环境化学实验1

合集下载

CHEMISTRY of the ENVIRONMENT(环境化学课件1)共29页

CHEMISTRY of the ENVIRONMENT(环境化学课件1)共29页

2. Branch of Environmental Chemistry
Chemistry of the Environment
Analytical chemistry of the environment
Organic analytical chemistry of the environment
2. Haiou Wang, Guihua Wang, Yanjun Zheng, Jiemin Liu, Aijun Gong, Chemistry of the Environment Solutions Manual, University of Science and Technology Beijing Press, 2nd edition, 2019
6. Liu Zhaorong, atal. Introduction to chemistry of the environment, Chemical intrustry press, 2019
7. Wang Xiaorong, Chemistry of the Environment, Nanjing University Press,1993
8. Deng Nansheng, Wu Feng, Introduction of Chemistry of the Environment, Wuhan University Press, 2000
9. Eldon D. Enger, Bradley F. Smith, Environmental Science – A Study of Interrelationships (Seventh Edition), Mc Graw-Hill,Qinghua university press,2000

环境化学实验1

环境化学实验1

活性炭吸附实验1.实验目的①了解活性炭的吸附工艺及性能②掌握用实验方法(含间歇法、连续流法)确定活性炭吸附处理污水的设计参数的方法。

2.实验装置及材料(1)间歇式活性炭吸附装置间歇式吸附用用三角烧杯,在烧杯内放入活性炭和水样进行振荡。

(2)连续式活性炭吸附装置连续式吸附采用有机玻璃柱D25mm×1000mm,柱内500~750mm高烘干的活性炭,上、下两端均用单孔橡皮塞封牢。

各柱下端设取样口。

装置具体结构如图4—10所示。

(3)间歇与连续流实验所需的实验器材①振荡器(1台)。

②有机玻璃柱(3根D25mm×1000mm)③活性炭。

④三角烧瓶(2个,500mL)⑤COD测定装置。

⑥配水及投配系统。

⑦酸度计(1台)。

⑧温度计(1只)。

⑨漏斗(6个)。

⑩定量滤纸。

3.实验步骤(1)间歇式吸附实验①将活性炭放在蒸馏水中浸泡24h,然后在10 5℃烘箱内烘24h,再将烘干的活性炭研碎成能通过270目的筛子(0.053mm孔眼)的粉状活性炭。

②测定预先配制的废水水温、pH值和COD。

③在5个三角烧瓶中分别加入100mg、200mg、300mg、400mg、500mg粉状活性炭。

④在每个烧瓶中分别加入同体积的废水进行搅拌。

一般规定,烧瓶中废水COD(mg/L)与活性炭浓度(mg/L)比值为0.5—5.0。

⑤将上述5个三角烧瓶放在振荡器上振荡,当达到吸附平衡时即可停止。

(振荡时间一般为30min以上)。

⑥过滤各三角烧瓶中废水,并测定COD值,上述原始资料和测定结果记入表4—11。

(2)连续流吸附实验①配制水样或取自实际废水,使原水样中含COD约l00mg/L,测出具体的COD,pH 值、水温等数值。

②打开进水阀门,使原水进入活性炭柱,并控制为3个不同的流量(建议滤速分别为5 m/h,l 0 m/h,15 m/h)③运行稳定5min后测定各活性炭出水COD值。

④连续运行2—3h,每隔30min取样测定各活性炭柱出水COD值一次。

水环境化学1

水环境化学1

α0 , α1 , α2为分布系数,与pH 有关。
因此封闭碳酸体系各主要形态与pH有关,而CT与pH无关
④开放碳酸体系特点及各主要形态计算 特点: * CT ≠常数 * [H CO *]总保持与大气相平衡的固定数值 2 3 即:[CO 2 (aq)] = KH p CO 2

CT = [H2CO 3 *] /α0 =[CO 2 (aq)] /α0 = KH p CO 2 /α0 [HCO 3 - ] = α1KH p CO 2 /α0 = K1 KH p CO 2 / [H+ ]
(3)水生生物
自养 异养

几个问题 天然水中主要离子总量可以粗略地作为TDS
A.名词—总含盐量(TDS)(≡总溶解固体量)
TDS=[Ca 2 + +Mg 2 + + Na+ +K+ ]+ [HCO3 - + SO4 2 - +Cl - ]
总含盐量 (总溶解固体量)为1000~10000 mg/L
的天然水称为咸水(淡水的总含盐量< 1000mg/L)
[CO32-] = K2[HCO3-] / [H+]
(2)
= 4.69×10-11×1.00×10-3 /1.00×10-8
= 4.69 ×10-6mol.L-1
例2
若 水 体 pH 升 高 到 10.00, 碱 度 仍 保 持
1.00×10-3 mol•L-1 ,再计算该水体中各碱度 成分的浓度。 碱度 = [ HCO3-] + 2[CO32-] + [ OH-]( mol.L-1) [OH-] = 1.00×10-4 mol.L-1
查表3-1(教材P102),氧气在25℃水中的亨利常数 KO2=1.28×10-8moL/(L· Pa) 则根据亨利定律,氧气在水中的溶解度为: [O2(aq)]=KO2· 2=1.28×10-8×0.2029×1.013×105 PO =2.63×10-4moL/L 由于氧的分子量为32,所以其溶解度为8.4mg/L或8.4PPm. 结论:25℃时 [O2(aq)]=8.4mg/L 问:若已知25℃湖水中溶解氧浓度为0.32 mg/L,大气中氧的分压 为多少?

