常用傅里叶变换表
常用的傅里叶变换+定理+各种变换的规律(推荐)

਼ᰦ F ^g x exp j 2Sf a x ` G f x f a ࠭ᮠ൘オฏѝⲴ〫ˈᑖᶕ仁ฏѝⲴᒣ〫
㪉
[ f ( x)] F (P ) ᷍ x0 㬨⤜㸋㒄⭥㬖⧄㭞᷍䋓䇱
[ f ( x r x0 )] exp(r j 2SP x0 ) F (P ) ᷉㠞䄧㾵䐫᷊ [exp p(r j 2SP0 x) f ( x)] F (P P0 ) ᷉㼁䄧㾵䐫᷊
重 要
名称
连续傅里叶变换对 傅里叶变换 F (ω ) 连续时间函数 f (t )
= sinc ( u)
2
结论: 三角形函数的傅里叶变换是 sinc 函数的平方
9
七、符号函数的傅里叶变换
1 F [sgn( x )] = jπ u
二维 留待推算
1 1 F [sgn( x )sgn( y )] = • jπ u jπ v
八、exp[ jπx ] 函数的傅里叶变换 1 F {exp[ jπx ]} = δ ( u − ) 2
3
二、梳状函数的傅里叶变换
F [comb( x )] = comb( u)
普遍型
x F comb = a comb( au) a
结论
comb 函数的
傅里叶变换 仍是
二维情况
x y F comb comb a b = ab comb( au) comb( bv )
= sinc( u)
−1 / 2
∫ exp(− j 2πux )ห้องสมุดไป่ตู้x
a x ≤ 2 其它
rect(x)
F.T.
sinc(u)
5
普遍型
x F rect a
常用傅立叶变换表

弧频率表示的
傅里叶变换
注t)+b・h(t)
iGV) + b・H(f)
线性
2
g(f —q)
「如叮G(f)
时域平移
3
广勺(t)
W)
频域平移,变换2的频域对应
4
g(at)
如果hl值较大,则g(m)会收缩 到原点附近,而间丿会扩
散并变得扁平.当丨$丨趋向 无穷时,成为Delta函数。
2
由变换1和25得到,应用了:cos (at)=(尹 +e F)/2.
22
sin(at)
灯-刼-幻+知
21
由变换1和25得到
23
tn
(2;)网⑺
这里,n是一个.6®(3)是狄拉 克5函数分布的力阶微分。这个变换 是根据变换7和24得到的。将此变 换与1结合使用,我们可以变换所 有。
24
1
1
一沏•sgn(/)
Mrec,(0
变换10的频域对应。矩形函数是理 想的低通滤波器,是这类滤波器对冲 击的响应。
11
sine2(at)
右'trl(0
tri是
12
tri (at)
变换12的频域对应
13
e~°^
/7T(“2
低•…
exp(-a r)的傅里叶变换是他 本身.只有当Re(a)> 0时,这是 可积的。
14
cos(al2)
W)
15
sin (at2)
卜(卓)
16
e-a|t|
2a
3>0
a2H-47T2/2
17
1丽
1
丽
变换本身就是一个公式
18
常用傅里叶变换表

G ⑴ 1 2 3 g(M) 4 a a 5 6 7 2T T dt n 注释 5(0=| 盘・g ⑴+ b ・h(t\ 线性 QT 如吋G(f) 曲一。
) 时域平移 频域平移,变换2的频域对应 如果Ml 值较大,则ggt )会收缩到原 会扩散并变得 b (-f) 阳刀切 傅里叶变换的微分性质 变换6的频域对应弧频率表示的 傅里叶变换 傅里叶变换的二元性性质。
通过交换 时域变量f 和频域变量 3得到. '用 G(f) 时域信号 「gg 叫才 J _8 点附近,而kl 扁平.当| a |趋向无穷时,成为 Delta 函数。
18 S ( 3 )代表狄拉克S函数分布• 这个变换展示了狄拉克S函数的重要性:该函数是常函数的傅立叶变换19 变换23的频域对应20 由变换3和24得到.21 cos(at)2223242526 sgn(t)27 u(f) 咐-卸+刃十知由变换1和25得到,应用了欧拉公式:cos( at) = ( e iat + e - iat) / 2.卩(于一薛)一d"十盏) 2i-仙*Sgll:/)一卅黑;'唧(f)"(刀由变换1和25得到这里,n是一个自然数.S (n)( 3 ) 是狄拉克S函数分布的n阶微分。
这个变换是根据变换7和24得到的。
将此变换与1结合使用,我们可以变换所有多项式。
此处sgn( 3)为符号函数;注意此变换与变换7和24是一致的.变换29的推广.变换29的频域对应.此处u(t)是单位阶跃函数;此变换根据变换1和31得到.。
常用信号的傅里叶变换

