从热电联产走向冷热电联产讲解
冷热电联产

在技术开发与研究方面,欧盟国家在
1991年就开始实施旨在提高能源效率的 SAVE计划,许多热电联产与区域供热的
研发示范项目得到了该计划的资助。
二.热电(冷)联产的主要形式 2.1热电联产系统
锅炉加供热汽轮机 由于煤燃烧形成
的高温烟气不能直接做功,需要经锅炉 将热量传给蒸汽,由高温高压蒸汽带动 汽轮发电机组发电,做功后的低品位的 汽轮机抽汽或背压排汽用于供热。锅炉 加供热机热电联产系统适应于以煤为燃 料。
为了促进热电联产事业的发展,欧洲
委员会在财政、税收、科研、政策等方 面作出了大量工作。
1977年,成立了专门的咨询机构,对 如何提高供热效率、加快热电联产的发 展进行探讨。
1988年出台了有关条文协调热电联产 业主与电力部门之间的关系,要求电力 部门必须以合理的价格购买热电联产厂 多余的电,减少热电联产厂家的后顾之 忧。
但是,由于内燃机的润滑油和气缸冷
却放出的热量温度较低(一般不超过 90℃),而且该热量份额很大,几乎与 烟气回收的热量相当,因而这种采暖形 式在供热温度要求高的情况下受到了限 制。
内燃机的生产厂家有总部这在瑞士 的WARTSILA NSD公司、德国的
MANB&W公司以及美国的 CATERPILLAR公司等。
可向外供电。燃料电池种类不少, 根据使用的电解质不同,
主要有磷酸燃料电池(PAFC)、 熔融碳酸盐型燃料电池(MCFC)、 固体氧气物燃料电池(SOFC)和质 子交换膜燃料电池(PEMFC)等。
燃料电池具有无污染、高效率、 适用广、无噪声和能连续运转等优 点。它的发电效率可达40%以上, 热电联产的效率也达到80%以上。
燃料电池 它是把氢和氧反应生
成水放出的化学能转换成电能的装 置。
《孟伟冷热电三联供》课件

03 经济效益
降低能源成本
总结
孟伟冷热电三联供系统能够有效提高能源利用效率,减少能 源浪费,实现环境保护和经济效益的双赢局面。不仅可以应 用于商务办公楼、住宅小区,还能为工业园区带来节能减排、 提高企业竞争力的机遇。
● 04
第4章 孟伟冷热电三联供的 市场前景
政策支持
国家能源战略将冷热电三联供纳入重点发展项目,政府出台 扶持政策,加快冷热电三联供示范项目建设。这些政策措施 将为冷热电三联供的市场前景提供坚实支撑。
01 环保意识提高
随着人们对环保意识的提高,冷热电三联供市场前 景广阔。
02 适用场合多样
冷热电三联供适用于多种场合,需求量大。
03
发展趋势
技术创新
冷热电三联供技术不断创新。 系统将更加智能化。
重要发展方向
未来冷热电三联供将成为能源 领域的重要发展方向。
展望未来
冷热电三联供系统的持续发展与创新将为建筑行业带来更多智能、 高效的能源解决方案,为未来的能源发展指明方向。
孟伟冷热电三联 供的定义
孟伟冷热电三联供是指利用热电联产技术,将发电、供热和供冷 三种功能集成在一起,实现能源高效利用的系统。这种系统可以 大大提高能源利用效率,减少能源浪费,是未来绿色环保的重要 发展方向。
孟伟冷热电三联供的优势
环保
减少温室气体排放
经济
降低能源消耗成本
节能
提高能源利用效率
01 工业园区 02 商业综合体 03 住宅小区
未来发展趋势
更广泛应用
技术进步
创新解决方案
减少环境污染
保护生态环境
未来展望
随着冷热电三联供技术的不断进步和市场需求的增加,预计 未来将出现更多创新的解决方案,为能源领域带来新的发展 机遇。
冷热电联产制冷的原理