环境化学课后答案(戴树桂)主编_第二版(1-7章)完整版

环境化学课后答案(戴树桂)主编_第二版(1-7章)完整版

环境化学课后答案第一章绪论1.如何认识现代环境问题的发展过程?环境问题不止限于环境污染,人们对现代环境问题的认识有个由浅入深,逐渐完善的发展过程。

a、在20世纪60年代人们把环境问题只当成一个污染问题,认为环境污染主要指城市和工农业发展带来的对大气、水质、土壤、固体废弃物和噪声污染。

对土地沙化、热带森林破环和野生动物某些品种的濒危灭绝等并未从战略上重视,明显没有把环境污染与自然生态、社会因素联系起来。

b、1972年发表的《人类环境宣言》中明确指出环境问题不仅表现在水、气、土壤等的污染已达到危险程度,而且表现在对生态的破坏和资源的枯竭;也宣告一部分环境问题源于贫穷,提出了发展中国家要在发展中解决环境问题。

这是联合国组织首次把环境问题与社会因素联系起来。

然而,它并未从战略高度指明防治环境问题的根本途径,没明确解决环境问题的责任,没强调需要全球的共同行动。

c、20世纪80年代人们对环境的认识有新的突破性发展,这一时期逐步形成并提出了持续发展战略,指明了解决环境问题的根本途径。

d、进入20世纪90年代,人们巩固和发展了持续发展思想,形成当代主导的环境意识。

通过了《里约环境与发展宣言》、《21世纪议程》等重要文件。

它促使环境保护和经济社会协调发展,以实现人类的持续发展作为全球的行动纲领。

这是本世纪人类社会的又一重大转折点,树立了人类环境与发展关系史上新的里程碑。

2.你对于氧、碳、氮、磷、硫几种典型营养性元素循环的重要意义有何体会?(1)氧的循环:(2)碳的循环:(4)磷的循环(6)体会:氧、碳、氮、磷和硫等营养元素的生物地球化学循环是地球系统的主要构成部分,它涉及地层环境中物质的交换、迁移和转化过程,是地球运动和生命过程的主要营力。

3.根据环境化学的任务、内容和特点以及其发展动向,你认为怎样才能学好环境化学这门课程?(1)环境化学的任务、内容、特点:环境化学是在化学科学的传统理论和方法基础上发展起来的,以化学物质在环境中出现而引起的环境问题为研究对象,以解决环境问题为目标的一门新兴学科。

环境化学:第三章 水环境化学 1

环境化学:第三章 水环境化学 1
pressure
第一节 天然水的基本特征及污染物的存在形态

CO2的溶解度
已知: 干空气中CO2的含量为0.0314%(体积),水
在25℃时蒸气压为0.03167×105 Pa, CO2的亨利定律
常数是3.34×10-7mol/(L·Pa) (25℃), CO2溶于水后发生
的化学反应是:
CO2+H2O = H++HCO3-
CO32-
60
α 40
20
0
2
4
6
8
10
pH
图3-1 碳酸化合态分布图
12
第一节 天然水的基本特征及污染物的存在形态
对于开放体系,应考虑大气交换过程:
[CO 2 (aq)] K H pCO 2
CT [CO 2 (aq)] / 0
1
0
K H pCO 2
1
K1
[HCO ] CT 1
人均水资源量相当于世界人均量的1/4。已经被联合
国列为13个贫水国家之一。
第一节 天然水的基本特征及污染物的存在形态
一、天然水的基本特征
1.天然水的组成
天然水体——包括水、水中的溶解物、悬浮物
以及底泥和水生生物。
天然水的组成按形态分为:可溶性物质和悬浮物质。
悬浮物质包括:
悬浮物、颗粒物、水生生物等。
一般情况下,天然水中存在的气体有O2、CO2、
H2S、N2和CH4等。
表3-2 海水中主要溶解气体的含量范围
气体
含量范围
/mg·L-1
O2
0~8.5
N2
CO2
H2S
Ar
8.4~14.5

燃煤烟气中汞形态分析的实验研究[1]

