周期信号的傅里叶级数分解

合集下载

傅里叶级数及其在信号处理中的应用

傅里叶级数及其在信号处理中的应用

傅里叶级数及其在信号处理中的应用傅里叶级数是一种数学工具,用于解析周期性信号,可以将周期性信号分解成无数个正弦和余弦波的叠加。

这种分解方法是由法国数学家傅里叶在18世纪末首次提出,并在信号处理、通信系统、图像处理与声音等方面广泛应用,是多媒体技术和通信技术中不可或缺的数学基础。

一、什么是傅里叶级数傅里叶级数是一种将周期性函数分解成无数个正弦和余弦波的叠加的数学表达式,也称为周期函数傅里叶展开。

简单的说,周期函数f(x)可以表示为:f(x) = a0 + a1 sin(x) + b1 cos(x) + a2 sin(2x) + b2 cos(2x) + ... + an sin(nx) + bn cos(nx)其中a0、an、bn都是常数,表示分解后每个正弦、余弦波的振幅大小,以及f(x)本身的偏移量。

二、傅里叶级数的应用傅里叶级数几乎融入了所有现代的通信与信号处理技术中。

傅里叶级数的应用范围非常广泛,从基础的音频和视频信号处理,到用于调节机器、诊断疾病、安全加密和经济分析等其他领域。

下面我们将详细介绍一些傅里叶级数的具体应用。

1. 调制解调调制解调是指通过改变信号的频率、幅度或相位等特征,将数字信号转换成模拟信号或将模拟信号转化成数字信号的过程。

在通信系统中,调制解调技术是信号传输的基础。

在频分多路复用(FDM)技术中,每个信道都有一个特定的频带宽度和中心频率,以允许它传输特定的信号。

傅里叶级数可以极大地简化我们对于这些信号的分析和处理过程,因为他们已经被分解成了特定频率的正弦和余弦波。

2. 声音和图像处理傅里叶级数在音频和图像处理方面得到了广泛应用。

在音频信号处理中,将模拟信号进行数字化后可以利用傅里叶级数对其进行频域分析,在消除噪声、音调准备、音乐合成、过滤操作等方面发挥重要作用。

在图像处理中,傅里叶级数被广泛用于图像压缩、图像滤波、图像边缘检测等方面。

例如,在jpeg压缩中,傅里叶级数的频域分析可以有效消除图像中的高频噪声,使图像更清晰并减小文件大小。

12.2周期函数分解为傅里叶级数

12.2周期函数分解为傅里叶级数

Em
T
2T
t
O π 2π
ω1t
-Em
解:f(t)在第一个周期内的表达式为
T
Em f(t) =
0t 2
-Em
T t T 2
根据公式计算系数
f(t)
Em
T
2T
t
O π 2π
ω1t
-Em
a0
1 T
T 0
f (t)dt 0
f(t)
Em
T
2T
t
O π 2π
ω1t
-Em
ak
1
2
0
f (t) cos(k1t)d(1t)
3、两种形式系数之间的关系
第一种形式 f (t) a0 [ak cos(k1t) bk sin( k1t)] k 1
第二种形式 f (t) A0 Akm cos(k1t k ) k 1
A0=a0
Akm ak2 bk2
ak=Akmcosψk
bk=- Akmsinψk
k
arctan( bk ak
f(t)
O
t
1、只含有余弦分量
f(t)应是偶函数
关于纵轴对称
f(t)
O
t
2、只含有正弦分量
f(t)应是奇函数
关于原点对称
f(t)
O
t
f (t) a0 ak cos(k1t) k 1
2、奇函数 f(t)=-f(-t) 原点对称的性质
f(t)
O
t
f(t)
O
t
2、奇函数 原点对称的性质 f(t)=-f(-t) 可以证明: a0=0, ak=0
f (t) a0 [ak cos(k1t) bk sin( k1t)] k 1 展开式中只含有正弦项分量