ω1 Sa (ω 1t ) 2 cos ω c t f 5 ( t ) = f ( t ) 2 cos ω c t = π
东南大学 信息科学与工程学院
若再有 6 (ω ) = (ω ωc )t1
f 6 (t ) = f 5 (t t1 )
则
若又有 7
=
2ω1
π
Sa [ω1 (t t1 )] cos[ ω c (t t1 )]
东南大学 信息科学与工程学院
8. 周期信号
An jnΩt 2π fT (t ) = ∑ e , Ω = T n=∞ 2
+∞
+∞ +∞
An FT ( jω) = ∑ 2πδ(ω nΩ) = π ∑ An δ(ω nΩ) 则 n=∞ 2 n=∞
东南大学 信息科学与工程学院
9. 周期性冲激序列
f (t ) = =
π 4ω = {δ(ω+ ωc ) + δ(ω ωc )}+ 2 2 2 j(ω ωc )
东南大学 信息科学与工程学院
东南大学 信息科学与工程学院
4. 尺度变换(比例)性质:
1 ω f ( at ) F( j ) |a | a , a ≠ 0
< Bτ = 常数 >
例:
f ( at t 0 ) ?
j
ω
a
t0
=
dF ( j ω ) j ω dF ( j ω ) j e = e dω dω
j (ω +
π
2
)
东南大学 信息科学与工程学院
8. 卷积定理 (1) 时域卷积定理: f1 (t ) * f 2 (t ) F1 ( jω) F2 ( jω)
傅里叶变换常用公式

傅里叶变换常用公式1.傅里叶变换定义:F(w) = ∫[f(t)e^(-jwt)] dt2.傅里叶逆变换定义:f(t) = ∫[F(w)e^(jwt)] dw / (2π)傅里叶逆变换定义了将频域函数F(w)转换回时域函数f(t)的方式。
3.单位冲激函数的傅里叶变换:F(w) = ∫[δ(t)e^(-jwt)] dtδ(t)是单位冲激函数,其傅里叶变换结果为14.周期函数的傅里叶级数展开:f(t) = ∑[a(n)cos(nω0t) + b(n)sin(nω0t)]f(t)可以用无穷级数形式表示,其中ω0为基本角频率,a(n)和b(n)为系数。
5.周期函数的傅里叶变换:F(w)=2π∑[δ(w-nω0)]周期函数f(t)的频谱是一系列频率为nω0的冲激函数。
6.卷积定理:FT[f*g]=F(w)G(w)f*g表示函数f(t)和g(t)的卷积,FT表示傅里叶变换,*表示复数乘法。
卷积定理说明卷积在频域中的运算等于对应的傅里叶变换相乘。
7.积分定理:∫[f(t)g(t)] dt = 1/2π ∫[F(w)G(-w)] dw积分定理表明函数f(t)和g(t)的乘积在时域中的积分等于它们在频域中的乘积的逆变换。
8.平移定理:g(t) = f(t - t0) 对应的傅里叶变换 F(w) = e^(-jwt0) G(w)平移定理说明在时域中将函数f(t)右移t0单位,等价于在频域中将F(w)乘以e^(-jwt0)。
9.缩放定理:g(t) = f(at) 对应的傅里叶变换 G(w) = 1/,a, F(w/a)缩放定理说明在时域中将函数f(t)横向拉伸为af(t),等价于在频域中将F(w)纵向压缩为1/,a,F(w/a)。
除了以上列举的公式,傅里叶变换还有许多性质和定理,如频移定理、频域微分定理、频域积分定理等,这些公式和定理在信号处理中非常有用,可以加速计算和简化问题的分析。
常用傅里叶变换表