燃煤烟气中汞形态分析的实验研究[1]

燃煤烟气中汞形态分析的实验研究1)刘 晶 刘迎晖 贾小红 王泉海 张军营 郑楚光(华中科技大学煤燃烧国家重点实验室,武汉,430074)摘 要 在一维煤粉燃烧炉台架上采用EPA 推荐的Ontario Hydro 方法,测量了燃烧不同煤种排放的烟气中汞的形态分布情况.结果表明,烟气中汞以颗粒态和气态汞的形式存在.气态汞总量在9 23 g Nm -3范围内,主要以单质汞的形式存在,占气态汞总量的52% 83%,而二价汞占17% 48%.飞灰中汞的浓度大大超过了底灰中汞的浓度,表明汞在飞灰中富集,在底灰中分散的行为.关键词 烟气,汞,形态分布.在燃煤烟气中存在着多途径的Hg 0 Hg 2+氧化还原转化过程[1],元素汞(Hg 0)易挥发,具有低的水溶性,是大气环境中相对比较稳定的形态,在大气中被长距离地输运而形成全球性的汞污染.一价汞(Hg 2+2)化合物在大气中很不稳定,而无机汞(Hg2+)化合物比较稳定,一般都是水溶性的.烟气中汞形态的分析方法一般分为两类:第一类是取样分析法,主要包括EPA 方法29,EPA 方法101A,汞形态吸附法[2],MIT 固体吸附剂法[3],有害元素取样链法[4]和X 射线荧光分析法[5].第二类是在线分析法,是基于AAS,CVAAS,CVAFS 和新兴的化学传感器等先进技术而发展起来的,其优点是在线的、实时的分析.Laudal 等[6]在燃煤电厂烟道气中Hg 0和Hg 2+的分离研究中,认为EPA 方法29与固体吸附剂法都会使Hg2+的测定结果偏高,而Ontario Hydro 方法分离这两种形态较为合适,该方法也是美国环保局(EPA)推荐作为标准的方法.因此,本文采用Ontario Hy dro 方法研究燃煤烟气中汞的形态分布.1 实验部分1 1 样品的采集实验采用小龙潭褐煤,焦作无烟煤和平顶山烟煤三种煤样,煤样的工业分析、元素分析与汞含量如表1所示.采用美国E PA 推荐的Ontario Hydro 方法进行取样.取样探枪由纯度高、耐高温的石英管制成.抽取的烟气首先经过滤球,过滤其中的固体颗粒,从而实现烟气的气固分离,过滤后的烟气将依次经过8个采样瓶,各种形态的汞将逐一被吸收.1# 3#采样2002年4月11日收稿.1)国家重点基础研究发展规划项目(G1999022212)资助课题.第22卷 第2期2003年3月环 境 化 学ENVIRONMENTAL CHEMISTRYVol.22,No.2 M arch2003瓶装有100ml KCl 溶液用以捕获Hg 0;4#采样瓶装有100ml 5%HNO 3-10%H 2O 2溶液;5# 7#采样瓶装有100ml 4%KMnO 4 10%H 2SO 4溶液,用以捕获Hg 2+;8#采样瓶装有200 300g 的硅胶.1# 8#采样瓶均浸在冰浴中.表1 煤样工业分析、元素分析与汞含量Table 1 Ulti mate,proxi mate analysis and mercury con ten t of coal samples煤 样工业分析/%M ar A ar V ar FC ar 元素分析/%N ar C a r S ar H ar O ar Hg/ g g -1小龙潭褐煤14 6013 7446 9124 741 4249 212 475 4013 160 0769焦作无烟煤1 8914 3512 9470 821 1377 140 523 041 930 2190平顶山烟煤0 7414 5214 4970 251 3776 850 573 752 200 22801 2 实验装置及燃烧工况实验是在一维煤粉燃烧炉上进行的,炉膛积木式结构,内径0 175m,总高度3 5m,其中反应段高度为1 93m,由结构相同的六级组成,每级都采用电阻丝加热,加热功率为6kW.在电阻丝外部,是耐火材料的保护层和炉膛外壁.给粉系统采用微型电磁振动给料器给粉,通过调节电流大小可以控制给粉量.空气经由送风机后分为一次风和二次风,一次风进入给粉器,携带煤粉由炉顶喷入炉内,垂直向下流动.分级的二次风由分级风管从炉膛四周均匀喷入,其高度位置分上、中、下三层.在炉膛上部,一次风和二次风混合燃烧.在实验过程中,保持总的空气过剩系数 为1 20,给粉量为5kg h -1.经热电耦测量三种煤的燃烧温度范围为980 1120!.烟气采样时,石英取样枪伸入水平烟道部分,取样点的烟气温度在350 500!范围内,利用真空泵抽取烟气,烟气流量为0 5m 3h-1,取样时间为2h.1 3 样品的消解及测定KCl 溶液:在500ml 容量瓶中稀释样品,移取10ml 试样置于微波消解罐中,加入0 5ml 浓H 2SO 4,0 25ml 浓HNO 3和1 5ml 5%KMnO 4溶液,混合后放置15min.然后加入0 75ml 5%K 2S 2O 8溶液,密闭消解罐,放入MARS 5型微波加速反应器(美国CE M 公司)中.缓慢加热至90!,保持15min,冷却至室温,将样品移入50ml 容量瓶中用三次蒸馏水定容.消解过程中溶液颜色必须呈紫色,若溶液无色则表明KMnO 4有损耗,则应再加入KMnO 4直至溶液呈紫色.分析前加入1ml 10%的硫酸羟胺溶液,这时溶液应呈无色.