ch3.周期信号的傅里叶级数展开

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开:1. 三角形式: 周期信号()f t ,周期T ,基波频率12w Tπ=,所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞==++∑其中:2021()TT a f t dt T -=⎰2122()cos TT n a f t nw tdt T -=⎰2122()sin TT n b f t nw tdt T -=⎰ 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式:011()cos()nn n f t c cnw t ϕ∞==++∑其中:00c a =n c =nn nb tg a φ=-(3)物理意义: (4)幅度谱和相位谱2. 指数形式: 完备正交函数集 :复指数函数集{}1jnw t e1()jnw tnn f t F e∞=-∞=∑其中1221()Tjnw t T n F f t e dt T --=⎰注意:(1)幅度谱和相位谱nj n n F F e φ= :偶谱和奇谱与三角形式间的关系(2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞==+∑0n b =或011()cos()n n n f t c c nw t ϕ∞==++∑,00c a =||n n c a =0,0,0n n n a a ϕπ>⎧=⎨<⎩(2)奇函数:11()sin n n f t b nw t ∞==∑00n a a ==或011()cos()n n n f t c c nw t ϕ∞==++∑,00c =||n n c b =,02,02nn nb b πϕπ⎧->⎪⎪=⎨⎪<⎪⎩(3)奇谐函数:()()2T f t f t =-±其傅里叶级数展开式中仅含奇次谐波分量,即: 0240a a a ====2460b b b ====4. 典型周期矩形脉冲的傅里叶级数信号()f t ,周期为T ,脉宽为τ,脉幅为E(1)三角形式011()cos nn f t a anw t ∞==+∑0n b =其中:2202211()T T E a f t dt Edt T T Tτττ--===⎰⎰211222cos 2n E a E nw tdt Sa nw T T ττττ-⎛⎫== ⎪⎝⎭⎰ 谐波形式:011()cos()n n n f t c c nw t φ∞==++∑其中:00c a =n nc a =, {0,0,0n n n a a ϕπ>=<(2)指数形式:1()jnw t n n f t F e ∞=-∞=∑其中:11222211()T jnw tjnw t T n F f t e dt Ee dt T T ττ---==⎰⎰112E Sa nw T ττ⎛⎫=⎪⎝⎭(3)幅度谱和相位谱的特点 谱线间隔和频谱宽度二.傅里叶变换 ()()jwt F w f t e dt ∞--∞=⎰1()()2jwt f t F w e dw π∞-∞=⎰特点:(1)()()()j w F w F w e ϕ=幅频函数和相频函数(2)变换条件:|()|f t dt ∞-∞<∞⎰ (3)()f t 也是由许多频率分量构成三.常见信号的傅里叶变换对 单边指数衰减信号,0()0,0t e t f t t α-⎧>=⎨<⎩,0α> ↔1()F w jw α=+ 双边指数衰减信号||,0(),0t t te tf t ee t ααα--⎧>==⎨<⎩ ↔222()F w w αα=+矩形脉冲(),2f t E tτ=<↔ ()()2F w E Sa w ττ=符号函数()sgn()f t t = ↔2()F w jw=冲击函数()()f t t δ= ↔ ()1F w = ()()f t t δ'=↔ ()F w jw =()()()n f t t δ=↔ ()()nF w jw = 直流信号()1f t = ↔ ()()2F w w πδ=()f t jt =-↔ ()()2F w w πδ'=()()nf t jt =-↔()()()2n F w w πδ=阶跃信号()()f t u t = ↔()1()F w w jwπδ=+四.傅里叶变换的性质 1.线性性2.奇偶虚实性:()f t 为实函数()()()cos ()sin jwtF w f t edt f t wtdt j f t wtdt ∞∞∞--∞-∞-∞==-⎰⎰⎰(1)()f t 为实偶函数,虚部()()sin 0X w f t wtdt ∞-∞==⎰ (2)()f t 为实奇函数,实部()()cos 0R w f t wtdt ∞-∞==⎰3. 对称性4.时移性5. 尺度变换:时域压缩,频谱扩张 时域扩张,频谱压缩 时域反褶,频谱反褶6.频移性:00()()jw tF f t e F w w ⎡⎤=-⎣⎦[][]001()cos ()()2F f t wt F w w F w w =-++[][]001()sin ()()2F f t wt F w w F w w j=--+ 7.时域微分:[]()()F f t jwF w '=()()()()n nF f t jw F w ⎡⎤=⎣⎦8.频域微分:[]()()F jtf t F w '-=()()()()n n F jt f t F w ⎡⎤-=⎣⎦9.时域卷积:()()()1212()F f t f t F w F w *=⎡⎤⎣⎦ 10.频域卷积:五.周期信号的傅里叶变换:(1) 周期信号的傅里叶级数展开式:1()jnw tnn f t F e ∞=-∞=∑(2) 周期信号的傅里叶变换:1()2()nn F w F w nw πδ∞=-∞=-∑特点:(ⅰ)频谱为冲击谱 (ⅱ)强度为2n F π(ⅲ)谱线位于谐波处(1nw )(ⅳ)()1120211()|Tjnw t jwt T n w nw F f t e dt f t e dt T T∞--=-∞-==⎰⎰()101|w nw F w T==其中:0()f t 为周期信号的第一个脉冲, ()0F w 为0()f t 的傅里叶变换。