常用傅里叶变换表在数学和工程领域中,傅里叶变换是一种极其重要的工具,它能够将复杂的时域信号转换为频域表示,从而帮助我们更好地理解和分析各种信号的特性。
而常用傅里叶变换表则为我们提供了一系列常见函数的傅里叶变换结果,方便我们在实际应用中快速查找和使用。
首先,让我们来了解一下什么是傅里叶变换。
简单来说,傅里叶变换是一种数学变换,它将一个函数从时域(以时间为变量)转换到频域(以频率为变量)。
通过这种转换,我们可以将一个信号分解为不同频率的正弦和余弦波的组合,从而揭示出信号中所包含的频率成分。
在常用傅里叶变换表中,有一些基本的函数及其对应的傅里叶变换值得我们熟悉。
单位冲激函数(也称为狄拉克δ函数)是一个非常特殊的函数。
它在某一时刻有一个无限大的值,而在其他时刻的值都为零。
其傅里叶变换是常数 1。
这意味着单位冲激函数包含了所有频率的成分,且各个频率成分的幅度相同。
单位阶跃函数,它在 t < 0 时取值为 0,在t ≥ 0 时取值为 1。
其傅里叶变换是 1 /(jω) +πδ(ω) ,其中 j 是虚数单位,ω 是角频率,δ(ω) 是狄拉克δ函数。
正弦函数sin(ω₀t) 的傅里叶变换是jπδ(ω ω₀) δ(ω +ω₀) 。
这表明正弦函数只包含两个频率成分,即±ω₀。
余弦函数cos(ω₀t) 的傅里叶变换是πδ(ω ω₀) +δ(ω +ω₀) 。
指数函数 e^(jω₀t) 的傅里叶变换是2πδ(ω ω₀) 。
矩形脉冲函数,即在某个时间段内取值为 1,其他时间段为 0 的函数,其傅里叶变换是一个 sinc 函数。
这些常见函数的傅里叶变换在信号处理、通信、控制工程等领域有着广泛的应用。
例如,在通信系统中,我们需要对信号进行调制和解调。
调制过程可以看作是将原始信号与一个高频载波信号相乘,而解调过程则需要通过傅里叶变换将调制后的信号转换到频域,然后提取出原始信号的信息。
在图像处理中,傅里叶变换可以用于图像的滤波、增强和压缩等操作。
常用傅里叶变换

时域信号角频率表示的傅里叶变换弧频率表示的傅里叶变换注释1 线性2 时域平移3 频域平移,变换2的频域对应4 如果值较大,则会收缩到原点附近,而会扩散并变得扁平.当|?a?|?趋向无穷时,成为狄拉克δ函数。
5 傅里叶变换的二元性性质。
通过交换时域变量和频域变量得到.6 傅里叶变换的微分性质7 变换6的频域对应8 表示和的卷积—这就是卷积定理9 变换8的频域对应。
[编辑]平方可积函数傅里叶变换傅里叶变换10 矩形脉冲和归一化的sinc函数11 变换10的频域对应。
矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。
12 tri?是三角形函数13 变换12的频域对应14 高斯函数exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。
15 光学领域应用较多161718 a>019 变换本身就是一个公式20 J0(t)?是0阶第一类贝塞尔函数。
21 上一个变换的推广形式;?T n(t)?是第一类切比雪夫多项式。
22 U n?(t)是第二类切比雪夫多项式。
[编辑]分布时域信号角频率表示的傅里叶变换弧频率表示的傅里叶变换注释23 δ(ω)代表狄拉克δ函数分布.这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换24 变换23的频域对应25 由变换3和24得到.26 由变换1和25得到,应用了欧拉公式:?cos(at) = (e iat?+?e???iat) / 2.27 由变换1和25得到28 这里,?n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。
这个变换是根据变换7和24得到的。
将此变换与1结合使用,我们可以变换所有多项式。
29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的.30 变换29的推广.31 变换29的频域对应.32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到.33 u(t)是单位阶跃函数,且a?> 0.34 狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.[编辑]二元函数三元函数。
常用fourier变换表