记录加入溶液的体积.HNO 3 H 2O 2溶液:在250ml 容量瓶中稀释样品,取5ml 试样,加入0 25ml 浓HCl,置于冰浴中冷却15min,小心加入0 25ml 饱和KMnO 4溶液以除去H 2O 2,每次加入间隔15min,加入前先混合试样,在加入5次0 25ml 饱和KMnO 4溶液后,再仔细增加0 5ml,直至溶液呈紫色,表明H 2O 2完全反应.分析前加入1ml 的10%硫酸羟胺溶液,这时试剂应呈无色.记录加入溶液的体积.H 2SO 4 KMnO 4溶液:在分析前现消解.在样品中溶解约500mg 固体硫酸羟胺,直至样品溶液澄清无色,在500ml 的容量瓶中稀释样品溶液.分析前加入1ml 10%硫酸羟胺1732期 刘晶等:燃煤烟气中汞形态分析的实验研究174环 境 化 学 22卷溶液,此时试剂应呈无色.记录加入溶液的体积.灰样:采用微波消解法,将05g的灰样(误差<00001g)混合3ml浓HCl,3ml浓HF,3ml浓HNO3,置于微波消解罐中将其密封,放入微波加速反应器中,缓慢加热至50psi,保持5min,然后再加热至80psi,保持20min后冷却至室温.在消解罐中加入15ml4%硼酸,将消解罐密封,缓慢加热至50psi,保持10min,冷却至室温,将样品移入50ml的容量瓶中定容.消解后得到的样品溶液均采用SYG I型冷蒸气原子荧光光谱仪(C VAFS)进行汞的测定,该仪器对汞的检出限为10-11g ml-1.2 结果与讨论21 烟气中气态汞和颗粒态汞的分布烟气中气态汞和颗粒态汞的分布如表2所示.以颗粒形式存在的汞可以部分的被袋式除尘器或静电除尘器等除尘设备除去.但是颗粒态汞大多存在于亚微米颗粒中,而一般除尘器对这部分粒径的飞灰的脱除效率较低.飞灰中残留的碳颗粒对汞有吸附作用,吸附的程度取决于烟气的温度、飞灰颗粒的含碳量、表面性质等[7],而吸附了汞的碳颗粒可以被除尘设备从烟气中除去.表2 烟气中气态汞与颗粒态汞的分布Table2 Distribution of vapor phase mercury and particulate mercury in flue gas气态汞/ g N m-3占烟气总汞比例/%颗粒态汞/ g N m-3占烟气总汞比例/%烟气总汞/ g Nm-3小龙潭褐煤173152515170274969017焦作无烟煤88891117151288980401平顶山烟煤230564762538452448440在本文实验条件下,烟气中的汞主要以颗粒态的形式存在,以气态形式存在的汞较少.对于这三种煤,气态汞占总汞的比例在11% 48%之间,以颗粒态形式存在的汞占52% 89%.颗粒态形式存在的汞较高,原因可能是实验的炉膛温度不高,为980 1120!,使飞灰中大量的残留碳颗粒对气态汞进行吸附,增加了颗粒态汞的含量,减少了气态汞的含量.烟气中的总汞浓度在48 80 g Nm-3之间,实验中的取样点是位于除尘器之前,所以这是在除尘器没有运行时汞的排放量,如果除尘器的脱除效率较高,将能脱除其中一部分颗粒态汞,降低汞的排放.气态汞中单质汞和二价汞的分布如表3所示.在一维炉实验中,炉膛温度为980 1120!,气态汞主要以单质汞的形式存在,单质汞占气态汞总量的52% 83%,二价汞占17% 48%.在炉膛内高于800!的高温燃烧区,煤中的汞几乎全部转变为元素汞Hg0并停留在烟气中,随烟气冷却,烟气中的汞将经历一系列物理和化学变化,有大于1/3的Hg0与烟气中其它成分发生反应,形成Hg2+的化合物[8].烟气中Hg0和Hg2+的形态分布受到多种因素的影响,如煤种,烟气温度,反应条件,气体成分和飞灰成分等.表3 气态汞中单质汞和二价汞的分布Table 3 Distribution of Hg 0and Hg 2+in vapor phase mercury煤 样Hg 2+( g Nm -3)(%)Hg 0( g Nm -3)(%)气态汞总量( g N m -3)小龙潭褐煤3 93522 713 38077 317 315焦作无烟煤4 25947 94 63052 18 889平顶山烟煤3 88916 719 16783 323 0562 2 飞灰与底灰中汞的分布在燃烧过程中,煤粉气流从上至下流经炉膛,煤粉经历着火、燃烧等一系列过程.燃烧产生的较大尺寸颗粒由于惯性作用直接落入灰斗而形成底灰;而较小尺寸的灰颗粒即飞灰继续随气流流向尾部烟道.飞灰与底灰中的汞分布如表4所示.对于这三种煤,飞灰中的汞浓度大大地超过了底灰中的汞浓度,说明汞在飞灰中富集,在底灰中分散的行为.这是由于煤中的汞在燃烧过程中的蒸发 凝结机理,在炉膛内的高温区域汞蒸发进入气相,烟气中的气相汞在较低温度下凝结在细小的飞灰颗粒表面上,从而造成汞在细小的飞灰颗粒上的富集现象,而且飞灰中残留的未燃尽碳充当了活性碳的作用,也可以吸附气相中的汞.表4 飞灰与底灰中汞的分布Table 4 Mercury distribution in fly ash and bottom ash原煤汞/ g g -1飞灰汞/ g g -1底灰汞/ g g -1小龙潭褐煤0 07690 0600 0118焦作无烟煤0 21900 1610 0091平顶山烟煤0 22800 0330 01273 结论本文在一维煤粉燃烧炉台架上采用Ontario Hydro 方法测量了燃煤烟气中汞的形态分布情况.在本文实验条件下,烟气中的汞总量为48 80 g Nm -3,主要以颗粒态的形式存在,以气态形式存在的汞较少,这主要是飞灰中的残碳对气态汞的吸附造成的.气态汞含量在9 23 g Nm -3范围内,主要以单质汞的形式存在,单质汞占气态汞总量的52% 83%,而二价汞占17% 48%.