七年级上册数学解方程计算题
七年级上册数学解方程分母计算题解说

七年级上册数学解方程分母计算题解说一、引言在七年级上册数学学习中,解方程是一个极其重要的内容。
其中,解方程中的分母计算题更是让许多学生感到困惑和难以理解,今天我们就来详细解说一下七年级上册数学解方程中的分母计算题。
二、分母计算题的基本概念在解方程中,我们经常会遇到分母计算题,它们通常是指在方程中含有未知数的分式表达式,而我们需要通过解方程的方法,求出未知数的值。
如下方程:3/(x+2) = 5其中,3/(x+2) 就是一个分母计算题,我们需要求解出 x 的值。
三、分母计算题的解题方法解决分母计算题的关键在于消去分母,让方程变得更简单,然后再通过一系列的运算步骤求出未知数的值。
下面是解决分母计算题的一般步骤:1. 将分母单独列出,令分母不等于0,并求出分母的值;2. 通过分子分母同乘的方法,将分母消去;3. 根据消去分母后的方程进行求解,得出未知数的值。
四、举例解说接下来,我们通过具体的例子来说明分母计算题的解题方法。
例题:解方程 3/(x+2) = 5解答:1. 分母为 x+2,令 x+2 不等于 0,求出 x 的范围;可得:x ≠ -2x 的取值范围为全体实数除去 -2。
2. 通过分子分母同乘的方法,消去分母:3/(x+2) = 5可得:3 = 5(x+2)进一步计算可得:3 = 5x + 103. 根据消去分母后的方程进行求解:3 = 5x + 10化简得:5x = -7可得:x = -7/5方程 3/(x+2) = 5 的解为 x = -7/5。
五、个人观点分母计算题在解方程中是一个很重要的环节,它需要我们在运用解方程的方法时,更加注重对分母的处理,确保在消去分母后得到的方程是简单且容易求解的。
而且,对分母计算题的理解和掌握,也是我们在数学学习中不可或缺的一部分。
通过充分练习和理解,我们可以更加熟练地解决各种类型的分母计算题,从而提高我们的数学解题能力。
六、总结通过本文的详细解说,我们对七年级上册数学解方程中的分母计算题有了更深入的理解。
七年级一元一次方程经典题型计算题100道

七年级一元一次方程经典题型计算题100道解方程(等式的性质)1.x-2=3-2x2.3x-1.3x+5x-2.7x=-12*3-6*43.-x=1-2x4.5=5-3x5.x-5=16.5-3x=8x+17.7x=3+2x8.x-3x-1.2=4.8-5x9.3x-7+4x=6x-210.11x+64-2x=100-9x11.x-7+8x=9x-3-4x12.2x-x+3=1.5-2x13.0.5x-0.7=6.5-1.3x14.-4x+6x-0.5x=-315.-x=-2/5x+116.x-6=-3/5x+317.3/2x=2/318.x=1+x^2/2-x^4/8+1619.x^4/2-1/2=x^2/2+3/420.-x^2/3+x=1解方程(去括号)1.2x-2=42.10x-10=53.-x+3=5x+94.3x-6+1=x-2x+15.5x+10=10x-26.2x-2-x-2=12-3x7.4x+3=2x-2+18.4x+2x-4=12-x9.2x-4-24x+6=3-3x10.4x-8-15x+3=9-x11.1-4x-6=-6x-312.x+1-2x+2=1-3x13.4x-60-3x+21=6x-63-7x14.2x-4=-x-315.4x-8+2x=7+x16.2x-5x-16=3-6x+817.-3x+6+1=4x-2x+118.4x+2x-4=12-x-419.2x-4-12x+3=9-9x20.2y+4-12y+3=9-9y21.4x-60-3x+21=6x-63-7x22.2{3[4(5x-1)-8]-20}-7=123.x-2[x-3(x+4)-5]=3{2x-[x-8(x-4)]}-224.x-(x-1)/(2)=(x-1)/(2)25.2x-x-(x-1)=(x-1)/(2)26.(x-1)/3-2[x-1(1/4/5)]+4=127.(x-1)^(-1)=1/21、解方程:1128、6(x-4)+2x=7-(x-1) 化简得:8x-22=7移项得:8x=29解得:x=29/82、解方程:1/5x-(1/2)(3-2x)=1/23 化简得:2x+15=46-5x移项得:7x=31解得:x=31/73、解方程:2-(2/3)x=4化简得:(2/3)x=-2移项得:x=-34、解方程:|x+5|=5分两种情况讨论:当x+5=5时,解得:x=0当x+5=-5时,解得:x=-10 5、解方程:6(x-4)+2x=7-(x-1) 化简得:8x-22=7移项得:8x=29解得:x=29/86、解方程:(3x-6)/(2/5x-3)=1 化简得:(3x-6)/(2/5x-3)=1移项得:3x-6=2/5x-3移项得:13/5x=3解得:x=15/137、解方程:(x+1)/2-(x+1)/6=1 化简得:(3/6)x+1/2-1=1化简得:(3/6)x=1/2解得:x=18、解方程:2x-11/(0.5x-3)=-6 化简得:(2x-11)/(0.5x-3)=-6 移项得:2x-11=-3x+18移项得:5x=29解得:x=29/59、解方程:0.1x+0.2x/(1-0.3x)=1/0.5-0.2 化简得:0.1x+0.2x/(1-0.3x)=1.25移项得:0.1x(1-0.3x)+0.2x=1.25(1-0.3x) 化简得:0.1x+0.26x-0.375x^2=1.25移项得:-0.375x^2+0.36x-1.25=0解得:x=5/310、解方程:(5-3x)^2=3(3+5x)化简得:25-30x+9x^2=9+15x移项得:9x^2-45x+16=0解得:x=(45±√(45^2-4*9*16))/(2*9)化简得:x=(15±(33))/6解得:x=8/3或x=1/311、解方程:(x-3)/0.2-(2x+5)/0.3=1.6 化简得:1.5x-7.5-6.667x-11.667=1.6 移项得:-5.167x=20.767解得:x=-412、解方程:(2x+1)/4-(x+1)/2=2化简得:0.5x-0.25=2移项得:0.5x=2.25解得:x=4.513、解方程:(y+4)/3-y+5=2-(y-2)/2 化简得:(y+4)/3-y+5=2-(y-2)/2移项得:(y+4)/3+(y-2)/2=3化简得:(2y+8+3y-6)/6=3解得:y=214、解方程:(y-1)/2=2-(y+2)/5化简得:5(y-1)=2(10-3y-6)移项得:8y=33解得:y=33/815、解方程:(x-1)/4+1=2-(x+3)/6化简得:(x-1)/4+(x+3)/6=1化简得:3(x-1)+2(x+3)=12移项得:5x=13解得:x=13/516、解方程:(x-1)/3=(x+1)/5化简得:5(x-1)=3(x+1)移项得:2x=8解得:x=417、解方程:(x-1)/3+1=2-(x+1)/5 化简得:(x-1)/3+(x+1)/5=1化简得:5(x-1)+3(x+1)=15移项得:8x=28解得:x=7/218、解方程:(x-2)/3=(x+2)/4 化简得:4(x-2)=3(x+2)移项得:x=1419、解方程:(1-x^4)-1=(x+1)/2 化简得:-x^4+(x+3)/2=0移项得:x^4-(x+3)/2=0解得:x=-1或x=√220、解方程:(x-1)/3-1=3-(2-x)/2化简得:(x-1)/3+(2-x)/2=4化简得:2(x-1)+3(2-x)=24移项得:-x=5解得:x=-521、解方程:5x-13x^2/4=1/2-(2-x)/3 化简得:20x-39x^2=6-4+2x移项得:39x^2-18x=-2解得:x=2/3或x=-2/1322、解方程:5x+1/6=9x+1/8-(1-x)/3化简得:15x+2=72x+3-(8-24x)/3化简得:45x+6=216x+9+8-24x移项得:-24x=11解得:x=-11/2423、解方程:2x+1/3-(x+2)/6=1/4化简得:12x+4-2(x+2)=3移项得:10x=1解得:x=1/1024、解方程:3x+2(2x-1)/5-1=4-(x+1)/5 化简得:15x+4(2x-1)-5=20-x-1移项得:32x=31解得:x=31/3225、解方程:3x-(2x-1)^2/2=2-(x-2)/5 化简得:6x-(2x-1)^2=20-2(x-2)化简得:6x-4x^2+4x-1=20-2x+4移项得:4x^2-8x+15=0解得:无实数解26、解方程:x-(x-1)^2/2=2-(x+2)/3 化简得:6x-3(x-1)^2=12-(x+2)2化简得:6x-3x^2+6x-6=12-x^2-4x-4移项得:2x^2-16x+22=0解得:x=4-√6或x=4+√627、解方程:x-2=-2x+1/2化简得:3x=5/2解得:x=5/628、解方程:4x-1/3=5x+5/6化简得:3x=11/6解得:x=11/1829、解方程:3x+(x-1)/(x+1)=4-2(x-1) 化简得:3x+((x-1)(x+1))/(x+1)=4-2x+2化简得:3x+(x^2-1)/(x+1)=6-2x化简得:3x(x+1)+(x^2-1)=6x-2x(x+1)化简得:4x^2+5x-1=0解得:x=-1或x=1/430、解方程:x-2x/(x+5/3)=31/3化简得:(x^2+5x/3-2x)/x+5/3=31/3化简得:(x^2-1/3x-31)/x+5/3=0移项得:x^2-1/3x-31=0解得:x=(1/3+√397)/2或x=(1/3-√397)/2 31、解方程:2(x+2)/3-5(x+3)/6=2/3化简得:4(x+2)-5(x+3)=4移项得:-x=1解得:x=-132、解方程:x-2x/(x-2)=5/2化简得:(x^2-2x-5)/x-2=0移项得:x^2-2x-5=0解得:x=1+√6或x=1-√633、解方程:(0.8-9x)/(1.3-3x)+5x-0.4=1.3 化XXX:(0.8-9x)/(1.3-3x)+5x=1.7化简得:0.8-9x+5x(1.3-3x)=1.7(1.3-3x)化简得:-15x^2+10x+23=0解得:x=(-1±√(1-4*(-15)*23))/(2*(-15)) 化简得:x=(-1±√1381)/3034、解方程:(x-1)^2/4+(x-4)^3/27=2 