典型信号的傅里叶变换

合集下载

傅里叶变换及其性质

傅里叶变换及其性质

αt
1
单边指数函数e-αt; (b) e-αt
的幅度谱
o
(b)
F(j) f(t)ejtdt etejtdt
01 02 e(j)t (j)
01j
1
ja rcta n
ea
a22
其振幅频谱及相位频谱分

别为
F ( ) 1
2 2
( ) arctan
例 2.4-3 求图 2.43(a)所示 双边指数 函数的频 谱函数。
02 或
2
B
2(rad/s)
1
Bf
(Hz)
周期信号的能量是无限的,而其平均功率是有界的, 因而周期信号是功率信号。为了方便,往往将周期信 号在1Ω电阻上消耗的平均功率定义为周期信号的功率。 显然,对于周期信号f(t), 无论它是电压信号还是电
流信号,其平均功率均为 T
12 2
P f (t)dt 2.3.3 周期信号的功率T T2
( )
02

4

2
o
门函数; (b) 门函数的频谱;- 4(c)-幅2 度谱; (d) 相位谱
o 2 4
2 4

(c)
(d )
f
(t)
e at
0
f (t)
例 2.4-2 求指数函数f(t)
的1频 谱 函 数 。 e-t (>0)
o
t
(a)
t 0 ( 0)
t 0
图 2.4-2 单边指F(数)函数e-
性。
2.2 周期信号的连续时间傅里叶级数
f (t) Fnejnt
2.2.1 指数形式的傅里叶级数 n
满足Dirichlet条件的周期函数可以展成复指数形式的傅里叶级数:

典型信号的傅里叶变换

典型信号的傅里叶变换

f
t 非 周周 期期
统一的分析方法:傅里叶变换
由欧拉公式
cos0t
1 2
e j0t
e j0t
sin0t
1 2j
e j0t
e j0t
已知
1 2π
由频移性质
1 ej 0 t 2 0
1 ej0 t 2 0
cos0t
同理
1 2

0

0
π
0
π
0
sin0t jπ 0 jπ 0
dt
t
2
E
ejt d t E
e
j
t
e
jt
dt
E
e
j
t
e
jt
dt
2
4
4
ESa
E
2
Sa
π
E
2
Sa
π
F
E sin
1
2
π
E Sa
1 2
π
F
E
E
2
O π 2π 3π
其频谱比矩形脉冲更集中。

•冲激函数 •冲激偶 •单位阶跃函数
F( ) t ej t d t 1
f t
1
O
t
F
1
O
t看作
1 的矩形脉冲,
0时, B
冲激函数积分是有限值,可以用公式求。而u(t)不
满足绝对可积条件,不能用定义求。
(t) 1 ( ) 1

f t
1
O
t
F
1
O
F
1
O
1 f t

信号与系统(郑君里第二版)讲义第三章 傅里叶变换

信号与系统(郑君里第二版)讲义第三章 傅里叶变换

t0
⎧0 ⎪T cos(mω1t )cos(nω1t )dt = ⎨ 1 ⎪2 ⎩T1
m≠n m=n≠0 m=n=0


t0 +T1
t0
0 ⎧ ⎪T sin (mω1t )sin (nω1t )dt = ⎨ 1 ⎪ ⎩2
m≠n m=n≠0
t0 +T1
t0
sin (mω1t )cos(nω1t )dt = 0 ,对于所有的 m 和 n
n =1
⎧ ⎪d 0 = a 0 ⎪ 2 2 ⎨d n = a n + bn ⎪ an ⎪θ n = arctan bn ⎩
n = 1,2,3,L n = 1,2,3,L
三、虚指数形式的傅里叶级数 任何周期信号 f (t ) 可以分解为
f (t ) =
n =−∞
∑ Fe
n