飞灰中的汞浓度大大地超过了底灰中的汞浓度,表明汞在飞灰中富集以及在底灰中分散的行为.参 考 文 献[1] Lindberg S E,Stratton W J,Atmospheric Merc ury Speciation:Concentrations and Behavior of Reactive Gaseous M ercury inAmbient Ai r.Environmental Science and Tec hnology ,1998,32(1)∀49 57[2] Laj ava K,Laitinen T,Application of the Diffusion Screen Tec hnique to the Determinati on of Gaseous Mercury and Mercury1752期 刘晶等:燃煤烟气中汞形态分析的实验研究176环 境 化 学 22卷(#)Chloride i n Flue Gas es.Int.J.Environ.Anal.Che m.,1993,52(1 4)∀65 73[3] Babur,Nott,Intercompari son of Stack Gas Mercury M easure ment M ethods.Water,Air and Soil Pollution,1995,80∀1311 1314[4] Wand J,Xiao Z,Lindqvist O,On line Meas urement of Merc ury i n Simulated Flue Gas.W ate r,Ai r and Soil Pollution.1995,80∀1217 1226[5] Kvietkus K,Xiao Z,Li ndqvis t O,Denuder Based Techniques for Sampling,Separation and Analysis of Gaseous and Particulate Merc ury in Air.Water,Air and Soil Pollution,1995,80∀1209 1216[6] Laudal D,Nott B,Bro wn T et al.,Mercury Speciati on M ethods for Utility Flue Gas.Fresenius J.Anal.Che m.,1997,358:397 400[7] David Hassett,Kurt Eykands,Mercury Capture on Coal Combus tion Fly As h.Fuel,1999,78∀243[8] Hall B,Lindqvist O,Ljungs trom E,Mercury Chemis try i n Simulated Flue Gases Related to Was te Inci neration Conditions.Environmental Sc ienc e Tec hnology,1990,24(1)∀108MERCURY SPECIATION IN COAL FIRED FLUE GASLIU Jing LIU Ying hui JIA Xiao hong WANG Quan haiZ HANG Jun ying Z HE NG Chu guang(National Laboratory of Coal Combus ti on,Huazhong Universi ty of Science and Technol ogy,Wuhan,430074)ABSTRAC TThis article discussed and c ompared different analysis methods of mercury speciation in coal fired flue gas.Experimental study was conducted on unidimensional pulverized c oal combustor. Ontario Hydro method recommended by EPA was applied to determine the mercury speciation in flue gas during combustion of three different coals.The results sho w that mercury in flue gas exists as vapor phase mercury and particulate mercury.The content of vapor phase mercury is about9 23 g Nm-3and it consists mainly of Hg0,the content of Hg0is52% 83%,and Hg2+is17% 48%.The c ontent of mercury in fly ash is far more than that in bottom ash.It suggests tha t mer cury enriches in fly ash and disperses in bottom ash.Keywords:flue gas,mercury,speciation.。