化简得:27(x-1)^2+4(x-4)^3=216移项得:4(x-4)^3=216-27(x-1)^2解得:x=235、解方程:19x-2/x-6-2=0化简得:19x^2-2x-6=0解得:x=1/19或x=336、解方程:1.8-8x/1.2-1.3-3x/(5x-0.4)=1.3化简得:(1.8-8x)(5x-0.4)-(1.3-3x)(1.2-1.3)=1.3(1.2-1.3)(5x-0.4)化简得:-39x^2+31x+6=0解得:x=(1±√(1-4*(-39)*6))/(2*(-39))化简得:x=(1±√937))/7837、解方程:(x+1)^2/4+(x-4)^3/27=2化简得:27(x+1)^2+4(x-4)^3=216移项得:4(x-4)^3=216-27(x+1)^2解得:x=238、将分式化简:frac{0.1x-0.27x+0.18}{2.04}=\frac{x+4}{139}小幅度改写:化简分式得:frac{-0.17x+0.18}{2.04}=\frac{x+4}{139} 41、将方程移项并通分:frac{x^3-1}{2}+\frac{x-1}{2}=0小幅度改写:移项并通分得:frac{x^3+x-2}{2}=042、将方程通分并移项:frac{(y+1)^2}{2}=\frac{y(3-y)-3}{6}小幅度改写:通分并移项得:2y^2+2y-9=043、将方程通分并移项:frac{(x-2)^2}{2}-\frac{3(x-2)}{4}=-1小幅度改写:通分并移项得:2x^2-11x+12=044、将方程通分并移项:frac{x^5+112}{2}-\frac{6(x-4)}{3}=1小幅度改写:通分并移项得:2x^5-3x+70=045、将方程通分并移项:frac{x-4}{x-3}-\frac{2.5}{x-3000}=10\cdot\frac{60}{64}小幅度改写:通分并移项得:frac{-61x+}{64(x-3)(x-3000)}=7549、将方程通分并移项:frac{0.1x}{0.7}-\frac{0.03}{0.7}=\frac{0.9}{0.7}-0.2x-150小幅度改写:通分并移项得:14x+300=0。
浙教版数学七年级上册专项突破一 实数的运算、整式的加减、解方程(含答案)

a=14, b=4.
(2)(2021秋·湖州市长兴县期末)14(-4x2 +4x+12xy)-(-x2+x+
2xy),其中x=12,y=2022.
【解析】(1)原式=2a2-2ab-2a2+3ab-3=ab-3. 当a=14,b=4时,原式=1-3=-2. (2)原式=-x2+x+3xy+x2-x-2xy=xy. 当x=12,y=2022时,原式=1011.
【答案】 -1
抓重点 9.(2020秋·温州市期末)按如图所示的程序计算,若开始 输入的x的值为 15,则输出的结果为________.
【答案】 15
1示0.给《出算了法3统 4×宗25》抓=是8重5我0的 国点计 古算 代步 数骤 学: 著① 作将 ,3它4, 记2载5分 了别 多写 位在 数方 相格 乘的 的上 方边 法和 .右 如边 图; ①② 所
抓重点
13.解方程: (1)(2021秋·宁波市北仑区期末)7x-3=6x-5. (2)(2020秋·宁波市余姚市期末)2x-3(x-1)=1. (3)(2021秋·杭州市钱塘区期末)y3-y-6 1 = 1-23y. (4)1.5x3-2-0.5=53x. (5)(3-x)m=n(x-3)(m,n为常数,且m≠-n). (6)|x+4|+|3-x|=8.
把上述各数字乘积的十位(不足写0)与个位分别填入小方格中斜线两侧;③沿斜 线的方向将数字相加,记录在方格左边和下边;④将所得数字从左上到右下依 次排列(满十进一).若图②中a,b,c,d均为自然数,且c,d都不大于5,则a的 值为________,该图表示的乘积结果为________.
【解析】由题意可知3×a≤4,且a为自然数,∴a=1,故d的斜线上方为4-3= b=4, b=5,
D. 1×(-2)×3-4
七年级数学计算题10

X =_________
16.解方程:7(X - 3) + 5 = 19
X =_________
17.解方程:8(X + 4) - 2 = 62
X =_________
18.解方程:9(X - 5) + 6 = 39
X =_________
19.解方程:10(X + 3) - 15 = 45
39.解方程:10(X + 2) - 10 = 50
X =_________
40.解方程:X/5 - 1 = 3
X =_________
41.解方程:2(X - 6) + 10 = 12
X =_________
42.解方程:3(X + 2) + 3 = 27
X =_________
43.解方程:4(X - 1) - 8 = 4
71.解方程:2(X - 5) + 20 = 0
X =_________
72.解方程:3(X + 2) - 6 = 24
X =_________
X =_________
5.解方程:6X + 2 = 38
X =_________
6.解方程:7X - 4 = 24
X =_________
7.解方程:8X + 1 = 57
X =_________
8.解方程:9X - 6 = 60
X =_________
9.解方程:10X + 10 = 70
X =_________
X =_________
67.解方程:8(X + 2) - 16 = 48
七年级数学上册综合算式专项练习题解方程的应用问题

七年级数学上册综合算式专项练习题解方程的应用问题在数学学习中,方程是一个非常重要的概念。
在本文中,我们将讨论一些七年级数学上册综合算式专项练习题中涉及到的方程的应用问题。
1. 题目一小明去水果摊上买了一些苹果,一斤苹果的价格是3元,他共花了15元,请问他买了多少斤苹果?解析:设小明购买的苹果重量为x,根据题意可以得到方程式3x=15。
我们可以通过解这个方程来得到x的值。
解这个方程可以得到x=5,所以小明买了5斤苹果。
2. 题目二小红去商场买了一些衣服,她买了5件T恤和3件裤子,她花了72元。
已知一件T恤的价格是x元,一条裤子的价格是y元,请问一件T 恤的价格是多少?一条裤子的价格是多少?解析:设一件T恤的价格为x元,一条裤子的价格为y元。
根据题意可以得到方程式5x + 3y = 72。
我们可以通过解这个方程组来得到x 和y的值。
解这个方程组可以得到x = 12,y = 8,所以一件T恤的价格是12元,一条裤子的价格是8元。
3.题目三小亮和小明一起去公园玩,小亮骑自行车去的,小明步行去的,他们同时出发,小亮骑自行车的速度是10公里/小时,小明步行的速度是4公里/小时。
已知他们相遇距离为20公里,请问他们分别用了多少时间到达公园?解析:设小亮到达公园所花费的时间为x小时,小明到达公园所花费的时间为y小时。
根据题意可以得到方程式10x + 4y = 20。
我们可以通过解这个方程组来得到x和y的值。
解这个方程组可以得到x = 2,y = 5,所以小亮用了2小时到达公园,小明用了5小时到达公园。
通过以上三个例题的解析,我们可以看到方程在解决实际问题中的重要性。
通过建立方程,我们可以得到未知量的具体数值,从而解决问题。
掌握方程的应用方法,对于解决实际问题具有重要的意义。
在数学学习中,理论知识的学习与实际问题的应用都是非常重要的。
我们应该通过大量的练习题来巩固和提升自己的解题能力。
希望通过本文的介绍,能够帮助同学们更好地应用方程解决数学问题。
人教版数学七年级上册期末计算题100例附解析(3)

人教版数学七年级上册期末计算题100例附解析(3)1.计算:(1)(+12)+(-21);(2)(−12)−(−13) .2.解方程:2x−13=x+22+1.3.先化简,再求值:2(12b −1)−3(−13a 2+b −2) ,其中a=-1,b=1. 4.化简(1)3(53x 2−4x +3)−5(x 2−3x +2)(2)-2x 2−[−3x 2−2(52x −32)+5x]5.解方程: x 0.7 ﹣ 1.7−2x 0.3=1. 6.计算:[﹣22﹣( 79−1112+16 )×36]÷5.7.计算:(1)−40−(−19)+(−24)(2)(-5)×(-8)-(-28)÷4(3)(12+56−712)×12(4)−22−(−2)2−23×(−1)2011(5)−32÷94+|−4|×0.52+229×(−112)28.计算:(1)把37.37°化为度、分、秒;(2)把13°37′48″化为度.9.619 ÷(-1 12 )× 1924 ;10.已知方程 (a −4)x |a|−3+2=0 是关于x 的一元一次方程,求a 的值.11.计算:(﹣1)2﹣(π﹣3)0+2﹣2 .12.若多项式4x n+2﹣5x 2﹣n +6是关于x 的三次多项式,求代数式n 2﹣2n+3的值.13.计算:7+( −15 )-4-(-0.2)14.已知:|a|=5,|b-1|=8,且a-b<0,求a+b 的值。
15.计算: (1) (12)2−(−3)0(1)(12)−2−(−3)0 ;(2)8a 3−3a 5÷a 2(3)4ab (2a 2b 2−ab +3) ;(4)(x +y)2−(x −y)(x +y)16.解方程: x+12+3−2x 3=117.计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(2)0.47+(-0.09)+0.39+(-0.3)+1.53;(3)513+(−423)+(−613) ;(4)23+(-72)+(-22)+57+(-16);(5)356+(−315)+(−256)+415+(−2) ;(6)2.25+(-4 14 )+(-2.5)+2 12 +3.4+(-175 ) (7)5611+(−3.125)+(−747)+(−3411)+818+(−367)+(−2211)+63718.先化简,再求值: 3a 2b −[−2a 2b −6(ab −23a 2b)+4ab]−3ab ,其中 a =3 , b =−13 . 19.已知有理数a ,b ,c 在数轴上的对应点分别是A ,B ,C .其位置如图所示,化简 |a |+2|b +c|−3|a −c|−4|a +b| .20.解一元一次方程: 3x−24 ﹣ 5x+26 =1﹣x .21.去括号,并合并相同的项:﹣(y+x )﹣(5x ﹣2y )22.如果关于x 的多项式5x 2﹣(2y n+1﹣mx 2)﹣3(x 2+1)的值与x 的取值无关,且该多项式的次数是三次.求m ,n 的值.23.