周期信的傅里叶级数

合集下载

§3.1 周期信号的傅里叶级数展开

§3.1 周期信号的傅里叶级数展开

F0 a0
Fn
1 2
(an
jbn )
F
n
1 2
(an
jbn )
n 1, 2,3, n 1, 2,3,
信号与系统
一、周期信号的傅立叶级数
例: 将图示周期矩形脉冲信号展成指数形式傅立叶级数
f t
A
解: 直接代入公式有
T
T
22
t
Fn
1 T
T 2
T
f (t)e-jn0tdt
1 T
2
Ae - jn0t dt
信号与系统
一、周期信号的傅立叶级数
例:将图示的对称方波信号展成三角形式傅立叶级数
f t
1
0 T/2 T
t
1
解:直接代入公式有
a0
1 T
T 0
f
(t)dt
0
信号与系统
一、周期信号的傅立叶级数
直接代入公式有
T
T
an
2 T
2 T
f
(t) cosn0tdt
2 T
0
(1) cosn0tdt
T
2 T
T
an
4 T
2 0
f (t) cos(n0t)dt
n为奇数时
T
bn
4 T
2 0
f
(t) sin(n0t)dt
n为奇数时
奇半对称信号的第二个半周 波形为第一个半周波的负值。 进行傅立叶级数展开时只含 有奇次谐波项,所以奇半波 对称信号有时称为奇谐信号。
信号与系统
二、周期信号的对称性与傅立叶系数
满足狄里赫利条件的不连续函数,在所有不连续点上,级数的总和等于左
右极限和的平均值。

ch3.周期信号的傅里叶级数展开

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开:1. 三角形式: 周期信号()f t ,周期T ,基波频率12w Tπ=,所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞==++∑其中:2021()TT a f t dt T -=⎰2122()cos TT n a f t nw tdt T -=⎰2122()sin TT n b f t nw tdt T -=⎰ 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式:011()cos()nn n f t c cnw t ϕ∞==++∑其中:00c a =n c =nn nb tg a φ=-(3)物理意义: (4)幅度谱和相位谱2. 指数形式: 完备正交函数集 :复指数函数集{}1jnw t e1()jnw tnn f t F e∞=-∞=∑其中1221()Tjnw t T n F f t e dt T --=⎰注意:(1)幅度谱和相位谱nj n n F F e φ= :偶谱和奇谱与三角形式间的关系(2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞==+∑0n b =或011()cos()n n n f t c c nw t ϕ∞==++∑,00c a =||n n c a =0,0,0n n n a a ϕπ>⎧=⎨<⎩(2)奇函数:11()sin n n f t b nw t ∞==∑00n a a ==或011()cos()n n n f t c c nw t ϕ∞==++∑,00c =||n n c b =,02,02nn nb b πϕπ⎧->⎪⎪=⎨⎪<⎪⎩(3)奇谐函数:()()2T f t f t =-±其傅里叶级数展开式中仅含奇次谐波分量,即: 0240a a a ====2460b b b ====4. 典型周期矩形脉冲的傅里叶级数信号()f t ,周期为T ,脉宽为τ,脉幅为E(1)三角形式011()cos nn f t a anw t ∞==+∑0n b =其中:2202211()T T E a f t dt Edt T T Tτττ--===⎰⎰211222cos 2n E a E nw tdt Sa nw T T ττττ-⎛⎫== ⎪⎝⎭⎰ 谐波形式:011()cos()n n n f t c c nw t φ∞==++∑其中:00c a =n nc a =, {0,0,0n n n a a ϕπ>=<(2)指数形式:1()jnw t n n f t F e ∞=-∞=∑其中:11222211()T jnw tjnw t T n F f t e dt Ee dt T T ττ---==⎰⎰112E Sa nw T ττ⎛⎫=⎪⎝⎭(3)幅度谱和相位谱的特点 谱线间隔和频谱宽度二.傅里叶变换 ()()jwt F w f t e dt ∞--∞=⎰1()()2jwt f t F w e dw π∞-∞=⎰特点:(1)()()()j w F w F w e ϕ=幅频函数和相频函数(2)变换条件:|()|f t dt ∞-∞<∞⎰ (3)()f t 也是由许多频率分量构成三.常见信号的傅里叶变换对 单边指数衰减信号,0()0,0t e t f t t α-⎧>=⎨<⎩,0α> ↔1()F w jw α=+ 双边指数衰减信号||,0(),0t t te tf t ee t ααα--⎧>==⎨<⎩ ↔222()F w w αα=+矩形脉冲(),2f t E tτ=<↔ ()()2F w E Sa w ττ=符号函数()sgn()f t t = ↔2()F w jw=冲击函数()()f t t δ= ↔ ()1F w = ()()f t t δ'=↔ ()F w jw =()()()n f t t δ=↔ ()()nF w jw = 直流信号()1f t = ↔ ()()2F w w πδ=()f t jt =-↔ ()()2F w w πδ'=()()nf t jt =-↔()()()2n F w w πδ=阶跃信号()()f t u t = ↔()1()F w w jwπδ=+四.傅里叶变换的性质 1.线性性2.奇偶虚实性:()f t 为实函数()()()cos ()sin jwtF w f t edt f t wtdt j f t wtdt ∞∞∞--∞-∞-∞==-⎰⎰⎰(1)()f t 为实偶函数,虚部()()sin 0X w f t wtdt ∞-∞==⎰ (2)()f t 为实奇函数,实部()()cos 0R w f t wtdt ∞-∞==⎰3. 对称性4.时移性5. 尺度变换:时域压缩,频谱扩张 时域扩张,频谱压缩 时域反褶,频谱反褶6.频移性:00()()jw tF f t e F w w ⎡⎤=-⎣⎦[][]001()cos ()()2F f t wt F w w F w w =-++[][]001()sin ()()2F f t wt F w w F w w j=--+ 7.时域微分:[]()()F f t jwF w '=()()()()n nF f t jw F w ⎡⎤=⎣⎦8.频域微分:[]()()F jtf t F w '-=()()()()n n F jt f t F w ⎡⎤-=⎣⎦9.时域卷积:()()()1212()F f t f t F w F w *=⎡⎤⎣⎦ 10.频域卷积:五.周期信号的傅里叶变换:(1) 周期信号的傅里叶级数展开式:1()jnw tnn f t F e ∞=-∞=∑(2) 周期信号的傅里叶变换:1()2()nn F w F w nw πδ∞=-∞=-∑特点:(ⅰ)频谱为冲击谱 (ⅱ)强度为2n F π(ⅲ)谱线位于谐波处(1nw )(ⅳ)()1120211()|Tjnw t jwt T n w nw F f t e dt f t e dt T T∞--=-∞-==⎰⎰()101|w nw F w T==其中:0()f t 为周期信号的第一个脉冲, ()0F w 为0()f t 的傅里叶变换。