《 环 境 监 测》实验指导书(最新)(1)

《 环 境 监 测》实验指导书(最新)(1)

实验四生化需氧量的测定一、实验目的与要求掌握差压法测定生化需氧量的原理和方法。

二、实验类型验证性实验。

三、实验原理及说明把水样或经过预处理的水样注入培养瓶内,同时放入二氧化碳吸收剂(NaOH),然后将培养瓶密封置于20±1℃的恒温箱内,在一定搅拌速度下对瓶内试样进行培养。

由于好气微生物的反应,将消耗水中的氧气,呼出二氧化碳,如果及时用NaOH吸收生成的二氧化碳,培养瓶内上部空间的氧气不断地供给试样中微生物的需氧量,就造成气体氧分压的下降,用差压剂测出氧分压的下降量就可以测出水样的BOD。

四、实验仪器1、实验仪器序号名称主要用途1 差压式直读BOD测定装置利用压差测BOD2 恒温生化培养箱维持培养瓶中样品温度在20±1℃3 5ml移液管移取少量液体4 100ml量筒称量水样2、实验药剂①NaOH。

五、实验内容和步骤A.装置使用前检查方法:1.灌水银:用注射针筒将装置中附带的水银分别装到八个水银瓶中。

步骤为拧开水银瓶盖,用针筒分别小心的对八个水银瓶灌入3ml水银,在分别注入2ml蒸馏水以防水银蒸发。

2.调整水银压力计零点:用洗耳球将压力计的水银柱吸至满标尺,然后松开吸球让其自由下降,正常时水银柱下降至一定位置时应有回跳一两次的现象,显得较灵活。

若水银柱下降较慢且平稳无回跳现象,可能水银中有杂物或水银中夹有气泡,应设法清除。

对于水银中的气泡可用洗耳球将水银柱压入后反复多次吸上放下,直至将气泡排除为止,八条水银柱高低应基本一致且活动灵活。

3.检查搅拌机构:将装置中的附带电源变换器连接上测定装置并插上220伏交流电源,将装置前面的板动开关扳到接通位置,这时指示灯发亮,往一个培养瓶注入约400ml 的水,再放入搅拌子一根,把该培养瓶逐一放到装置平面的八个凹位上,观看瓶内水的旋涡深度正常为1~2cm。

B.测定时操作步骤及方法:1.提前2~3小时接通培养箱电源把箱温控制在20±1℃。

自然环境化学教案高中

自然环境化学教案高中

自然环境化学教案高中
教学目标:
1. 了解自然环境中化学反应和化学物质的影响;
2. 掌握有关自然环境中的化学知识;
3. 培养学生对环境保护的意识和责任感。

教学内容:
1. 自然环境中的常见化学反应;
2. 自然界中的一些重要化学物质;
3. 化学工程在环保方面的应用。

教学步骤:
一、导入(5分钟)
教师引导学生讨论自然环境和化学之间的联系,并介绍本节课的主题和目标。

二、讲解(15分钟)
1. 自然环境中的常见化学反应:教师讲解自然界中常见的化学反应,如大气中的氧化反应、土壤中的化学平衡等。

2. 自然界中的一些重要化学物质:介绍一些重要的自然界中的化学物质,如二氧化碳、臭
氧等。

三、实验(20分钟)
教师组织学生进行化学实验,观察一些化学反应在自然环境中的表现。

四、讨论(15分钟)
学生分组讨论自然环境中的化学问题,并提出自己的见解和建议。

五、总结(5分钟)
教师对本课内容进行总结,并强调环境保护的重要性。

教学反思:
通过本节课的学习,学生可以了解自然环境中的化学反应和化学物质的重要性,增强对环
境保护的意识和责任感,同时也提高了学生的实践能力和团队合作精神。

希望学生能够将
所学知识运用到实际生活中,积极参与环保活动,为创造一个更加美好的自然环境做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环境化学实验1活性炭吸附实验1.实验目的①了解活性炭的吸附工艺及性能②掌握用实验方法(含间歇法、连续流法)确定活性炭吸附处理污水的设计参数的方法。