解方程: 4x−13−2x+16=1 .24.先去括号,再合并同类项:3(2x 2﹣y 2)﹣2(3y 2﹣2x 2)25.12(x−3)+1=x−13(x−2)26.计算:(x﹣2)2﹣(x+3)(x﹣3)27.100÷(﹣2)2﹣(﹣2)÷(﹣2)28.计算下列各题:(1)(1﹣16+ 34)×(﹣48)(2)﹣14﹣(1﹣0.5)× 13×[2﹣(﹣3)2].29.计算:(1)20-17-(-7)(2)3×(−2)−(−28)÷7(3)(19-16-118)×36(4)−23+3×(−1)2010−(−2)2 30.解方程:(1)①2(x-2)=3(4x-1)+9(2)② x−20.2−x+30.5=231.计算:(1)2a3b(−3ab2)2;(2)[(−14)÷2−3+(−23)]×(−1)201632.已知|m|=4,|n|=6,且|m+n|=m+n,求m−n的值.33.计算(1)20070+2﹣2﹣(12)2+2009(2)(﹣2ab)(3a2﹣2ab﹣b2)(3)(2x2)3﹣6x3(x3+2x2﹣x)(4)(2a+3b)2﹣(2a﹣b)(2a+b)(5)(2x﹣5)(2x+5)﹣(2x+1)(2x﹣3)(6)(x3+3)2−(x3−3)2(7)(x+1)(x+3)﹣(x﹣2)2(8)(a+b+3)(a+b ﹣3)(9)(9x 2y ﹣6xy 2+3xy )÷( 3xy )(10)化简求值:(3a ﹣1)2﹣3(2﹣5a+3a 2),其中 a =−13 . 34.已知 |x −8y|+2(4y −1)2+3|8z −3x|=0 ,求x +y +z 的值. 35.计算(1)−34+(−8)−5−(−23)(2)−5×(−115)+13×(−115)−3×(−115)(3)−22+√273−6+(−2)×√9(4)−22×(−12)+8÷(−2)2+(−1)201836.用简便方法计算:﹣1.25+2.25+7.75+(﹣8.75)37.-|-26|+|+28|-(+15)38.计算:(1)|−2|+(π+3)0−(12)−3(2)a 5⋅(−2a)3+a 6⋅(−3a)2(3)(4a 2−6ab +2a)÷2a(4)20182−2017×2019 (用乘法公式)39.解方程(1)3(3x +5)=2(2x −1)(2)x−23−0.5=5x 640.计算:(1)18x 3yz· (−13y 2z)3 ÷ 16 x 2y 2z;(2)(a 3+2)2 - (a 3−2)2 .41.计算:(1)(−56)×(47−38+114) ;(2)(−18)÷94+(−2)3×(−12)−(−32) .42.计算题:(1)23+17+(-7)+(-16)(2)(-5 14 )+(-3.5)(3)(+ 23 )+(- 34 )(4)23 +(- 15 )+(-1)+ 13 .43.计算题(1)8﹣(﹣3)+2+(﹣6)(2)﹣22×3﹣(﹣3)2÷344.解一元一次方程:(1)7x ﹣5=3x ﹣1(2)y−14−2=2y−3645.计算:(1)12−(−9)+|−7|−4(2)(−12)×(43−34+56)(3)(−2)2×5−23÷4 ;(4)8x +2y +(−5x −y)46. 先化简,再求值:(1)4a +3a 2-3-3a 3-(-a +4a 3),其中a =-2;(2)2x 2y -2xy 2-[(-3x 2y 2+3x 2y)+(3x 2y 2-3xy 2)],其中x =-1,y =2.47.解下列方程(1)3x-4=x(2)x−12=1−x−1448. 计算:(1)1.3-(-2.7);(2)(-13)-(-17);(3)(-1.8)-(+4.5);(4)6.38-(-2.62);(5)(−14)−(−13) ;(6)(−6.25)−(−314) .49.解方程(1)2(2x −1)=1−(3−x)(2)x 0.3−2x−10.7=150.计算:(1)( 16 - 34 + 512 )× 12(2)(−81)÷214×49÷(−16)51.先化简再求值:(1)(4a 2﹣3a )﹣(1﹣4a+4a 2),其中a=﹣2(2)﹣2(mn ﹣3m 2)﹣[m 2﹣5(mn ﹣m 2)+2mn],其中m=1,n=﹣2. 52.计算:(1)(-8)+10+(-3)+2(2)(14−56+38)×24(3)12×(−23)−(−54)÷(−14)(4)−12+[(−4)2−(1−3)2×(−12)3]53.先化简,再求值: 3(x 2−2xy)−[3x 2−2y +2(xy +y)] ,其中 x =−12,y =−3 .54.(-0.19)+(-3.11)55.计算题:(1)−2−(−12)−(+23)(2)(−2)2×7−(−3)×(−6)−|−5|56. 计算:(1)28°32′46″+15°36′48″;(2)(30°-23′40″).57.化简:-3(x 2-xy)+2(3x 2+2xy)58.计算:﹣14﹣[2﹣(﹣3)2]÷(12)3 .59.1+(-2)+3+(-4)+ …+2017+(-2018)60.解方程 2x+56−3x−28=161.计算:(1)(−79−56+518)×(−18)(2)-22+3x(-1)4-(-4)×5(3)(+1317)+(−3.5)+(−6)+(+2.5)+(+6)+(+417)62.解下列方程或方程组:(1)4x −3(20−x)=6x −7(9−x)(2)x+12=x −x−26(3){2x +y =5x −y =1(4){2x−15+3y−24=212x −15y =663.解方程 (1)5x −3=22 ;(2)3x −2=5x −4(3)5(3x −1)=2(4x +2)−8 ;(4)2x−13=1+4x 5−164.计算:(1)﹣22+|﹣5|(2)( 29 ﹣ 14 + 118 )÷(﹣ 136 )65.若a ,b 互为相反数, c ,d 互为倒数,|x|=2,求cd+a+b-x 的值.66.-20+(-14)-(-18)-1367.合并同类项:(1)5m +2n −m −3n(2)3a 2−1−2a −5+3a −a 268.先化简,再求值 3(x 2y −xy 2)−2(−32xy 2−2+x 2y)−3 ,其中 x =−12,y =−2 。
苏教版七年级数学:解一元一次方程40题(三)含答案

解一元一次方程40题(三)含答案一.解答题(共40小题) 1.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值.2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.3.若代数式33x +比344x -的值大4,求x 的值.4.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程. (1)判断934x -=是否是和解方程,说明理由;(2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.5.解方程:(1)37322x x +=-; (2)43(20)40x x --+=;(3)352123x x +-=; (4)5415323412y y y +--+=-;6.解方程 (1)23132x x --+= (2)2321{[1(1)]9}1320.32x x x +----=-7.解方程:(1)2557x x +=- (2)3(2)25(2)x x -=-+ (3)14223x x +-+= (4)12311463x x x -++-=+8.解下列方程:(1)5379x x +=-+ (2)43(20)40x x --+= (3)3157146y y ---= (4)1213323x x x --+=-9.解方程(1)0.50.7 6.5 1.3x x -=- (2)758143x x -+-=10.某同学在解方程21233x x a-+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.11.(1)计算:225(210)4-⨯--÷ (2)计算:2313()(24)(3)12468-+⨯-+-÷(3)解方程:3221211245x x x +++-=-12.解方程: (1)0.10.2130.020.5x x -+-= (2)312143x x -+-=-13.解方程:(1)2343x x -=- (2)13(1)2x x --=(3)85(1)2x x +-= (4)4320.20.5x x +--=14.解方程:(1)34(25)4x x x -+=+; (2)12226x x x -+-=-.15.一元一次方程解答题:已知关于x 的方程23x m mx -=-与12(2)x x l -=-的解互为倒数,求m 的值.16.解方程:211236x x -+-=17.解下列方程或方程组(1)219x x -=+ (2)52(1)x x +=- (3)43135x x --=- (4)3717245x x -+-=-18.解方程:126125y y--=-.19.311(54)1535x-+=22531277714x+-=20.解方程:(1)132xx--=(2)0.6310.20.4x x--=21.解方程(1)2(4)3(1)x x x--=-(2)313142x x-+ -=22.解方程21911 36x x++-=23.已知52x+-与445x+互为相反数,求x的值.24.(1)计算:4321(2)4[5(3)]-+-÷⨯-- (2)解方程4372153x x ---=25.计算下列各题:(1)计算:315()7|0.75|4---+-- (2)计算:2312(3)4()(2)2⨯--÷-+-(3)解方程:211134x x +--=26.解方程(1)43(2)52(12)y y y -+=-- (2)11136x xx ---=-27.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数, (1)求m 的值.(2)若当y m =时,代数式31ay by ++的值为5,求当y m =-时,代数式31ay by ++的值.28.解方程:52(1)x x +=-29.解方程:221134x x +-=+.30.解下列方程:(1)22x -=-; (2)355(2)x x x -=-+; (3)2532168x x +--=; (4)312[2()]6223x x -+=.31.解方程:3252x x -=-32.