周期信号的傅里叶级数表

周期信号的傅里叶级数表
17
分量e j0t 可表示为
1
0
cos 0t
1 2
(e
j0t
e
j0tபைடு நூலகம்
)
表示为
1
1
2
2
0 0 0
因此,当把周期信号 x(t)表示为傅里叶级数
x(t) ake jk0t时,就可以将 x(t) 表示为 k
a1a0 a1
a3a2
a2 a3
0 0
这样绘出的图
称为频谱图
18
频谱图其实就是将 a随k 频率的分布表示出来,
14
有 x(t) ake jk0t , k 0, 1, 2
k
显然 x(也t)是以
为2周 期的。该级数就是傅里叶级
0
数, 称为a傅k 立叶级数的系数。
这表明用傅里叶级数可以表示连续时间周期信号,
即: 连续时间周期信号可以分解成无数多个复指数谐 波分量。
例1:
x(t)
cos 0t
1 e j0t 2
6
3.1历史的回顾 (A Historical Perspective)
任何科学理论, 科学方法的建立都是经过许多人 不懈的努力而得来的, 其中有争论, 还有人为之献 出了生命。历史的经验告诉我们, 要想在科学的 领域有所建树,必须倾心尽力为之奋斗。今天我 们将要学习的傅立叶分析法,也经历了曲折漫长 的发展过程,刚刚发布这一理论时,有人反对, 也有人认为不可思议。但在今天,这一分析方法 在许多领域已发挥了巨大的作用。
即: x(t) akeskt
k
同理: x(n)
ak
Z
n k
k
y(t) ak H (sk )eskt
k