2.实验装置及材料(1)间歇式活性炭吸附装置间歇式吸附用用三角烧杯,在烧杯内放入活性炭和水样进行振荡。

(2)连续式活性炭吸附装置连续式吸附采用有机玻璃柱D25mm×1000mm,柱内500~750mm高烘干的活性炭,上、下两端均用单孔橡皮塞封牢。

各柱下端设取样口。

装置具体结构如图4—10所示。

(3)间歇与连续流实验所需的实验器材①振荡器(1台)。

②有机玻璃柱(3根D25mm×1000mm) ③活性炭。

④三角烧瓶(2个,500mL) ⑤COD测定装置。

⑥配水及投配系统。

⑦酸度计(1台)。

⑧温度计(1只)。

⑨漏斗(6个)。

⑩定量滤纸。

3.实验步骤(1)间歇式吸附实验①将活性炭放在蒸馏水中浸泡24h,然后在10 5℃烘箱内烘24h,再将烘干的活性炭研碎成能通过270目的筛子(0.053mm孔眼)的粉状活性炭。

②测定预先配制的废水水温、pH值和COD。

③在5个三角烧瓶中分别加入100mg、200mg、300mg、400mg、500mg粉状活性炭。

④在每个烧瓶中分别加入同体积的废水进行搅拌。

一般规定,烧瓶中废水COD(mg/L) 与活性炭浓度(mg/L)比值为0.5—5.0。

⑤将上述5个三角烧瓶放在振荡器上振荡,当达到吸附平衡时即可停止。

(振荡时间一般为30min以上)。

⑥过滤各三角烧瓶中废水,并测定COD值,上述原始资料和测定结果记入表4—11。

(2)连续流吸附实验①配制水样或取自实际废水,使原水样中含COD约l00mg/L,测出具体的COD,pH 值、水温等数值。

②打开进水阀门,使原水进入活性炭柱,并控制为3个不同的流量(建议滤速分别为 5 m/h, l 0 m/h, 15 m/h)③运行稳定5min后测定各活性炭出水COD值。

④连续运行2—3h,每隔30min取样测定各活性炭柱出水COD值一次。

将原始资料和测定结果记人表4—12。

4.实验相关知识点活性炭具有良好的吸附性能和稳定的化学性质,是目前国内外应用比较多的一种非极性吸附剂。

与其他吸附剂相比,活性炭具有微孔发达、比表面积大的特点。

通常比表面积可以达到500一1700m2/g,这是其吸附能力强,吸附容量大的主要原因。

活性炭吸附主要为物理吸附。

吸附机理是活性炭表面的分子受到不平衡的力,而使其他分子吸附于其表面上。

当活性炭在溶液中的吸附处于动态平衡状态时称为吸附平衡,达到平衡时,单位活性炭所吸附的物质的量称为平衡吸附量。

在一定的吸附体系中,平衡吸附量是吸附质浓度和温度的函数。

为了确定活性炭对某种物质的吸附能力,需进行吸附试验。

当被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再变化,此时被吸附物质在溶液中的浓度称为平衡浓度。

活性炭的吸附能力以吸附量q表示,即(4-8)式中 q一一活性炭吸附量,即单位质量的吸附剂所吸附的物质量,g/g;V——污水体积,L;c0,c——分别为吸附前原水及吸附平衡时污水中的物质的浓度,g/L m ——活性炭投加量,g。

在温度一定的条件下,活性炭的吸附量q与吸附平衡时的浓度c之间关系曲线称为吸附等温线。

在水处理工艺中,通常用的等温线有Langmuir和Freundlich等。

其中Freundlich 等温线的数学表达式为q=Kc1/n (4-9)式中 K——与吸附剂比表面积、温度和吸附质等有关的系数;n——与温度、pH值、吸附剂及被吸附物质的性质有关的常数; g,c ——同前。

K和n可通过问歇式活性炭吸附实验测得。

将上式取对数后变换为(4-10)将g和c相应值绘在双对数坐标上,所得直线斜率为1/n,截距为K。

由于间歇式静态吸附法处理能力低,设备多,故在工程中多采用活性炭进行连续吸附操作。

连续流活性炭吸附性能可用博哈特(Bokart)和亚当斯(Adams)关系式表达,即 (4-11)因exp(KN0H/v)》1,所以上式等号右边括号内的l可忽暗不计,则工作时间t 由上式可得(4-12)式中 t——工作时间,h;v一流速,即空塔速度,m/h; H一一活性炭层高度,m;K——速度常数,m3/(mg/h)或L/(mg/h);N0一一吸附容量,即达到饱和时被吸附物质的吸附量,mg/L; c0——入流溶质浓度,mol/m3或(mg/L);cB——允许流出溶质浓度,mol/m3或(mg/L)。

在工作时间为零的时候,能保持出流溶质浓度不超过cB的炭层理论高度称为活性炭层的临界高度Ho。

其值可根据上述方程当t=0时进行计算,即(4-13)在实验时,如果取工作时间为t,原水样溶质浓度为col,用三个活性炭柱串联(见图4—l0),第一个柱子出水为cB1,即为第二个活性炭柱的进水c02:,第二个活性炭柱的出水为cB2,就是第三个活性炭柱的进水c03,由各柱不同的进出水浓度可求出流速常数K值及吸附容量N。