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x =-,试求a 的值.33.解方程(1)321x x -=-+ (2)18(1)32(21)x x x -+=-- (3)31571104y y ---=34.解方程:(1)2(100.5)(1.52)x x -=-+; (2)5415523412y y y +--+=-35.先阅读下列解题过程,然后解答后面两个问题. 解方程:|3|2x -=.解:当30x -…时,原方程可化为32x -=,解得5x =; 当30x -<时,原方程可化为32x -=-,解得1x =. 所以原方程的解是5x =或1x =. (1)解方程:|32|40x --=. (2)解关于x 的方程:|2|1x b -=+36.解下列方程:(1)2(2)3(41)9(1)x x x ---=-; (2)2152122362x x x-+--=-.37.(1)684(1)x x -=-+ (2)20.30.410.50.3x x -+-=38.解方程:123173x x -+-=.39.解方程:104(3)22x x --=-.40.已知关于x 的方程2(1)31x m -=-与324x +=-的解互为相反数,求m 的值.解一元一次方程40题(三)含答案参考答案与试题解析一.解答题(共40小题) 1.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值. 【分析】把12x =代入方程,求出m 的值,再把代数式进行化简,最后代入求出即可. 【解答】解:把12x =代入方程21423x m x m---=得:1112423mm ---=, 解得:5m =,211(428)(1)42m m m -+-+- 21112222m m m =-+-+-2122m =--21522=--1272=-.【点评】本题考查了解一元一次方程,一元一次方程的解,整式的混合运算和求值等知识点,能求出m 的值是解此题的关键. 2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.【分析】分别求出两个方程的解,然后根据解相同,列出关于m 的方程,求出m 的值,再将m 的值代入200920103(2)()2m m ---,计算即可求解.【解答】解:解方程13(23)322x x +-=,得:2363x x +-=, 0x ∴=,方程13(23)322x x +-=和3261x m x +=+的解相同,21m ∴=解得:12m =, 所以202020193(2)()2m m --- 20202019113(2)()222=-⨯-- 1(1)=--2=.【点评】本题考查了同解方程的知识,解答本题的关键是能够求解关于x 的方程,要正确理解方程解的含义.3.若代数式33x +比344x -的值大4,求x 的值. 【分析】根据题意列出方程,求出方程的解即可得到x 的值.【解答】解:根据题意得:334434x x +--=, 去分母得:41291248x x +-+=,移项合并得:524x -=,解得: 4.8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.4.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程.(1)判断934x -=是否是和解方程,说明理由; (2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.【分析】(1)求出方程的解,再根据和解方程的意义得出即可;(2)根据和解方程得出关于m 的方程,求出方程的解即可.【解答】解:(1)934x -=, 34x ∴=-, 93344-=-, 934x ∴-=是和解方程;(2)关于x 的一元一次方程52x m =-是和解方程,2255m m -∴-+=, 解得:174m =-. 故m 的值为174-. 【点评】本题考查了一元一次方程的解的应用,能理解和解方程的意义是解此题的关键.5.解方程:(1)37322x x +=-;(2)43(20)40x x --+=;(3)352123x x +-=; (4)5415323412y y y +--+=-; 【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)37322x x +=-,32327x x +=-,525x =,5x =;(2)43(20)40x x --+=,460340x x -++=,43604x x +=-,756x =,8x =;(3)去分母得:3(35)2(21)x x +=-,91542x x +=-,94215x x -=--,517x =-,3.4x=-;(4)去分母得:4(54)3(1)24(53)y y y++-=--,2016332453y y y++-=-+,2035243163y y y++=+-+,2814y=,12y=.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.6.解方程(1)231 32x x--+=(2)2321{[1(1)]9}1 320.32x x x+----=-【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:42396x x-+-=,移项合并得:11x=;(2)去括号得:2010116132x xx+--+-=-,去分母得:66402063663x x x---+-=-,移项合并得:3162x-=,解得:2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.解方程:(1)2557x x+=-(2)3(2)25(2)x x-=-+(3)142 23x x+-+=(4)12311463 x x x-++-=+【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2557x x +=-,2575x x -=--,312x -=-,4x =;(2)3(2)25(2)x x -=-+,362510x x -=--,352106x x +=-+,82x =-,0.25x =-;(3)14223x x +-+=, 3(1)2(4)12x x ++-=,332812x x ++-=,321238x x +=-+,517x =,5.4x =;(4)去分母得:3(1)122(23)4(1)x x x --=+++,33124644x x x --=+++,34464312x x x --=+++,525x -=,5x =-.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.8.解下列方程:(1)5379x x +=-+(2)43(20)40x x --+=(3)3157146y y ---=(4)121 3323x xx--+=-【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:126x=,解得:0.5x=;(2)去括号得:460340x x-++=,移项合并得:756x=,解得:8x=;(3)去分母得:93121014y y--=-,移项合并得:1y-=,解得:1y=-;(4)去分母得:18331842x x x+-=-+,移项合并得:2523x=,解得:2325x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.解方程(1)0.50.7 6.5 1.3x x-=-(2)7581 43x x-+-=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:1.87.2x=,解得:4x=-;(2)去分母得:321203212x x---=,移项合并得:1765x-=,解得:6517x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.某同学在解方程21233x x a -+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.【分析】由题意可知2x =是方程212x x a -=+-的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【解答】解:将1x =代入212x x a -=+-得:112a =+-.解得:2a =,将2a =代入216x x a -=+-得:2126x x -=+-.解得:3x =-.【点评】本题主要考查的是一元一次方程的解,明确2x =是方程2(21)3()2x x a -=+-的解是解题的关键.11.(1)计算:225(210)4-⨯--÷(2)计算:2313()(24)(3)12468-+⨯-+-÷ (3)解方程:3221211245x x x +++-=- 【分析】(1)根据有理数的混合计算解答即可;(2)根据有理数的混合计算解答即可;(3)根据去分母、去括号、移项、合并同类项、系数化为1解答.【解答】解:(1)225(210)4-⨯--÷45(8)4=-⨯--÷202=-+18=-;(2)2313()(24)(3)12468-+⨯-+-÷ 1849912=-+-+÷318494=-+-+ 1224=-; (3)10(32)205(21)4(21)x x x +-=+-+30202010584x x x +-=+--3010854x x x -+=-281x =128x=【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.12.解方程:(1)0.10.213 0.020.5x x-+-=(2)3121 43x x-+-=-【分析】(1)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程整理得:510223x x---=,移项合并得:315x=,解得:5x=;(2)去分母得:934812x x---=-,移项合并得:51x=-,解得:15x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13.