周期信号的傅里叶级数表

周期信号的傅里叶级数表

傅里叶级数与复变函数的关系
傅里叶级数可以看作是复数域中的三角函数,即复数域中的正弦和余弦。在复数域中,正弦和余弦函数表现为复指数函数的 形式。
复数的使用使得傅里叶级数的系数可以表示为实数,从而简化了计算。此外,复数的共轭也提供了相位信息,这在信号处理 中非常重要。
傅里叶级数与小波分析的关系
小波分析是傅里叶分析的进一步发展,它提供了更灵活的时频分析工具。小波变 换可以看作是傅里叶变换的一种扩展,它允许我们在不同的频率段使用不同的基 本函数。
三角函数形式
傅里叶级数的另一种表示形式,利用三角函数来表示周期信号。
傅里叶级数的三角函数形式
01
02
03
正弦形式
余弦形式
系数
傅里叶级数的正弦函数形式,用 于表示只包含正弦波的周期信号。
傅里叶级数的余弦函数形式,用 于表示只包含余弦波的周期信号。
在傅里叶级数中,每个正弦或余 弦函数都对应一个系数,表示该 函数在周期信号中的贡献程度。
03
傅里叶级数的性质
傅里叶级数的收敛性
傅里叶级数在数学上具有收敛性,意味着它可以将一个 周期函数表示为无穷级数,每个项都是正弦或余弦函数。
收敛的速度取决于函数的特性,例如,对于具有快速衰 减的周期函数,傅里叶级数收敛得更快。
傅里叶级数的对称性
傅里叶级数的对称性质是指,对于一个周期函数,其傅里叶级数的正弦和余弦项具有对称性。 这意味着,对于一个给定的周期函数,其傅里叶级数的正弦和余弦项的系数是相同的。
周期信号的傅里叶级 数表
目录
• 傅里叶级数简介 • 周期信号的傅里叶级数表示 • 傅里叶级数的性质 • 傅里叶级数的应用实例 • 傅里叶级数与其他数学工具的关系
01

周期信号的傅里叶级数

周期信号的傅里叶级数
[例7]:对称方波


ii)
变化越剧烈,高频分量越多:高频分量主要影响脉冲跳变沿,低频分量主要影响脉冲顶部
解:

i) 项数越多,误差越小,

P99
3.吉布斯现象
N很大时,该峰起值趋于一个常数,它约等于总跳变值的9%,并从不连续点开始以起伏震荡的形式逐渐衰减下去

≈9%
t
0
①项数越多, 中出现

3.

的关系

i)
ii)
iii)
4.幅度谱:
,相位谱:
实 傅立叶级数的特点:
ii)
为奇函数
为偶函数
i)
为实数时, 的正负表示 的0和π,幅度谱和相位谱画到一张图上
5.负频率出现无物理意义,只是数学运算结果。
每个分量的幅度一分为二,在正负频率相对应的位置上各一半; 只有把正负频率上对应的两条谱线矢量相加起来才代表一个分量的幅度。
而本章将以正弦信号和虚指数信号 为基本信号,任意输入信号可以分解为一系列不同频率的正弦信号或虚指数信号之和。
时域分析中,以冲激信号δ(t)为基本信号,任意输入信号e(t)可分解为一系列冲激信号之和;
引言
第三章 傅立叶变换
02
01
频域分析
本章主要内容
一种变换域分析方法,其它变换方法的基础; 快速傅立叶变换的出现,使其应用更加广泛
含直流、基波和奇次谐波
A
0
[例4]:周期三角波含直流、基波和奇次谐波
01
f(t)
02
偶函数&奇谐函数:只含基波和奇次谐波的余弦分量
03
t
04
0
0 [例5]:对称方波只含基波和奇次谐波的余弦分量。

周期信号傅里叶级数

周期信号傅里叶级数
07
分析公式 (正变换)
连续时间傅里叶级数对:
称为傅里叶系数或频谱系数
综合公式 (反变换)
3.三角形式傅立叶级数
若 f (t)为实函数,则有 利用这个性质可以将指数Fourier级数表示写为 令 由于C0是实的,所以b0=0,故 由此可以推出:
三角形式傅立叶级数
傅里叶系数 连续时间周期信号三角形式傅立叶级数为:
建议同学多看国外电子与通信教材系列 ,先看翻译版,再看英文硬印版
集成电路版图基础(英文影印版) (4小时出库)
Layout Basics:A Practical Guide
作者: CHRISTOPHER SAINT,JUDY SAINT
市场价: ¥45.00
模拟CMOS集成电路设计(英文影印版) (4小时出库) sign of Analog CMOS Integrated Circuits 作者: (美)BEHZAD RAZAVI 市场价: ¥68.00
四、周期信号的功率谱
周期信号属于功率信号,周期信号f(t)在1欧姆电阻上消耗的平均功率为:
单击此处添加小标题
由下面关系可以推导出,帕什瓦尔(Parseval)功率守恒定理:
单击此处添加小标题
01
02
四、周期信号的功率谱
物理意义:任意周期信号的平均功率等于信号所包含的直流、基波以及各次谐波的平均功率之和。
[解] 周期矩形脉冲的傅立叶系数为
将A=1,T=1/4,=1/20,w0=2p/T=8p 代入上式 功率谱
信号的平均功率为 包含在有效带宽(0~2p/t)内的各谐波平均功率为 周期矩形脉冲信号包含在有效带宽内的各谐波平均功率之和占整个信号平均功率的90%。
求f (t)的功率。