冷热电联产制冷的原理冷热电联产制冷是指在热电联产系统的基础上,同时利用余热和冷量的方式来实现制冷的过程。
该技术可以提高能源利用率,减少污染排放,对于能源和环境问题都具有重要的意义。
冷热电联产制冷系统的原理可以简单地理解为,在热电联产系统中,燃烧燃料产生能量,分别转化为电能和热能。
通过余热回收技术,将产生的热能抽取出来,进行制冷的过程。
这时候需要使用制冷剂,将热能转换为制冷能,使得制冷系统得以运转。
而整个系统的能源来源,是燃烧燃料所产生的热能和电能。
首先,热电联产系统是一种利用燃料(如天然气、燃煤等)进行发电的技术,与传统的火力发电不同,它能够将燃料中的化学能高效地转换成电能和热能。
具体地说,当燃料燃烧时,会产生高温高压的燃气,通过燃气轮机或燃气内燃机推动涡轮发电机,将化学能转化为电能。
而发电过程中产生的热能,则可以通过烟气余热回收技术抽取出来,用于供热、供蒸汽等用途。
而冷热电联产制冷,相比于传统的空气调节系统,则是在这样的热电联产系统基础上,通过恰当的制冷剂和压缩机等设备,把余热(一般为140℃左右)转化成制冷剂的制冷能,进而制冷。
具体来说,这里需要利用制冷循环循环流动的原理。
该原理是利用制冷剂的物理特性,在压缩机的作用下,将制冷剂压缩成高温高压气体,再通过冷凝器将制冷剂冷却成液态,通过蒸发器进入低压状态,让其流动完成制冷循环。
在冷热电联产制冷过程中,制冷剂就充当了热能的传递者。
热能通过换热器传递给制冷剂,随着制冷剂的循环流动,传递到外部的冷凝器。
当此时,制冷剂的温度和压力被降低,制冷剂回到蒸发器循环流动,达到循环制冷的目的。
总之,热电联产系统通过将燃料中的化学能高效地转化为电能和热能,提高了能源利用效率,并减少了污染排放。
而冷热电联产制冷技术,则在利用热能的同时,通过制冷循环将热能转化为制冷能,从而实现制冷的过程。
这样的技术不仅可以提高能源利用率,同时也能够达到环境保护的目的。
冷热电联产介绍

冷热电联产介绍1冷热电联产系统概述及其特点传统动力系统的技术开发以及商业化的努力主要着眼于单独的设备,例如,集中供热、直燃式中央空调及发电设备。
这些设备的共同问题在于单一目标下的能耗高,在忽视环境影响和不合理的能源价格情况下,具有-定的经济效益。
但是,从科技技术角度出发,这些设备都尚未达到有限能源资源的高效和综合利用。
冷热电联产(CCHP)是-种建立在能的梯级利用概念基础上,将制冷、供热(采暖和供热水)及发电过程-体化的多联产总能系统,目的在于提高能源利用效率,减少碳化物及有害气体的排放。
与集中式发电-远程送电比较,CCHP可以大大提高能源利用效率:大型发电厂的发电效率-般为35%-55%,扣除厂用电和线损率,终端的利用效率只能达到30-47%。
而CCHP的能源利用率可达到90%,没有输电损耗;另外,CCHP在降低碳和污染空气的排放物方面具有很大的潜力:据有关专家估算,如果从2000年起每年有4%的现有建筑的供电、供暖和供冷采用CCHP,从2005年起25%的新建建筑及从2010年起50%的新建建筑均采用CCHP的话,到2020年的二氧化碳的排放量将减少19%。
如果将现有建筑实施CCHP的比例从4%提高到8%,到2020年二氧化碳的排放量将减少30%。
2冷热电联产系统方案选择典型冷热电三联产系统一般包括:动力系统和发电机(供电)、余热回收装置(供热)、制冷系统(供冷)等。
针对不同的用户需求,冷热电联产系统方案的可选择范围很大:与热、电联产技术有关的选择有蒸汽轮机驱动的外燃烧式和燃气轮机驱动的内燃烧式方案;与制冷方式有关的选择有压缩式、吸收式或其它热驱动的制冷方式。
另外,供热、供冷热源还有直接和间接方式之分。
在外燃烧式的热电联产应用中,由于背压汽轮机常常受到区域供热负荷的限制不能按经济规模设置,多数是相当小的和低效率的;而对于内燃烧式方案,由于技术的不断进步,已经生产出了尺寸小、重量轻、污染排放低、燃料适应性广、具有机械效率和高排气温度的燃气轮机,同时燃气轮机的容量范围很宽:从几十到数百KW的微型燃气轮机到300MW以上的大型燃气轮机,它们用于热电联产时既发电又产汽,兼有高发电效率(30%-40%)和高的热效率(70%-80%)。
冷热电三联产原理图