解方程:(1)2343x x-=-(2)1 3(1)2xx--=(3)85(1)2x x+-=(4)432 0.20.5x x+--=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:2343x x+=+,合并得:57x=,解得:75x=;(2)去分母得:6(1)1x x -=-,去括号得:661x x -=-,移项合并得:55x =,解得:1x =;(3)去括号得:8552x x +-=,移项合并得:33x =-,解得:1x =-;(4)方程整理得:520262x x +-+=,移项合并得:324x =-,解得:8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.解方程:(1)34(25)4x x x -+=+;(2)12226x x x -+-=-. 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)去括号得:38204x x x --=+,移项合并得:624x -=,解得:4x =-;(2)去分母得:633122x x x -+=--,移项合并得:47x =, 解得:74x =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.15.一元一次方程解答题:已知关于x 的方程23x m m x -=-与12(2)x x l -=-的解互为倒数,求m 的值.【分析】求出第二个方程的解,确定出第一个方程的解,代入计算即可求出m 的值.【解答】解:方程12(21)x x -=-,去括号得:142x x -=-,解得:13x =, 将3x =代入方程23x m m x -=-得,3323m m -=-, 去分母得:93182m m -=-,解得:9m =-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.解方程:211236x x -+-= 【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去分母得:42112x x ---=,移项合并得:315x =,解得:5x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.解下列方程或方程组(1)219x x -=+(2)52(1)x x +=-(3)43135x x --=- (4)3717245x x -+-=- 【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)移项合并得:10x =;(2)去括号得:522x x +=-,移项合并得:7x -=-,解得:7x =;(3)去分母得:2053915x x -=--,移项合并得:844x -=-,解得: 5.5x =;(4)去分母得:401535468x x -+=--,移项合并得:11143x-=-,解得:13x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.解方程:126125y y--=-.【分析】方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:去分母得:5510412y y-=-+,移项合并得:927y=,解得:3y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.311(54)1 535 x-+=22531277714x+-=【分析】方程移项合并,把x系数化为1,即可求出解;方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3158 515x=,解得:1589x=;去分母得:418383x+-=,移项合并得:423x=,解得:234x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.解方程:(1)132xx--=(2)0.6310.20.4 x x--=【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:216x x-+=,解得:5x=;(2)方程整理得:315512xx--=,去分母得:102315x x-=-,移项合并得:255x=,解得:0.2x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.解方程(1)2(4)3(1)x x x--=-(2)313142x x-+ -=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2833x x x-+=-,移项合并得:25x=-,解得: 2.5x=-;(2)去分母得:43162x x-+=+,移项合并得:51x-=,解得:0.2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.解方程21911 36x x++-=【分析】根据去分母、去括号、移项、合并同类项、系数化为1解答即可.【解答】解:21911 36x x++-=2(21)(91)6x x+-+=42916x x+--=49612x x-=+-55x-=1x=-【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.23.已知52x+-与445x+互为相反数,求x的值.【分析】利用相反数的性质列出方程,求出方程的解即可得到结果.【解答】解:根据题意得:544025x x +-++=, 去分母得:5258400x x --++=,移项合并得:315x =-,解得:5x =-.【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.24.(1)计算:4321(2)4[5(3)]-+-÷⨯--(2)解方程4372153x x ---= 【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)原式184(4)187=--÷⨯-=-+=;(2)去分母得:129153510x x --=-,移项合并得:2314x =-, 解得:1423x =-. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.25.计算下列各题:(1)计算:315()7|0.75|4---+-- (2)计算:2312(3)4()(2)2⨯--÷-+- (3)解方程:211134x x +--= 【分析】(1)原式利用减法法则,以及绝对值的代数意义计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)原式150.7570.758=-++-=-;(2)原式188818=+-=;(3)去分母得:843312x x +-+=,移项合并得:55x =,解得:1x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.解方程(1)43(2)52(12)y y y -+=--(2)11136x x x ---=- 【分析】(1)根据一元一次方程的解法即可求出答案;(2)根据一元一次方程的解法即可求出答案.【解答】解:(1)43(2)52(12)y y y -+=--,463524y y y ∴--=-+,634y y ∴-=+,3y ∴=-;(2)11136x x x ---=-, 62(1)16x x x ∴--=--,6225x x x ∴-+=--,825x x ∴-=--,13x ∴=-; 【点评】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.27.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数, (1)求m 的值.(2)若当y m =时,代数式31ay by ++的值为5,求当y m =-时,代数式31ay by ++的值.【分析】(1)先求出方程21622x x +=-的解,这个解的倒数也是方程123x m x -=+的解,根据方程的解的定义,把这个解的倒数代入就可以求出m 的值;(2)把y m =代入31ay by ++得到m 和n 的式子,然后把y m =-代入31ay by ++,利用前边的式子即可代入求解.【解答】解:解方程21622x x +=-得:12x =. 因为方程的解互为倒数,所以把12x =的倒数2代入方程123x m x -=+,得:21223m -=+, 解得:83m =-. 故所求m 的值为83-;(2)把y m =代入31ay by ++得315am bm ++=,则34am bm +=,当y m =-时,331()1413ay by am bm ++=-++=-+=-.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.28.解方程:52(1)x x +=-【分析】方程去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去括号得:522x x +=-,移项合并得:7x -=-,解得:7x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.29.解方程:221134x x +-=+. 【分析】去分母、去括号、移项、合并同类项,系数化成1即可求解.【解答】解:去分母,得4(2)123(21)x x +=+-,去括号,得481263x x +=+-,移项,得461238x x -=--,合并同类项,得21x -=,系数化成1得12x =-. 【点评】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.30.解下列方程:(1)22x -=-;(2)355(2)x x x -=-+;(3)2532168x x +--=; (4)312[2()]6223x x -+=. 【分析】(1)依次移项、合并同类项即可得;(2)依次去括号、移项、合并同类项、系数化为1可得;(3)依次去分母、去括号、移项、合并同类项、系数化为1可得;(4)依次去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)22x =-+,0x =;(2)3552x x x -=--,3525x x x -+=-+,3x -=,3x =-;(3)4(25)3(32)24x x +--=,8209624x x +-+=,8924206x x -=--,2x -=-,2x =;(4)13()162x x -+= 33162x x -+=, 33612x x -=-, 132x -=, 16x =-. 