5.实验数据及结果整理 (1)间歇式吸附实验①根据表4-11记录的数据以lg(c0-c)/m为纵坐标,lgcB为横坐标,得出Freundlich(费兰德利希)吸附等温线图,该线的截距为lgK,斜率为1/n。

或利用q、c相应数据和式(4—9) 经回归分析,求出K、n值。

②求出K、n值代入Freundlich吸附等温线,则(4-14)图4-10 活性炭柱串联工作图表4-11 间歇式吸附实验记录表2)连续流吸附实验①实验测定结果按表4—12填写。

原水COD浓度c0= mg/L,水温℃,pH值,活性炭吸附容量No= g/g活性炭。

表4-12 连续流吸附实验记录表②由表4—12中所得t~H直线关系的截距,即为式(4—12)中的关系式求出K值。

然后推算出的=10mg/L时活性炭校的工作时间。

③根据间歇吸附实验所求得的q即为N0值,把上表的co,V代入下式中求得吸附容量下吸附时间与吸附层高度的关系为(4-15)6.注意事项①间歇吸附实验中所求得的q,如出现负值,则说明活性炭明显地吸附了溶剂,此时,应调换活性炭或原水样。

②连续流吸附实验中,如果第一个活性炭柱出水中COD值很小,小于20mg /L,则可增大流量或停止后继吸附柱进水。

反之,如果第一个吸附柱出水COD 与进水浓度相差甚小,可减少进水量。

思考题1.吸附等温线有什么实际意义,做吸附等温线时为什么要用粉状活性炭? 2.间歇式吸附与连续式吸附相比,吸附容量q是否一样?为什么? 3.Freundlich吸附等温线和Bohart-Adams关系式各有何实际意义?应用斜板沉淀实验1. 实验目的①了解KL-GSXC-1-B型改良升流式斜流沉淀池的结构和使用方法。

②比较斜流沉淀池与普通沉淀池的沉淀效果。

2. 实验装置及材料①KL-GSXC-1-B型改良升流式斜流沉淀池②测定悬浮物的设备:分析天平,具塞称量瓶、烘箱、滤纸、漏斗、量筒、烧杯等。

③水样:实际工业废水或粗硅藻土等配制水样。

3. 实验步骤①将处理水倒入贮水槽;②选择控制器板面定时/不定时开关;③打开电源,启动水泵电机,调整流量。

流量调整要适当,过大会降低沉淀效果。

具体选择视具体废水水质而定。

④待处理毕(自动定时停机或视效果手动停机),取样化验,并开泵抽洗内腔。

⑤测定进出水样悬浮物固体量。

悬浮性固体的测定方法如下:首先调烘箱至(105土1)℃,叠好滤纸放入称量瓶中,打开盖子,将称量瓶放入105℃的烘箱烘至恒重。

然后将已恒重好的滤纸取出放在玻璃漏斗中,过滤水样,并用蒸馏水冲净,使滤纸上得到全部悬浮性固体,最后将带有滤渣的滤纸移入称量瓶,烘干至恒重。

⑥悬浮性固体计算式中ω1——称量瓶十滤纸质量,g;ω2——称量瓶十滤纸十悬浮性固体的质量,g; V——水样体积,100mL。

⑦计算不同流速条件下,沉淀物的去除率。

设进水悬浮物浓度c0,出水的悬浮物浓度ci,水样的去除率。

4. 可能故障及处理①空气开关老跳闸水泵电机或电机烧毁短路,或启动电容损坏,找出故障更换维修之,或换新泵。

②漏电保护器动作本机水泵电机或控制器处有短路现象,找出故障或维修或更换之。

③水泵不上水水泵水管堵塞,或自吸灌水管灌水太少。

斜板除油实验1.实验目的①了解KL-XBGY-1-B型斜板隔油池的结构和使用方法。

②掌握斜板隔油池的除油原理。

2.实验装置和材料① KL-XBGY-1-B型斜板隔油池②测定油含量的设备:分析天平,具塞称量瓶、烘箱、滤纸、漏斗、量筒、烧杯等。

③水样:实际工业废水或油等配制水样。

3.实验步骤①将待处理的含油废水倒入贮槽内;②在控制器板面功能开关上选定时或不定时运行;③观察水泵进水管浮子是否正常浮动;④一切正常后,开启电源开关,开启水泵;⑤调整流量计流量,达到进水、出水与出油面动态平衡;⑥如定时运行,在此之前设定定时时间,然后功能开关打到“不定时”档,待调整完毕后,。

相关文档
最新文档