信号与系统周期信号的傅立叶级数展开

信号与系统周期信号的傅立叶级数展开

满足一定条件的周期函数 f ( t ) 可用三角函数集表示为
狄里 赫利
f(t)a 0 a nco sn0 tb nsinn0 t
n 1
0
2 T
条件
a0
1 T
t1T t1
f(t)dt
a n , bn
称为傅立叶系

an
t0 T t0
f (t) cos n0tdt
t0 T t0
cos2
n0tdt
信P87号图与4系-2-2统f( t) 4 [ s in0 t 1 3 s in 3 0 t 1 5 s in 5 0 t L 1 n s in n 0 t L ]
f1
(t)
4
sin
0tfLeabharlann 2(t)4
(sin 0t
1 3
sin
30t)
2
0
2 t
2
0
2 t
(a)
f
3
(t)
4
(sin
周期信号
周期信号的特点:
(1)它是一个无穷无尽变化的信号,从理论上也是无始无终的,时间
范围为(, )
(2)如果将周期信号第一个周期内的函数写成 f 0 ( t ),则周期信号 f ( t )
可以写成
f (t) f0(t nT) n
(3)周期信号在任意一个周期内的积分保持不变,即有
aT
bT
T
f(t)dt f(t)dtf(t)dt
f(t)A0Ancon s0tn
n1
两种形式之间系数有如下关系:
A0 a0
An an2 bn2
n 1, 2, L

n
arctg

傅里叶级数与傅里叶变换的关系

傅里叶级数与傅里叶变换的关系

傅里叶级数与傅里叶变换的关系傅里叶级数和傅里叶变换是数学中重要的工具,它们在信号处理、图像处理和物理学等领域中有着广泛的应用。

本文将介绍傅里叶级数和傅里叶变换的概念,并探讨它们之间的关系。

一、傅里叶级数的概念傅里叶级数是一种将周期信号分解为一系列正弦和余弦函数的方法。

它基于傅里叶分析的原理,将一个周期为T的周期信号f(t)表示为:f(t) = a0 + Σ[an*cos(nω0t) + bn*sin(nω0t)]其中,a0是信号直流分量的系数,an和bn是信号的谐波分量的系数,n为谐波的阶数,ω0为基频的角频率。