jnω1t
傅里叶系数:
Fn = 1 t0 +T1 f ( t ) e − jnω1t dt ∫ t 0 T1
f (t )
E 2

T1 2
0
T1 2
t
奇函数的傅里叶级数展开式的系数为: a0 = an = 0
4 bn = T1
Fn = −
∫ f (t )sin (nω t )dt
1
T1 2 0
1 π jbn , ϕ n = − 2 2
6
奇函数的 Fn 为虚数。在奇函数的傅里叶级数中不会含有余弦项,只可能含 有正弦项。 3、奇谐函数(半波对称函数) 若波形沿时间轴平移半个周期并相对于该轴上下反转, 此时波形并不发生变 化,即满足 ⎛ T ⎞ f (t ) = − f ⎜ t ± 1 ⎟ 2⎠ ⎝ 这样的函数称为半波对称函数或称为奇谐函数。 奇谐函数的傅里叶级数展开式的系数为: a0 = 0 an = bn = 0 ( n 为偶数) ( n 为奇数)

信号课件第三章傅里叶变换

信号课件第三章傅里叶变换
• 从本章起,我们由时域分析进入频域分析,在频域分析中, 首先讨论周期信号的傅里叶级数,然后讨论非周期信号的 傅里叶变换。傅里叶变换是在傅里叶级数的基础上发展而 产生的,这方面的问题统称为傅里叶分析。
• 任何周期函数在满足狄义赫利的条件下,可以展成正交函 数线性组合的无穷级数。如果正交函数集是三角函数集或 指数函数集,此时周期函数所展成的级数就是“傅里叶级 数”。
T1 T1 T1 2
f (t) sin n1tdt 0
2 T1
a0 T1
2
an T1
2 T1
T21
2 T1
2
f (t)dt
f (t) c
2f T1 0
osn1tdt
(t)dt
4 T1
T1 2
0
f (t) cosn1tdt
所以,在偶函数的傅里叶级数中不会有正弦项,只可能 含有(直流)和余弦分量。
α>0
F (w) f (t)e jwt dt ete jwt dt 1
0
jw
f (t) 1
t
F(w) 1
2 w2
1/ F( j)
(
)
arctan(
)
( )
/2
/2
2、双边指数信号
f (t)
f (t) e t α>0
1
2/ F()
F (w) f (t)e jwt dt
dt
E
e jnw1t
/2
E
e jnw1 / 2 e jnw1 / 2
T / 2
T
jnw1
T
/ 2
jnw1
Ts
t
2E T
e jnw1 / 2 e jnw1 / 2 2 jnw1

3.5-7 典型非周期信号的傅里叶变换

3.5-7 典型非周期信号的傅里叶变换
−1
X ( jω ) 称 为 x ( t )的 频 谱
ω +a
2
2
;
X ( jω ) = − tan ( ) a
2a ω 2 + a2
= EτSa(
ω
u (t ) ← X ( jω ) = →
( t ≤ τ2 ) ( t > τ2 )
← F( jω) →
ωτ
2
)=
sin(
ωτ
2
)
ωτ
2
补充:
1, sin Bt x(t ) = ← X ( jω ) → πt 0, | ω |< B | ω |> B
F( jω)
δ (t )
t
1
jω 单位冲激函数的频谱等于常数,也就是说, 单位冲激函数的频谱等于常数,也就是说,在整个频率 范围内频谱是均匀的。这种频谱常常被叫做“均匀谱” 范围内频谱是均匀的。这种频谱常常被叫做“均匀谱”或 白色频谱” “白色频谱”。 矩形方波演变成冲激函数.exe 单位冲激函数可矩形脉冲取极限 单位冲激函数.exe 其傅立叶变换也可类似推得. 得到 其傅立叶变换也可类似推得

− jωt
dω = ∫−∞ F ( x)e

− jxt
dx
2πf (−ω) = ∫−∞ F( x)e− jxω dx
∞ ∞ − jωt
x ⇒t
= ∫−∞ F(t )e dt ↔ F(t )
若f (t)为偶函数,则f (−ω) = f (ω)
所以有: 所以有:若
f (t ) ↔ F(ω)
则 F(t ) ↔2π f (ω)
为偶函数, 若f(t)为偶函数,则时域和频域完全对称。 为偶函数 则时域和频域完全对称。 直流和冲激函数的频谱的对称性是一例子。 直流和冲激函数的频谱的对称性是一例子。

