点在粗糙水平面上作半径为r 的圆周运动.设质点的最初速率是v 0 .当它运动一周时,其速率为v 0 /2.求:(1) 摩擦力作的功;(2) 动摩擦因数;(3) 在静止以前质点运动了多少圈?分析 质点在运动过程中速度的减缓,意味着其动能减少;而减少的这部分动能则消耗在运动中克服摩擦力作功上.由此,可依据动能定理列式解之.解 (1) 摩擦力作功为20202k 0k 832121v v v m m m E E W -=-=-= (1) (2) 由于摩擦力是一恒力,且F f =μmg ,故有 mg r s F W μπ2180cos o f -== (2)由式(1)、(2)可得动摩擦因数为(3) 由于一周中损失的动能为2083v m ,则在静止前可运行的圈数为 34k 0==W E n 圈 2 -11 如图(a)所示,A 和B 两块板用一轻弹簧连接起来,它们的质量分别为m 1 和m 2 .问在A 板上需加多大的压力,方可在力停止作用后,恰能使A 在跳起来时B 稍被提起.(设弹簧的劲度系数为k )题 2-11 图分析 运用守恒定律求解是解决力学问题最简捷的途径之一.因为它与过程的细节无关,也常常与特定力的细节无关.“守恒”则意味着在条件满足的前提下,过程中任何时刻守恒量不变.在具体应用时,必须恰当地选取研究对象(系统),注意守恒定律成立的条件.该题可用机械能守恒定律来解决.选取两块板、弹簧和地球为系统,该系统在外界所施压力撤除后(取作状态1),直到B 板刚被提起(取作状态2),在这一过程中,系统不受外力作用,而。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章气体的pVT性质1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.2 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度。
解:将甲烷(M w=16.042g/mol)看成理想气体:PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT.042/8.3145kg/m3)=0.716 kg/m31.3 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为25.0163g。
试估算该气体的摩尔质量。
水的密度1g·cm3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)×8.314×298.15/(13330×100×10-6)M w =30.31(g/mol)1.4 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100℃,另一个球则维持0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.5 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作p p-ρ图,用外推法求氯甲烷的相对分子质量。
1.6 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。
试求该混合气体中两种组分的摩尔分数及分压力。
解:将乙烷(M w=30g/mol,y1),丁烷(M w=58g/mol,y2)看成是理想气体:PV=nRT n=PV/RT=8.314710-3mol(y130+(1-y1) 58)8.314710-3=0.3897y1=0.401 P1=40.63kPay2=0.599 P2=60.69kPa1.7 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.81.9 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.10 25℃时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10℃,使部分水蒸气凝结为水。
试求每摩尔干乙炔气在该冷却过程中凝结出水的物质的量。
已知25℃及10℃时水的饱和蒸气压分别为3.17 kPa及1.23 kPa。
解:该过程图示如下设系统为理想气体混合物,则1.11 有某温度下的2dm3湿空气,其压力为101.325kPa,相对湿度为60%。
设空气中O2与N2的体积分数分别为0.21与0.79,求水蒸气、O2与N2的分体积。
已知该温度下水的饱和蒸汽压为20.55kPa (相对湿度即该温度下水蒸气的分压与水的饱和蒸汽压之比)。
1.12 一密闭刚性容器中充满了空气,并有少量的水。
但容器于300 K条件下大平衡时,容器内压力为101.325 kPa。
若把该容器移至373.15 K的沸水中,试求容器中到达新的平衡时应有的压力。
设容器中始终有水存在,且可忽略水的任何体积变化。
300 K时水的饱和蒸气压为3.567 kPa。
解:将气相看作理想气体,在300 K时空气的分压为由于体积不变(忽略水的任何体积变化),373.15 K时空气的分压为由于容器中始终有水存在,在373.15 K时,水的饱和蒸气压为101.325 kPa,系统中水蒸气的分压为101.325 kPa,所以系统的总压1.13 CO2气体在40℃时的摩尔体积为0.381 dm3·mol-1。
设CO2为范德华气体,试求其压力,并比较与实验值5066.3 kPa的相对误差。