【点评】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.31.解方程:3252x x -=-【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3522x x-=-+,合并得:20x-=,解得:0x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.32.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x=-,试求a的值.【分析】根据一元一次方程的解法即可求出答案.【解答】解:由题意可知:2x=-是方程2110110 52x x a+-⨯+=⨯,(41)215(2)a∴-+⨯+=--,61105a∴-+=--,5105a∴-=--,5105a∴=-+,55a∴=-,1a∴=-;【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.33.解方程(1)321x x-=-+(2)18(1)32(21)x x x-+=--(3)31571104 y y---=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)方程移项合并得:34x=,解得:43x=;(2)去括号得:1818342x x x-+=-+,移项合并得:2520x=,解得:45x =; (3)去分母得:62202535y y --=-,移项合并得:1913y -=-, 解得:1319y =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.34.解方程:(1)2(100.5)(1.52)x x -=-+;(2)5415523412y y y +--+=- 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)去括号得:20 1.52x x -=--,移项合并得:0.522x =-,解得:44x =-;(2)去分母得:2016332455y y y ++-=-+,移项合并得:2816y =, 解得:47y =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.35.先阅读下列解题过程,然后解答后面两个问题.解方程:|3|2x -=.解:当30x -…时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =.所以原方程的解是5x =或1x =.(1)解方程:|32|40x --=.(2)解关于x 的方程:|2|1x b -=+【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】解:(1)当320x -…时,原方程可化为3240x --=,解得2x =;当320x -<时,原方程可化为(32)40x ---=,解得23x =-. 所以原方程的解是2x =或23x =-. (2)①当10b +<,即1b <-时,原方程无解,②当10b +=,即1b =-时:原方程可化为:20x -=,解得2x =;③当10b +>,即1b >-时:当20x -…时,原方程可化为21x b -=+,解得3x b =+;当20x -<时,原方程可化为2(1)x b -=-+,解得1x b =-+.【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.36.解下列方程:(1)2(2)3(41)9(1)x x x ---=-;(2)2152122362x x x -+--=-. 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:2412399x x x --+=-,移项得:2129943x x x -+=+-,合并同类项得:10x -=,系数化为1得:10x =-,(2)去分母得:2(21)(52)3(12)12x x x --+=--,去括号得:42523612x x x ---=--,移项得:45631222x x x -+=-++,合并同类项得:55x =-,系数化为1得:1x =-.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.37.(1)684(1)x x -=-+(2)20.30.410.50.3x x -+-= 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)原方程可整理得:203104153x x -+-=,依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:6844x x -=--,移项得:4846x x +=-+,合并同类项得:510x =,系数化为1得:2x =,(2)原方程可整理得:203104153x x -+-=, 方程两边同时乘以15得:3(203)5(104)15x x --+=,去括号得:609502015x x ---=,移项得:605015209x x -=++,合并同类项得:1044x =,系数化为1得: 4.4x =.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.38.解方程:123173x x -+-=. 【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去分母,得3(12)217(3)x x --=+,去括号,得3621721x x --=+,移项,得6721321x x --=-+,合并,得1339x -=,系数化1,得3x =-,则原方程的解是3x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.39.解方程:104(3)22x x --=-.【分析】方程去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去括号得:1041222x x -+=-,移项合并得:624x -=-,解得:4x =.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.40.已知关于x的方程2(1)31x m-=-与324x+=-的解互为相反数,求m的值.【分析】求出第二个方程的解,根据两方程解互为相反数求出第一个方程的解,即可求出m 的值.【解答】解:方程324x+=-,解得:2x=-,把2x=-代入第一个方程得:631m-=-,解得:53m=-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.。
北师大版七年级上册一元一次方程计算专题

北师大版七年级上册一元一次方程计算专题一.选择题(共10小题)1.(2016•海南校级一模)若x=﹣3是方程2(x﹣m)=6的解,则m的值为()A.6 B.﹣6 C.12 D.﹣122.(2016•海口校级模拟)已知3是关于x的方程2x﹣a=1的解,则a的值为()A.﹣5 B.5 C.7 D.﹣73.(2016•富顺县校级模拟)下列解方程过程中,变形正确的是()A.由2x﹣1=3得2x=3﹣1B.由+1=+1.2得+1=+12C.由﹣75x=76得x=﹣D.由﹣=1得2x﹣3x=64.(2016•温州二模)解方程,去分母正确的是()A.2﹣(x﹣1)=1 B.2﹣3(x﹣1)=6 C.2﹣3(x﹣1)=1 D.3﹣2(x﹣1)=6 5.(2016春•安岳县期中)下列方程变形正确的是()A.由3﹣x=﹣2得x=3+2 B.由3x=﹣5得x=﹣C.由y=0得y=4 D.由4+x=6得x=6+46.(2016春•安岳县期中)下列方程中,解为x=4的是()A.2x+1=10 B.﹣3x﹣8=5 C.x+3=2x﹣2 D.2(x﹣1)=67.(2016春•龙海市期中)已知a≠1,则关于x的方程(a﹣1)x=1﹣a的解是()A.x=0 B.x=1 C.x=﹣1 D.无解8.(2016春•晋江市期中)方程3﹣,去分母得()A.3﹣2(3x+5)=﹣(x+7)B.12﹣2(3x+5)=﹣x+7C.12﹣2(3x+5)=﹣(x+7)D.12﹣6x+10=﹣(x+7)9.(2016春•卧龙区期中)若方程=0与方程x+的解相同,则a=()A.B.C.﹣D.﹣10.(2016春•南江县校级月考)当x=1时,代数式ax3+bx+1的值是2,则方程+=的解是()A.B.﹣C.1 D.﹣1二.填空题(共10小题)11.(2016•富顺县校级模拟)当x=时,2x﹣3与的值互为倒数.12.(2016•聊城模拟)已知关于x的方程3a+x=﹣5的解为2,a的值是.13.(2016春•东港市期中)关于x的方程3x+a=x﹣7的根是负数,则实数a的取值范围是.14.(2016春•长春期中)已知代数式8x﹣7与6﹣2x的值互为相反数,那么x的值等于.15.(2016春•上海校级月考)已知x=1是方程的解,则a=.16.(2016春•盐城校级月考)若关于k的方程(k+2)=x﹣(k+1)的解是k=﹣4,则x 的值为.17.(2015•温州校级自主招生)对于实数a,b,c,d,规定一种数的运算:=ad﹣bc,那么当=10时,x=.18.(2015•甘孜州)已知关于x的方程3a﹣x=+3的解为2,则代数式a2﹣2a+1的值是.19.(2015秋•颍泉区期末)若x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是.20.(2015秋•莘县期末)下面是一个被墨水污染过的方程:,答案显示此方程的解是,被墨水遮盖的是一个常数,则这个常数是.三.解答题(共10小题)21.(2016春•长春期中)解下列方程:(1)10(x﹣1)=5.(2)5x+2=7x﹣8(3)﹣=1.22.(2016春•卧龙区期中)解下列方程(1)﹣4x+1=﹣2(﹣x)(2)2﹣.23.(2016春•张掖校级月考)解方程:(1)4x﹣3(5﹣x)=6;(2).24.(2016春•深圳校级月考)解下列方程:(1)3x(7﹣x)=18﹣x(3x﹣15)(2)x(x+2)=1﹣x(3﹣x)25.