8个典型信号的傅里叶变换

8个典型信号的傅里叶变换

8个典型信号的傅里叶变换1. 常数信号(直流信号)这个常数信号啊,就像一个超级稳定的家伙,一直保持一个值不变。

它的傅里叶变换可有趣啦,就是一个冲激函数(狄拉克函数)在频率为0的地方。

你可以想象啊,常数信号就只有一个频率成分,那就是0频率,就像一个静止不动的状态在频率域里的表示呢。

2. 正弦信号。

正弦信号就像一个有规律的摇摆舞者。

它的傅里叶变换呢,是在正负它的角频率处有两个冲激函数。

比如说一个正弦函数Asin(ω_0t),在频率ω = ω_0和ω=-ω_0的地方有两个冲激。

这就好像在说,正弦信号就只有一个频率在那欢快地跳动,这个频率就是它自己的角频率ω_0,一正一负就像在频率轴上对称地站着两个代表它的小尖刺。

3. 余弦信号。

余弦信号跟正弦信号是近亲呢。

Acos(ω_0t)的傅里叶变换也是在正负它的角频率处有两个冲激函数。

不过和正弦信号有点小区别,就像是两个风格相似但又有点不同的舞者。

余弦信号的傅里叶变换,那两个冲激函数就像是在频率轴上标记着它自己独特的角频率ω_0的两个小灯塔。

4. 单位冲激信号(狄拉克函数)这个单位冲激信号啊,就像一个超级突然的小爆炸,瞬间爆发然后就没了。

它的傅里叶变换可神奇了,是一个常数1。

你想啊,这个小爆炸包含了所有频率成分,就像一个超级大杂烩,在频率域里就变成了一个平坦的1,就好像所有频率都被它平等对待,一股脑儿地全在里面了。

5. 矩形脉冲信号。

矩形脉冲信号就像一个突然冒出来又突然消失的小方块。

它的傅里叶变换是Aτ Sa((ωτ)/(2)),这里的A是脉冲的幅度,τ是脉冲的宽度,Sa函数是(sin x)/(x)。

这个变换就像是把矩形脉冲信号这个小方块在时间域的信息,分散到了频率域里,就像把一个集中的小方块打散成了好多频率成分,那些频率成分按照Sa函数的规律分布着。

6. 三角脉冲信号。

三角脉冲信号就像一个小山峰。

它的傅里叶变换是Aτfrac{Sa^2((ωτ)/(2))}{ω^2}。

傅立叶变换(FT)

傅立叶变换(FT)
n=1
t
(a)FS项数越多,合成波形误 差越小; (b)低频分量组成方波的主体,高频分 量主要影响脉冲前沿; (c)不论n为多大,在间断点总有9% 的 偏差,称为吉布斯现象。
n=5 n=3
9% E
0
/2
t
§2-3 非周期信号频谱分析— 傅里叶变换(FT)
2.3-1 FT 定义 周期信号的频谱谱线的间隔为 周期信号的频谱谱线的长度为
(4) 带宽只与脉冲脉宽有关,而与脉高和周期均无关。信号 带宽定义为=0~2/ 这段范围,即 B=2/ 或 f B=1/
(5) 时域参数对频谱的影响
f(t)
E
2E 5
傅里叶频谱
cn
T1=5
- /2 0 /2
T1
2 T1
t
E 5
0
2/
4/
6/

- /2 0 /2
f (t )e jn t dt
1
F (ω) lim F (nω1 )T1 lim
T1
F (ω) f (t )e jt dt



T 1 2 T1 2
f (t )e jn t dt
FT变换
f(t)
F(n1)
傅立叶变换FT
F(0)