傅里叶级数可以理解为将一个周期信号分解为不同频率成分的叠加。

二、傅里叶变换的概念傅里叶变换是一种将非周期信号分解为不同频率成分的方法。

它的基本思想是将信号f(t)在整个实数轴上进行积分变换,得到频率域上的表示。

傅里叶变换的定义如下:F(ω) = ∫[f(t)*e^(-jωt)]dt其中,F(ω)表示信号在频率域上的表示,f(t)为原始信号,e^(-jωt)为旋转因子。

傅里叶变换将一个时域上的信号转换为频域上的表示,以便更好地分析信号的频谱特性。

三、傅里叶级数与傅里叶变换的关系傅里叶级数可以看作是傅里叶变换在周期信号上的特殊情况。

当一个信号f(t)为周期信号时,其傅里叶变换和傅里叶级数之间存在着对应关系。

具体而言,傅里叶级数是傅里叶变换在周期为T的周期信号上的反离散化。

通过傅里叶级数,我们可以将一个周期信号分解为多个谐波成分,每个谐波成分对应着傅里叶变换的频谱。

四、应用实例傅里叶级数和傅里叶变换在信号处理和图像处理中有着广泛的应用。

以音频信号为例,我们可以通过傅里叶级数将音频信号分解为不同频率的音调,进而进行声音合成和音乐分析。

而傅里叶变换则可以将非周期信号的频谱特性表示出来,如在图像处理中可以用于图像压缩和特征提取。

傅里叶级数和傅里叶变换的关系使得我们能够更好地理解和处理信号和图像。

总结傅里叶级数和傅里叶变换是处理周期信号和非周期信号的有效工具,它们在信号处理和图像处理中有着广泛的应用。

(完整版)周期信号傅里叶级数

(完整版)周期信号傅里叶级数

C e dt T0 n0
j(nk )0t
n =
由{en (t)}的正交性得:
T0
0
e
dt j(nk )0t
T0
[n k]
T0 n=k 0 n不等于k
Ck
1 T
T
2 T
fT (t)e jk 0t dt
2
2. 指数形式傅立叶级数
连续时间周期信号可以用指数形式傅立叶级数表示为
f (t)
bn
2 T
T
2 T
2
f (t)sin n0tdt
(n = 1,2 )
纯余弦形式傅立叶级数
其中
f(t)
a0 2
n1
An
co( s n0t

n
An an2 bn2
n
arctg
bn an
a0 2
称为信号的直流分量,
An cos(n0+ n)称为信号的n次谐波分量。
例题1 试计算图示周期矩形脉冲信号的傅立叶级数展 开式。
Cn e jn0t
jn 2 t
Cn e T
n =
n =
物理含义:周期信号f(t)可以分解为不同频率虚指数信号之和。
其中
Cn
1 T
T
2 T
fT (t)e jn0t dt
(傅立叶系数)
2
n 1 两项的基波频率为f0,两项合起来称为信号的基波分量
n 2 的基波频率为2f0,两项合起来称为信号的2次谐波分量
若 f (t)为实函数,则有 Cn Cn
利用这个性质可以将指数Fourier级数表示写为
1
f (t) C0
Cne jn0t

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

Matlab中进行数值积分运算的函数有quad函数和int函数。

其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。

因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。

quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

结构动力学问答题答案-武汉理工-研究生

结构动力学问答题答案-武汉理工-研究生

结构动力学问答题答案-武汉理工-研究生《结构动力学》思考题第1章1、对于任一振动系统,可划分为由激励、系统和响应三部分组成。

试结合生活或工程分别举例说明:何为响应求解、环境识别和系统识别?响应求解:结构系统和荷载已知,求响应。

又称响应预估问题,是工程正问题的一种,通常在工程中是指结构系统已知,具体指结构的形状构件及离散元件等,环境识别:主要是荷载的识别,结构和响应已知,求荷载。

属于工程反问题的一种。

在工程中,如已知桥梁的结构和响应,根据这些来反推出桥梁所受到的荷载。

系统识别:荷载和响应已知,求结构的参数或数学模型。

又称为参数识别,是工程反问题的一种,在土木工程领域,房屋、桥梁和大坝等工程结构被视为“系统”,而“识别”意味着由振动实验数据求得结构的动力特性(如频率、阻尼比和振型)。

如模态分析和模态试验技术等基本成型并得到广泛应用。

2、如何从物理意义上理解线性振动系统 解的可叠加性。

求补充!!!!!3、正确理解等效刚度的概念,并求解单自由度系统的固有频率。

复杂系统中存在多个弹性元件时,用等效弹性元件来代替原来所有的弹性元件,等效原则是等效元件刚度等于组合元件刚度,则等效元件的刚度称为等效刚度。

4、正确理解固有频率f 和圆频率ω的物理意义。

固有频率f :物体做自由振动时,振动的频率与初始条件无关,而仅与系统的本身的参数有关(如质量、形状、材质等),它是自由振动周期的倒数,表示单位时间内振动的次数。

圆频率ω: ω=2π/T=2πf 。

即为单位时间内位移矢量在复平面内转动的弧度,又叫做角频率。

它只与系统本身的参数m ,k 有关,而与初始条件无关5、正确理解过阻尼、临界阻尼、欠阻尼的概念。

一个系统受初扰动后不再受外界激励,因为受到阻力造成能量损失而位移峰值渐减的振动称为阻尼振动。

系统的状态按照阻尼比ζ来划分。

把ζ=0的情况称为无阻尼,即周期运动;把0<ζ<1的情况称为欠阻尼,即系统所受的阻尼力较小,振幅在逐渐减小,最后才达到平衡位置;把ζ>1的情况称为过阻尼,如果阻尼再增大,系统需要较长的时间才能达到平衡;把ζ=1的情况称为临界阻尼,即阻尼的大小刚好使系统作非"周期"运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档