(2016春•重庆校级月考)解方程(1)2(3x+4)﹣3(x﹣1)=3;(2).26.(2016春•宜宾校级月考)解方程:(1)5x+3(2﹣x)=8(2)=1﹣(3)+=(4)[x﹣(x﹣1)]=(x﹣1)27.(2012春•南关区校级期中)抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?28.(2014秋•洪江市期末)在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)29.(2016•商河县二模)某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.试问:(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?30.(2016春•泾阳县期中)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.北师大版七年级上册一元一次方程计算专题参考答案与试题解析一.选择题(共10小题)1.(2016•海南校级一模)若x=﹣3是方程2(x﹣m)=6的解,则m的值为()A.6 B.﹣6 C.12 D.﹣12【分析】把x=﹣3,代入方程得到一个关于m的方程,即可求解.【解答】解:把x=﹣3代入方程得:2(﹣3﹣m)=6,解得:m=﹣6.故选B.【点评】本题考查了方程的解的定理,理解定义是关键.2.(2016•海口校级模拟)已知3是关于x的方程2x﹣a=1的解,则a的值为()A.﹣5 B.5 C.7 D.﹣7【分析】将x=3代入方程计算即可求出a的值.【解答】解:将x=3代入方程2x﹣a=1得:6﹣a=1,解得:a=5.故选B.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(2016•富顺县校级模拟)下列解方程过程中,变形正确的是()A.由2x﹣1=3得2x=3﹣1B.由+1=+1.2得+1=+12C.由﹣75x=76得x=﹣D.由﹣=1得2x﹣3x=6【分析】根据等式的性质对各选项进行逐一判断即可.【解答】解:A、错误,等式的两边同时加1得2x=3+1;B、错误,把方程中分母的小数化为整数得+1=+12;C、错误,方程两边同时除以﹣75得,x=﹣;D、正确,符合等式的性质.故选D.【点评】此题比较简单,考查的是等式的性质:(1)等式的两边同时加上或减去同一个数,结果不变;(2)等式的两边同时乘以或除以同一个不为0的数,结果不变.4.(2016•温州二模)解方程,去分母正确的是()A.2﹣(x﹣1)=1 B.2﹣3(x﹣1)=6 C.2﹣3(x﹣1)=1 D.3﹣2(x﹣1)=6 【分析】等式的两边同时乘以公分母6后去分母.【解答】解:在原方程的两边同时乘以6,得2﹣3(x﹣1)=6;故选B.【点评】本题考查了解一元一次方程.在去分母时,注意等式﹣=1的右边的1也要乘以6.5.(2016春•安岳县期中)下列方程变形正确的是()A.由3﹣x=﹣2得x=3+2 B.由3x=﹣5得x=﹣C.由y=0得y=4 D.由4+x=6得x=6+4【分析】根据等式的性质两边都加或都减同一个数或等式,结果不变,可判断A、D,根据等式的两边都乘或除以同一个部位0的数或整式,结果不变,可判断B、C.【解答】解;A、3﹣x=﹣2,x=3+2,故A正确;B、3x=﹣5,x=﹣,故B错误;C、=0,y=0,故C错误;D、4+x=6,x=2,故D错误;故选:A.【点评】本题考查了等式的性质,等式的性质两边都加或都减同一个数或等式,结果不变,根据等式的两边都乘或除以同一个部位0的数或整式,结果不变.6.(2016春•安岳县期中)下列方程中,解为x=4的是()A.2x+1=10 B.﹣3x﹣8=5 C.x+3=2x﹣2 D.2(x﹣1)=6【分析】根据一元一次方程的解就是使方程的左右两边相等的未知数的值,把x=4代入各选项进行验证即可得解.【解答】解:A、左边=2×4﹣1=7,右边=10,左边≠右边,故本选项错误;B、左边=﹣3×4﹣8=﹣20,右边=5,左边≠右边,故本选项错误;C、左边=×4+3=5,右边=2×4﹣2=6,左边≠右边,故本选项错误;D、左边=2(4﹣1)=6,右边=6,左边=右边,故本选项正确.故选:D.【点评】本题考查了一元一次方程的解,数据方程解的定义,对各选项准确进行计算是解题的关键.7.(2016春•龙海市期中)已知a≠1,则关于x的方程(a﹣1)x=1﹣a的解是()A.x=0 B.x=1 C.x=﹣1 D.无解【分析】由于a≠1,即a﹣1≠0,所以直接解方程即可.【解答】解:∵a≠1,∴在(a﹣1)x=1﹣a中,x=,又∵a﹣1和1﹣a互为相反数,∴x=﹣1.故选C.【点评】此方程带有字母系数,解题时要注意字母系数不为零的条件,且要明确a﹣1和1﹣a互为相反数.8.(2016春•晋江市期中)方程3﹣,去分母得()A.3﹣2(3x+5)=﹣(x+7)B.12﹣2(3x+5)=﹣x+7C.12﹣2(3x+5)=﹣(x+7)D.12﹣6x+10=﹣(x+7)【分析】首先确定分母的公分母为4,然后方程的两边同乘以4,即可.【解答】解:∵3﹣,方程两边同乘以4得:12﹣2(3x+5)=﹣(x+7).故选择C.【点评】本题主要考查怎样去分母简化一元一次方程,关键在于找到分母的公分母,方程两边同乘以公分母即可.9.(2016春•卧龙区期中)若方程=0与方程x+的解相同,则a=()A.B.C.﹣D.﹣【分析】先解方程=0,得x=﹣7,根据两个方程的解相同,把得x=﹣7代入方程x+,可得关于a的一元一次方程,解方程即可.【解答】解:解方程=0,得x=﹣7.把x=﹣7代入方程x+,得﹣7+=,解得a=.故选A.【点评】本题考查了解一元一次方程,利用了同解方程的定义得出关于a的一元一次方程是解题关键.10.(2016春•南江县校级月考)当x=1时,代数式ax3+bx+1的值是2,则方程+=的解是()A.B.﹣C.1 D.﹣1【分析】把x=1代入代数式,使其值为2,求出a+b的值,方程变形后代入计算即可求出解.【解答】解:把x=1代入得:a+b+1=2,即a+b=1,方程去分母得:2ax+2+2bx﹣3=x,整理得:(2a+2b﹣1)x=1,即[2(a+b)﹣1]x=1,把a+b=1代入得:x=1,故选C.【点评】此题考查了解一元一次方程,以及代数式求值,熟练掌握运算法则是解本题的关键.二.填空题(共10小题)11.(2016•富顺县校级模拟)当x=3时,2x﹣3与的值互为倒数.【分析】首先根据倒数的定义列出方程2x﹣3=,然后解方程即可.【解答】解:∵2x﹣3与的值互为倒数,∴2x﹣3=,去分母得:5(2x﹣3)=4x+3,去括号得:10x﹣15=4x+3,移项、合并得:6x=18,系数化为1得:x=3.所以当x=3时,2x﹣3与的值互为倒数.【点评】本题主要考查了倒数的定义及一元一次方程的解法,属于基础题比较简单.12.(2016•聊城模拟)已知关于x的方程3a+x=﹣5的解为2,a的值是﹣2.【分析】把x=2代入方程计算即可求出a的值.【解答】解:把x=2代入方程得:3a+2=1﹣5,解得:a=﹣2,故答案为:﹣2.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.(2016春•东港市期中)关于x的方程3x+a=x﹣7的根是负数,则实数a的取值范围是a>﹣7.【分析】根据解方程,可得x的值,根据方程的解是负数,可得不等式,根据解不等式,可得答案.【解答】解:由3x+a=x﹣7,解得x=.由关于x的方程3x+a=x﹣7的根是负数,得﹣a﹣7<0.解得a>﹣7,故答案为:a>﹣7.【点评】本题考查了一元一次方程的解,利用方程的解是负数得出不等式是解题关键.14.(2016春•长春期中)已知代数式8x﹣7与6﹣2x的值互为相反数,那么x的值等于.【分析】根据互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:(8x﹣7)+(6﹣2x)=0,即8x﹣7+6﹣2x=0,移项合并得:6x=1,解得:x=.故答案为:【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.15.(2016春•上海校级月考)已知x=1是方程的解,则a=﹣5.【分析】把x=1代入方程计算,即可求出a的值.【解答】解:把x=1代入方程得:=1﹣,去分母得:3a+9=6﹣2+2a,移项合并得:a=﹣5.故答案为:﹣5.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(2016春•盐城校级月考)若关于k的方程(k+2)=x﹣(k+1)的解是k=﹣4,则x 的值为﹣.【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数x的一元一次方程,从而可求出x的值.【解答】解:把k=﹣4代入方程,得:×(﹣4+2)=x﹣(﹣4+1),即﹣=x+1故x=﹣.故答案为﹣.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.17.(2015•温州校级自主招生)对于实数a,b,c,d,规定一种数的运算:=ad﹣bc,那么当=10时,x=﹣1.【分析】先根据:=ad﹣bc得出关于x的一元一次方程,求出x的值即可.【解答】解:由题意得,2x+12=10,解得x=﹣1.故答案为:﹣1.【点评】本题考查的是解一元一次方程,根据题意得出关于x的一元一次方程是解答此题的关键.18.(2015•甘孜州)已知关于x的方程3a﹣x=+3的解为2,则代数式a2﹣2a+1的值是1.【分析】先把x=2代入方程求出a的值,再把a的值代入代数式进行计算即可.【解答】解:∵关于x的方程3a﹣x=+3的解为2,∴3a﹣2=+3,解得a=2,∴原式=4﹣4+1=1.故答案为:1.【点评】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.19.(2015秋•颍泉区期末)若x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是﹣2.【分析】方程的解就是能使方程的左右两边相等的未知数的值,把x=﹣3代入即可得到一个关于k的方程,求得k的值.【解答】解:根据题意得:k(﹣3+4)﹣2k+3=5,解得:k=﹣2.故答案为:﹣2.