-T1 - /2 0 /2 T1
1 jn 1t f (t )e dt T1
2


Ee jn 1t dt
2
Eτ T1

sin(
nτ ) T1 nω1τ Eτ Sa ( ) nτ T1 2 T1
1
所以
nω1 jn t Eτ j f (t ) Sa( )e | Fn | e e jn t T 2 n 1 n

tf(t)傅里叶变换

tf(t)傅里叶变换

tf(t)傅里叶变换傅里叶变换(Fourier Transform,下文简称FT)是一种经典的信号处理方法,它可以将一个时间信号转换为频域中的频率分量表示。

FT的应用非常广泛,包括声音信号处理、图像处理、通信系统设计等等领域。

在介绍FT的具体内容之前,我们需要先解决一个问题:为什么要考虑时间信号的频域表示呢?设连续信号$f(t)$是包含许多不同频率分量的信号,那么它的频域表示$f(\omega)$可以描述这些不同频率分量的信息。

因此,当我们需要对信号进行滤波、降噪等处理时,频域表示可以提供非常有用的信息,例如哪些频率需要保留、哪些频率需要消除等等。

另外,FT还可以用于分析信号的周期性,例如音频信号中的基音频率就是一种典型的周期分量。

下面,我们来介绍FT的基本定义和性质。

一、傅里叶变换的定义设连续信号$f(t)$的傅里叶变换为$F(\omega)$,则有:$$F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt$$其中,$j=\sqrt{-1}$。

在这个公式中,$e^{-j\omega t}$是一个复指数函数,它在时间轴上是一个旋转的单位圆,频率$\omega$表示每秒旋转的圈数。

将$f(t)$乘以$e^{-j\omega t}$,相当于对$f(t)$进行一个预处理,使得这个信号在频率轴上的值变成了$f(\omega)$。

因此,$F(\omega)$可以看做是$f(t)$在频域上的值,也称为$f(t)$的频谱。

注意,为了避免数学上的复杂性,我们在这里讨论的都是连续信号的傅里叶变换。

对于离散信号的傅里叶变换(Discrete Fourier Transform,下文简称DFT),定义和性质与连续信号的傅里叶变换并不完全一致,但本质相同。

1. 线性性质傅里叶变换具有线性性,即:$$\begin{aligned} &\text{若}\quadf_1(t)\xrightarrow{\text{FT}}F_1(\omega),\quadf_2(t)\xrightarrow{\text{FT}}F_2(\omega)\\ &\text{则}\quadaf_1(t)+bf_2(t)\xrightarrow{\text{FT}}aF_1(\omega)+bF_2(\omega) \end{aligned}$$其中,$a$和$b$为常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ej t
t0
j j
三.单位阶跃函数
ut 1 1 sgnt
22
1 2
O
t
1 π
2
1 sgnt
2
1
2
t
O 1
2
1 sgnt 1
2
j

16

ut
1
O
t
u(t) π 1
j
F
π
O
O
π
O
C 周期信号的傅里叶变换

18

周期信号:
f t 傅里叶级数 F n1 离散谱
§附: 典型信号的傅里叶变换 A 非周期信号
•矩形脉冲 •单边指数信号 •直流信号 •符号函数 •升余弦脉冲信号
一.矩形脉冲信号

2

f t
F
2
Ee j
t
dt
2
E
j
e j t
2
2
E t
2O 2
j
j
E e 2 e 2
. 2j
sin
E
2
2
2
E Sa
幅度频谱: F E Sa
sin0t 频谱图:
F
π
π
0 o
0
2
0
0
o
2
二.一般周期信号的傅里叶变换

21

设信号周期: T1

1
由傅里叶级数的指数形式出发:
fT t
F n1 e jn1t
n
其傅氏变换(用定义)
FT F fTt
F
F
n1
e
jn1t
F
n1 F ejn1t
F n1 2π n1
1 ej 0 t 2 0
1 ej0 t 2 0
cos
0t
1 2

0

0
π
0
π
0
同理
sin0t jπ 0 jπ 0
频谱图

20

cos0t π ( 0 ) ( 0 )
cos0t 频谱图:
F
π
π
0 O 0
sin0t jπ 0 jπ 0
π 2
,
,
是奇函数
0 0
F ( )
2
O
π 2 O π 2