第七-2章周期信号的傅里叶级数

第七-2章周期信号的傅里叶级数

由积分可知
T
2 T
cos
n1t
sin
m1t
dt
0
2
T 2 T 2
cos
n1t
cos
m1t
dt
T , 2 0,
mn mn
T 2 T 2
sin
n1t
sin
m1t
dt
T , 2 0,
mn mn
14
7-2-2 三角形傅立叶级数
f (t ) a0 (an cos n1t bn sin n1t )
j sin n1t]dt
1
1
2 an j 2 bn
17
7-2-2三角形傅立叶级数
通过比较可以得到指数形式的傅里叶系数与三角形式 的傅里叶系数有以下关系:
Fn
1 2
an
j
1 2
bn
Fn
1 2
an2
bn2
1 2
Cn
n
arctan
bn an
Fn Fn
18
【例题7-1】求周期锯齿波的三角形式的傅里叶级数展开式
29
7-3-2周期信号的频谱特性
(3)频谱函数 Fn 的幅度具有收敛性,随着频率增加, Fn 逐渐减小; (4)指数形式的频谱图是双边谱,幅度谱 Fn 是偶函数, 相位谱 n 是奇函数。 (5) Fn 与 f (t) 具有唯一对应性, Fn 包含了信号 f (t) 的 全部信息。
30
➢ 下面求三角形式的傅立叶级数与频谱 根据三角形式傅立叶级数展开形式
2
傅里叶级数的由来
• 对周期信号的研究,最早来自于1748年欧拉 对振动弦的工作。
• 欧拉发现,所有的振荡模式都是x的正弦函数,并 形成谐波关系。

周期信号的分解-傅里叶级数

周期信号的分解-傅里叶级数

傅里叶级数
傅里叶级数是一种将周期信号分 解为不同频率的正弦和余弦函数 的数学方法。
三角函数系
傅里叶级数使用正弦和余弦函数 作为基底,将周期信号表示为这 些函数的线性组合。
频谱分析
通过傅里叶级数,可以分析周期 信号的频谱,了解信号中各个频 率分量的强度和分布。
周期信号的频谱分析
频谱图
频谱图是用来表示周期信 号中各个频率分量强度的 图形,横轴表示频率,纵 轴表示幅度。
傅里叶级数的发展经历了多个阶段, 包括早期的数学证明和后来的完善, 最终成为数学和工程领域中分析周期 信号的重要工具。
傅里叶级数的应用领域
1 2 3
通信领域
傅里叶级数用于信号处理和调制解调,例如在频 分复用(FDM)和调频(FM)中分析信号的频 谱特性。
振动分析
傅里叶级数用于分析机械振动,通过将振动信号 分解为不同频率的分量,可以研究振动的模式和 频率成分。
图像处理
傅里叶变换在图像处理中广泛应用,通过将图像 信号表示为傅里叶级数,可以实现图像的滤波、 去噪、压缩等处理。
02 傅里叶级数的数学基础
三角函数和正弦函数三角Fra bibliotek数包括正弦函数、余弦函数、正切函数 等,它们在周期信号的分解中起着关 键作用。
正弦函数
正弦函数是周期函数,其基本周期为 $2pi$,在信号处理中常用于描述周 期信号。
周期信号的频谱分析
频谱分析
通过将周期信号分解为不同频率的正弦波分量,可以分析信号中各频率分量的 幅度和相位。
频谱密度函数
描述了信号中各频率分量的分布情况,其图形称为频谱图或频谱密度图。
傅里叶级数的收敛性
傅里叶级数
是一个无穷级数,可以用来表示任何周期信号。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机与信息工程学院实验报告
专业:通信工程年级/班级:2012级通信工程2013—2014学年第二学期
一、实验目的
1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。