【点评】本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题.20.(2015秋•莘县期末)下面是一个被墨水污染过的方程:,答案显示此方程的解是,被墨水遮盖的是一个常数,则这个常数是﹣2.【分析】设被墨水遮盖的常数为m,将x=代入方程即可求解.【解答】解:设被墨水遮盖的常数为m,则方程为2x﹣=,将x=代入方程得:m=﹣2,故答案为﹣2.【点评】本题主要考查了一元一次方程的解,要根据方程的解求出常数,关键在于设出m.三.解答题(共10小题)21.(2016春•长春期中)解下列方程:(1)10(x﹣1)=5.(2)5x+2=7x﹣8(3)﹣=1.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:10x﹣10=5,移项合并得:10x=15,解得:x=1.5;(2)移项合并得:﹣2x=﹣10,解得:x=5;(3)去分母得:5(7x﹣3)﹣2(4x+1)=10,去括号得:35x﹣15﹣8x﹣2=10,移项合并得:27x=27,解得:x=1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.(2016春•卧龙区期中)解下列方程(1)﹣4x+1=﹣2(﹣x)(2)2﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:﹣4x+1=﹣1+2x,移项合并得:6x=2,解得:x=;(2)去分母得:40﹣5(3x﹣7)=﹣4(x+7),去括号得:40﹣15x+35=﹣4x﹣28,移项合并得:11x=103,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.(2016春•张掖校级月考)解方程:(1)4x﹣3(5﹣x)=6;(2).【分析】(1)先去括号,再移项合并同类项,最后化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:(1)4x﹣3(5﹣x)=6,4x﹣15+3x=6,7x=21,x=3;(2).2(2x+1)﹣(5x﹣1)=6,4x+2﹣5x+1=6,﹣x=3,x=﹣3.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.(2016春•深圳校级月考)解下列方程:(1)3x(7﹣x)=18﹣x(3x﹣15)(2)x(x+2)=1﹣x(3﹣x)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:21x﹣3x2=18﹣3x2+15x,移项合并得:6x=18,解得:x=3;(2)去括号得:x2+x=1﹣3x+x2,移项合并得:4x=1,解得:x=0.25.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.25.(2016春•重庆校级月考)解方程(1)2(3x+4)﹣3(x﹣1)=3;(2).【分析】(1)先去括号,再根据解一元一次方程的方法解答解可;(2)先去分母,再根据解一元一次方程的方法解答解可.【解答】解:(1)2(3x+4)﹣3(x﹣1)=3去括号,得6x+8﹣3x+3=3移项及合并同类项,得3x=﹣8系数化为1,得x=;(2)去分母,得5(2x+1)﹣3(x﹣1)=15去括号,得10x+5﹣3x+3=15移项及合并同类项,得7x=7系数化为1,得x=1.【点评】本题考查解一元一次方程,解题的关键是明确解一元一次方程的解法.26.(2016春•宜宾校级月考)解方程:(1)5x+3(2﹣x)=8(2)=1﹣(3)+=(4)[x﹣(x﹣1)]=(x﹣1)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:5x+6﹣3x=8,移项合并得:2x=2,解得:x=1;(2)去分母得:3(2x﹣1)=12﹣4(x+2),去括号得:6x﹣3=12﹣4x﹣8,移项合并得:10x=5,解得:x=0.5;(3)方程整理得:+=,去分母得:15x+27+5x﹣25=5+10x,移项合并得:10x=3,解得:x=0.3;(4)去括号得:x﹣(x﹣1)=(x﹣1),去分母得:6x﹣3(x﹣1)=8(x﹣1),去括号得:6x﹣3x+3=8x﹣8,移项合并得:5x=11,解得:x=2.2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.27.(2012春•南关区校级期中)抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?【分析】首先设应调至甲地段x人,则调至乙地段(29﹣x)人,则调配后甲地段有(28+x)人,乙地段有(15+29﹣x)人,根据关键语句“调配后甲地段人数是乙地段人数的2倍”可得方程28+x=2(15+29﹣x),再解方程即可.【解答】解:设应调至甲地段x人,则调至乙地段(29﹣x)人,根据题意得:28+x=2(15+29﹣x),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.【点评】此题主要考查了一元一次方程的应用,关键是弄懂题意,表示出调配后甲、乙两地段各有多少人.28.(2014秋•洪江市期末)在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)【分析】首先设支援拔草的有x人,则支援植树的有(20﹣x)人,根据题意可得等量关系:原来拔草人数+支援拔草的人数=2×(原来植树的人数+支援植树的人数).【解答】解:设支援拔草的有x人,由题意得:31+x=2[18+(20﹣x)].【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.29.(2016•商河县二模)某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.试问:(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?【分析】此题注意总人数是不变的,租用客车数也不变,设七年级人数是x人,客车数为,也可表示为,列方程即可解得.【解答】解:(1)设七年级人数是x人,根据题意得,解得:x=240.(2)原计划租用45座客车:(240﹣15)÷45=5(辆).故七年级学生人数是240人,原计划租用45座客车5辆.【点评】此题要抓住不变量,可以有不同的解法,锻炼了学生的分析能力与一题多解的能力.30.(2016春•泾阳县期中)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.【分析】(1)根据总费用等于两次费用之和就可以分别表示出在两家超市购物所付的费用;(2)根据(1)的结论分别讨论,三种情况就可以求出结论.【解答】解:(1)∵在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠,∴在甲超市购物所付的费用为:300+0.8(x﹣300)=0.8x+60,∵在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠,∴设顾客预计累计购物x元(x>300),在乙超市购物所付的费用为:200+0.9(x﹣200)=0.9x+20;(2)当0.8x+60=0.9x+20时,解得:x=400,∴当x=400元时,两家超市一样;当0.8x+60<0.9x+20时,解得:x>400,当x>400元时,甲超市更合算;当0.8x+60>0.9x+20时,解得:x<400,当x<400元时,乙超市更合算.【点评】本题考查了销售问题的数量关系的运用,一元一次方程的运用,方案设计的运用,解答时求出一次函数的解析式是关键,分类讨论是难点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学解方程计算题
一、一元一次方程的解法
1、首先要弄清楚一元一次方程的基本概念,即一元一次方程的形式为ax+b=c(a,b,c均为常数,且a≠0),解一元一次方程意味着找出令这个方程成立的唯一数字x,它是这个方程的根。
2、其次,求解一元一次方程的方法为把方程左右两边同乘以a,即将ax+b=c变形为ax+ba=ca,一元一次方程的解法就是减去ba,得到ac,从而得到x=(ac)/a,即一元一次方程的解为ac/a.
二、二元一次方程的解法
1、二元一次方程的基本概念:二元一次方程形式为ax+by=c(a,b,c均为常数,且a≠0,b≠0),其中a和b分别表示x和y的系数,解二元一次方程意味着找出令这个方程成立的唯一组解,包括坐标点(x,y) 。
2、其次,解二元一次方程的方法一般有两种,即把ax+by=c变形的法和解消的法。
1)把ax+by=c变形的法,即将方程左边ax+by加上(c-by),右边由c变为c-by,则可以得到ax+(by+(c-by))=c-by,解得x=(c-by)/a,y=c/b,从而得到结论,二元一次方程的解为x=(c-by)/a,y=c/b。
2)解消的法,即交叉相乘,将ax+by=c的方程化为ax2+by2=ac,再将同一方程的左边的两个式子分别乘以a和b以便同乘,则可以得到
a2x2+2abxy+b2y2=abx+aby,解得,x=(aby-b2y2)/(a2-2ab),y=(ac-
a2x)/b,从而得到结论,二元一次方程的解为x=(aby-b2y2)/(a2-2ab),y=(ac-a2x)/b.
三、高次方程的解法
1、高次方程是指大于2的高次多项式组成的方程,基本概念是当一个方程为axk+bxk-1+cxk-2+……+cx2+bx+a=0(a,b,c均为实常数、a≠0,k 为整数,k≥2)时,它称为高次方程。
2、求解高次方程的方法有三种:
(1)解析法。
把高次多项式化为比较简单的方程组,或者把高次多项式拆分成几个一次多项式,然后用数学运算或解析法求解各个一次多项式的解,最后合并解,求出整个式子的解。
(2)代数法。
将高次方程的多项式两边按照同类项合并,然后另一边减去相等项,把方程降低一次,用代数法递归一次一次地求解,最后求出式子的解。
(3)数值法。
这种方法是以曲线图的形式把高次多项式画出来,然后取横坐标轴上一点,判断其曲线下方与横坐标轴之间切点的横坐标值
是否是正确答案,如果不是正确答案,用其他解法得到正确答案重新取曲线图上的点,直到得到正确的解。