9

五.升余弦脉冲信号

10

f
t
E 2
1
cos
πt
0 t
f t
E
E
2
F f t ejt d t
O
2
E 2
1
cos
π
t
e jt
dt
t
2

E
ejt d t E
e
j
t
e
jt
dt
E
e
j
t
e
jt
,
π
2

5

F
E
O
π2
O π 2
三.直流信号
f (t) E, t
E 2π E
f t
E

6

不满足绝对可积 条件,不能直接
用定义求 F
O
t
f1 t
E
O
t
推导
lim F
Ee j t d t
e j t
E
lim
j
lim E
e j e j
1 T1
T
f 2
T T 2
t e jn1t d t
(2)

24

T
F0
2 T
f0
t
ejt d t
(1)
2
fT
t
F n1 ejn1t
n
F n1
1 T1
T
2 T
fT
t
e jn1t d t
2
(2)
比较式(1),(2)
f0 t
n1
fT t

T 2
d
t
2
4
4
ESa
E
2
Sa
π
E
2
Sa
π
频谱图

11

F
E sin
1
2
π
E Sa
1 2
π
F
E
E
2
O π 2π 3π
其频谱比矩形脉冲更集中。

B 冲激函数和阶跃函数
•冲激函数 •冲激偶 •单位阶跃函数
一.冲激函数

13

F ( ) t ej t d t 1
f
t
Ee
t
t0
0
0 t 0
F F f (t)
Ee t u t ej tdt
Ee j t d t 0
E
j
f t
E
O

4

t
频谱图
幅度频谱:F E
2 2
0,
,
F E
F 0
相位频谱: arctan
0,
0
,
π
2
频率范围无限小,幅度为。
三.如何由F0 求F n1

23

即单个脉冲的F0 与周期信号fT t 的谱系数F n1 的关系
f0 t
fT t
T o
T
t T
o
2
2
T
t
T
设 f0 t F0
F0
2 T
f0
t
ejt d t
(1)
2
fT
t
F n1 ejn1t
n
F n1
2π F n1 n1
几点认识

22

FT 2π F n1 n1
1 fT t 的频谱由冲激序列组成;
位置 : n1 谐波频率
强度 : 2π F n1 与F (n1 )成正比 , 离散谱
2 谱线的幅度不是有限值 , 因为F 表示的是频谱密度。
周期信号的F 只存在于 n1处,
2
2
相位频谱:
0 π
4nπ 22n 1π
22n 1π 22n

n 0,1,2,
频谱图
F
E

幅度频谱
O 2π 4π
F
E
相位频谱
2π O 2π 4π
π
2π 0
2π 4π
π

3

F E Sa
2
频宽:
B

或B f
1
二.单边指数信号
j
E
lim
2
sin

E lim
π
sin
2π E

7

F
2π E
O
E 2π E
时域无限宽,频带无限窄
lim
π
Sa
(
)
四.符号函数 不满足绝对

8
f
(t
)
sgnt
1, 1,
t 0 可积条件 t0
sgn( t )
1
e t

处理方法:做一个双边函数
f1t sgnt e t ,求F1 ,
e t O 1
t
求极限得到F 。
F1
0 e tej t d t
e t e j t d t
0
1
j
1
j
j2 2 2
F
lim 0
F1
lim 0
j2 2 2
2
j
频谱图
sgnt
2
j2
2
j
e2
j
F
2 2
2
F 是偶函数
2
arctan
0
π 2
非周期信号:
f t 傅里叶变换 F 连续谱
周期信号的傅里叶变换如何求? 与傅里叶级数的关系?
f
t 非周周期期
统一的分析方法:傅里叶变换
一.正弦信号的傅里叶变换

19

由欧拉公式
cos0t
1 2
e j0t
e j0t
sin0t
1 2j
e j0t
e j0t
已知
1 2π
由频移性质
f t
1
O
t
F
1
O
t看作
1 的矩形脉冲,
0时, B
冲激函数积分是有限值,可以用公式求。而u(t)不
满足绝对可积条件,不能用定义求。
比较
(t) 1
( ) 1

f t
1
O
t
F
1
O

14

F
1
O
1 f t

O
t
二.冲激偶的傅里叶变换

15

f
t
td t
f
0
F t t ej t d t
相关文档
最新文档