常用fourier变换表傅里叶变换是一种重要的数学工具,常用于信号处理、图像处理、通信等领域。
以下是一些常用的傅里叶变换表:1.Fourier变换对:•时间域函数x(t) 的傅里叶变换X(f):F{ x(t) } = X(f) = ∫[−∞, +∞] x(t) * exp(-j2πft) dt•频率域函数X(f) 的傅里叶逆变换x(t):F^−1{X(f)} = x(t) = ∫[−∞, +∞] X(f) * exp(j2πft) df2.常见信号的傅里叶变换:•常数信号的傅里叶变换:F{1} = δ(f) (其中,δ(f) 表示狄拉克δ函数)•单频正弦信号的傅里叶变换:F{cos(2πf0t)} = 0.5 * [ δ(f - f0) + δ(f + f0) ]•矩形脉冲信号的傅里叶变换:F{rect(t / T)} = T * sin(πfT) / (πfT) (其中,rect(t / T) 表示矩形函数)•高斯函数的傅里叶变换:F{exp(-πt^2)} = exp(-πf^2)3.常见性质和公式:•傅里叶变换的线性性质:F{a * x(t) + b * y(t)} = a * X(f) + b * Y(f)•频率平移性质:F{ x(t - t0) } = X(f) * exp(-j2πft0)•时域和频域的缩放性质:F{ x(a * t) } = (1 / |a|) * X(f / a)•卷积定理:F{ x(t) * y(t) } = X(f) * Y(f) (其中* 表示卷积操作)这些是一些常见的傅里叶变换表中的内容,可以帮助我们理解信号在时域和频域之间的关系,进而应用到实际问题的分析和处理中。
请注意,这里只给出了部分常见的表达式和性质,实际的傅里叶变换表还包含更多的公式和变换对,具体的应用需要根据具体问题进行深入研究和理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用傅里叶变换表
傅里叶变换是信号处理和数学分析中常用的重要工具,可以将一个
函数表示为一系列复指数函数的加权和,从而揭示了信号的频谱特性。
为了方便使用傅里叶变换,人们总结了一些常用的傅里叶变换表,以
便在实际应用中快速查找和计算傅里叶变换。
以下是一些常用傅里叶变换表的示例:
1. 时间域和频率域的关系
当我们进行傅里叶变换时,需要将信号从时间域转换到频率域。
在
时间域中,信号通常用函数的自变量表示,而在频率域中,信号则以
频率为变量进行表示。
傅里叶变换表中可以列出频率的取值范围以及
对应的时间域函数。
这样,我们就可以根据频率的取值范围,找到对
应的时间域函数。
2. 傅里叶级数的表达
傅里叶级数是傅里叶变换的一种特殊形式,适用于周期信号的分析。
傅里叶级数表包含了一系列关于系数和频率的信息,用于计算周期信
号的频谱成分。
3. 傅里叶变换的基本性质
傅里叶变换具有许多重要的性质和定理,包括线性性、平移性、尺
度性等。
常用的傅里叶变换表可以列出这些性质和定理,并给出相应
的公式和解释。
4. 常见函数的傅里叶变换表达式
常见的函数,例如矩形函数、三角函数、指数函数等,它们的傅里
叶变换具有一定的规律和特点。
傅里叶变换表可以提供这些常见函数
的变换表达式,以便将它们与其他信号进行比较和分析。
5. 傅里叶变换的逆变换表达式
傅里叶变换提供了将信号从时域转换到频域的方法,而逆傅里叶变
换则将信号从频域转换回时域。
逆傅里叶变换表中包含了逆变换的表
达式,可以用于将傅里叶变换后的频域信号还原为时域信号。
6. 傅里叶变换的性质推导
除了使用表格给出傅里叶变换的常用形式,也可以通过推导的方式
得到某些信号的傅里叶变换形式。
这种方式在一些特殊的情况下很有
帮助,可以帮助理解和推广傅里叶变换的性质。
总结:
常用傅里叶变换表是信号处理领域必备的工具之一。
通过使用傅里
叶变换表,我们可以快速计算信号的频谱成分,深入理解信号的特性,加快信号处理的速度。
只要掌握了常见傅里叶变换表的使用方法和基
本要点,我们就能更好地应用傅里叶变换进行信号分析和处理工作,
提高工作效率。