2、观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。

3、掌握用傅里叶级数进行谐波分析的方法。

4、观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉冲信号。

二、实验仪器或设备
一台装有MATLAB的计算机一台
三、设计原理
1. 信号的时间特性与频率特性
信号可以表示为随时间变化的物理量,比如电压u(t )和电流i(t )等,其特性主要表现为随时间的变化,波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这些特性称为时间特性。

信号还可以分解为一个直流分量和许多不同频率的正弦分量之和。

主要表现在各频率正弦分量所占比重的大小不同;主要频率分量所占的频率范围也不同,信号的这些特性称为信号的频率特性。

无论是信号的时间特性还是频率特性都包含了信号的全部信息量。

2. 信号的频谱
信号的时间特性和频率特性是对信号的两种不同的描述方式。

根据傅里叶级数原理,任意一个时域的周期信号f(t),只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。

例如,对于一个周期为T的时域周期信号f(t),可以用三角形式的傅里叶级数求出它的各次分量,在区间(t1,t1+T)内表示为
即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情
况。

3. 信号的时间特性与频率特性关系
信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图4-1 来形象地表示。

其中图 4-1(a)是信号在幅度--时间--频率三维坐标系统中的图形;图 4-1(b)是信号在幅度--时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。

反映各频率分量幅度的频谱称为振幅频谱。

图 4-1(c)是信号在幅度--频率坐标系统中的图形即振幅频谱图。

反映各分量相位的频谱称为
相位频谱。

4. 信号频谱的测量
在本实验中只研究信号振幅频谱。

周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。

测量时利用了这些性质。

从振幅频谱图上,可以直观地看出各频率分量所占的比重。

测量方法有同时分析法和顺序分析法。

同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。

当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。

在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。

5. 周期方波信号的傅里叶级数
一个周期为T0 的正方波,在一个周期内-
由傅里叶级数展开式可知,方波信号傅里叶级数系数为
则该周期信号可以表示为傅里叶级数的形式:
因为,当 k 为偶数时 0 =ka ,所以
进一步带入 ka 得
当占空比为时候的方波,即
6. 周期信号的合成吉布斯现象(Gibbs)
根据傅里叶级数可以将周期信号分解成直流分量、基波以及各次谐波分量,同样,由直流分量、基波和各次谐波分量可以叠加出来一个周期信号。

例如前述的方波信号,可以由其基波和各次谐波分量按照比例叠加出来,合成方波信号与原信号的误差取决于傅里叶级数的项数。

合成波形所包含的谐波分量越多,它越逼近原方波信号,但是间断点除外。

用有限项傅里叶级数表示有间断点的信号时,在间断点附近不可避免的会出现振荡和超量。

超量的幅度不会随所取项数的增加而减小。

只是随着项数的增多,振荡频率变高,并向间断点处
压缩,从而使它所占有的能量减少。

这种现象称为吉布斯现象。

四、实验内容:
信号的分解与合成Matlab 仿真实验
方波信号的分解
t=0::2*pi; %0 ? 2π时间间隔为
y=zeros(10,max(size(t))); %10*629(t的长度)的矩阵
x=zeros(10,max(size(t)));
for k=1:2:9 %奇次谐波1,3,5,7,9
x1=sin(k*t)/k; %各次谐波正弦分量
x(k,:)=x(k,:)+x1; %x第k(1,3,5,7,9)行存放k次谐波的629个值
y((k+1)/2,:)=x(k,:); %矩阵非零行向量移至1-5行
end
subplot(2,1,1);
plot(t,y(1:5,:)); %绘制y矩阵中1-5行随时间波形
grid;
halft=ceil(length(t)/2); %行向量长度减半(由于对称前后段一致)subplot(2,1,2); %绘制三维图形:矩阵y中全部行向量的一半mesh(t(1:halft),[1:10],y(:,1:halft));
方波信号的合成
t=::;
t1=::;
x=[ones(1,1000),zeros(1,1000)]; x=[x,x,x,x,x];
subplot(1,2,1);
plot(t1,x,'linewidth',;
axis([,,,]);
N=10;
c0=;
f1=c0*ones(1,length(t))
for n=1:N
f1=f1+cos(pi*n*t)*sinc(n/2);
end
subplot(1,2,2);
plot(t,f1,'r','linewidth',;
axis([,,,]);
教师签名:
年月日。

相关文档
最新文档