1.14 今有0℃,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.15试由波义尔温度T B的定义式,证明范德华气体的T B可表示为T B=a/(bR)式中a,b为范德华常数。
1.16把25℃的氧气充入40dm3的氧气钢瓶中,压力达202.7×102kPa。
试用普遍化压缩因子图求钢瓶中氧气的质量。
解:氧气的T C=-118.57℃,P C=5.043MPa氧气的T r=298.15/(273.15-118.57)=1.93, P r=20.27/5.043=4.02Z=0.95PV=ZnRTn=PV/ZRT=202.7×105×40×10-3/(8.314×298.15)/0.95=344.3(mol)氧气的质量m=344.3×32/1000=11(kg)第二章热力学第一定律2.1 1mol水蒸气(H2O,g)在100℃,101.325kPa下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体,W =-p ambΔV =-p(V l-V g ) ≈pVg = nRT = 3.102kJ2.2 始态为25℃,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到 -28.47℃,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
解:先确定系统的始、末态对于途径b,其功为根据热力学第一定律2.3 某理想气体C v,m=1.5R。
今有该气体5mol在恒容下温度升高50℃。
求过程的W,Q,ΔH和ΔU。
解: 理想气体恒容升温过程n = 5mol C V,m = 3/2RQ V =ΔU = n C V,mΔT = 5×1.5R×50 = 3.118kJW = 0ΔH = ΔU + nRΔT = n C p,mΔT= n (C V,m+ R)ΔT = 5×2.5R×50 = 5.196kJ2.4 2mol某理想气体,C p,m=7/2R。
由始态100kPa,50dm3,先恒容加热使压力升高至200kPa,再恒压冷却使体积缩小至25dm3。
求整个过程的W,Q,ΔH和ΔU。
解:过程图示如下由于,则,对有理想气体和只是温度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律2.5 1mol某理想气体于27℃、101.325kPa的始态下,现受某恒定外压恒温压缩至平衡态,再恒容升温至97.0℃、250.00 kPa。
求过程的W、Q、△U、△H。
已知气体的C V,m=20.92 J·K·mol-1。
2.62.7 容积为0.1 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0℃,4 mol的Ar(g)及150℃,2 mol 的Cu(s)。
现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的。
已知:Ar(g)和Cu(s)的摩尔定压热容分别为及,且假设均不随温度而变。
解:图示如下假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计则该过程可看作恒容过程,因此假设气体可看作理想气体,,则2.8 单原子理想气体A与双原子理想气体B的混合物共5 mol,摩尔分数,始态温度,压力。
今该混合气体绝热反抗恒外压膨胀到平衡态。
求末态温度及过程的。
解:过程图示如下分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。
因此,单原子分子,双原子分子由于对理想气体U和H均只是温度的函数,所以2.9 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2 mol,0℃的单原子理想气体A及5 mol,100℃的双原子理想气体B,两气体的压力均为100 kPa。
活塞外的压力维持在100 kPa不变。
今将容器内的隔板撤去,使两种气体混合达到平衡态。
求末态的温度T及过程的。
解:过程图示如下假定将绝热隔板换为导热隔板,达热平衡后,再移去隔板使其混合,则由于外压恒定,求功是方便的由于汽缸为绝热,因此2.10 已知水(H2O, l)在100℃的饱和蒸气压,在此温度、压力下水的摩尔蒸发焓。
求在在100℃,101.325 kPa下使1 kg水蒸气全部凝结成液体水时的。
设水蒸气适用理想气体状态方程式。
解:该过程为可逆相变2.11已知水(H2O,l)在100℃的饱和蒸气压p s=101.325kPa,在此温度、压力下水的摩尔蒸发焓。
试分别求算下列两过程的W,Q,ΔU和ΔH。
(水蒸气可按理想气体处理)(1)在100℃,101.325kPa条件下,1kg水蒸发为水蒸气(2)在恒定100℃的真空容器中,1kg 水全部蒸发为水蒸气,并且水蒸气压力恰好为101.325kPa。
解: (1)题给过程的始末态和过程特性如下:n = m/M = 1kg/18.015g·mol-1 = 55.509mol题给相变焓数据的温度与上述相变过程温度一致,直接应用公式计算n(Δvap H m)=2257 kJW=-p ambΔV =-p(V g -V l )≈-pVg = -n g RT=-172.2kJΔU = Q p + W =2084.79kJ(2)真空容器中W=0kJ2.12 已知 100 kPa下冰的熔点为0 ℃,此时冰的比熔化焓热J·g-1. 水和冰的平均定压热容分别为及。