标题:图1热电冷三联产示意图篇名:热电冷联产节能判定的新方法说明:如图1、2所示,三联产系统由供热、发电及溴化锂吸收式制冷组成,共有Z级回热加热和热网加热器;分产系统由供热(工业炉)、发电(凝汽式机组)及CJFD2000标题:图2 ST IG循环热电冷三联产总能系统A—压气机B—燃烧室C—透平D—发电机E—余热锅炉篇名:双工质并联型联合循环热电冷三联产总能系统的研究说明:ST IG循环是1974年,由美籍华人程大酋博士提出的,因此又称程式循环(如图2虚框内部分所示)。
它与HAT循环的主要区别在于软水注入的位置不同篊JFD2002标题:图7 HAT循环三联产总能系统的火用效率与回热度和透平进口温度的关系篇名:HAT循环构成热电冷三联产总能系统的热经济性计算与分析说明:图7为HAT循环三联产系统的火用效率和回热度与透平进口温度T4的关系。
如图所示,系统火用效率随回热度变化的规律和系统能量利用率随回热度盋JFD2002标题:图6 HAT循环三联产系统的能量利用率与循环回热度和透平进口温度的关系篇名:HAT循环构成热电冷三联产总能系统的热经济性计算与分析说明:如果只从循环的作功效率看,为保证循环经济性,不应降低HAT循环的回热度U。
但是,从系统的能量利用率和系统的火用效率看,又是另一情况。
图6蜟JFD2002标题:1-压气机;2-饱和蒸发器;3-回热器;4-燃烧室5-湿空气透平;6-供热设备;7-制冷机图2最简单的HAT循环三联产形式篇名:HAT循环构成热电冷三联产总能系统的可行性分析说明:(5)由于水蒸气成分的存在,大大降低了燃烧室内NOx的生成量,即使不采用其他措施,燃气轮机排气中的NOx含量也能被控制在5×10-6VV内。
另外,由CJFD2002标题:图1煤气热电三联产工艺篇名:煤气热电联产系统设计和运行问题探讨说明:煤气热电三联产技术是将循环流化床锅炉和干馏煤气发生炉紧密结合,实现在一套系统中煤气、热力和电力的联合生产。
冷热电联产系统

燃气冷热电三联供系统分类
按照供应范围三联供可以分为区域型和楼宇型两种 1区域型系统 主要是针对各种工业、商业或科技园区等较大的区域, 设备一般采用容量较大的机组,还要考虑冷热电供应 的外网设备,往往是需要建设独立的能源供应中心。 2楼宇型系统 是针对具有特定功能的建筑物,如写字楼、商厦、医 院及某些综合性建筑所建设的冷热电供应系统,一般 仅需容量较小的机组,机房往往布置在建筑物内部, 不需考虑外网建设。
2.具有可靠的技术保障
在国外冷热电三联供系统已应用了二十多年,经过多 年的技术改进,已形成了规范的技术体系,设备制造 技术也已成熟。不论是发电机组部分还是余热回收机 组部分在国内外都有商品供应。 三联供技术、建设和运用管理经验已被国内的专业公 司所掌握。上海浦东机场和北京燃气大楼等项目的成 功已为三联供项目的建设和管理培养了技术队伍,积 累了丰富的经验.国内的一些专业公司已具备了独立完 成项目的策划、设计、建设、调试和运营管理的能力。 根据一批冷热电三联供项目的成功经验,结合国外资 料,上海已经出台了相关技术规范《分布式供能系统 工程技术规程》。
4.具有良好的环保效益 天然气是清洁能源,燃气发 电机均采用先进的燃烧技术, 燃气三联供系统的排放指标 均能达到相关的环保标准。 根据美国的调查数据,采用 冷热电三联供系统分布式能 源,写字楼类建筑可减少温 室气体排放22.7%,商场类建 筑可减少温室气体排放34.4%, 医院类建筑可减少温室气体 排放61.4%,体育场馆类建筑 可减少温室气体排放22.7%, 酒店类建筑可减少温室气体 排放34.3%。
世界上很多国家都非常重视冷热电三联供的发展,制定了一系列 相关的鼓励政策,日本规定三联供项目的上网电价高于火力发电; 法国对于三联供项目投资给予15%的政策补贴;美国加州采用法 律规定来保证冷热电三联供项目的并网权;美国正在积极发展高 效利用能源的小型冷热电三联供,现有冷热电三联供系统110余 座,美国能源部规划2005年要建立200个示范点;2010年20%的 新建商用、写字楼类建筑物使用小型冷热电三联供;2020年50% 新建商用、写字楼类建筑采用小型冷热电三联供。 日本由于资源比较缺乏,所以对三联供研究十分重视。目前,日 本三联供系统是仅次于燃气、电力的第三大公用事业,到2000年 底已建冷热电三联供系统1413个,平均容量477kW,广泛应用于 医院、办公楼、宾馆及其它一些综合设施当中进行区域冷热供应。 在欧洲,2000年时丹麦、芬兰和荷兰等国冷热电三联供的发电量 都已超过该国总发电量的30%,澳大利亚、德国、葡萄牙和意大 利等国冷热电三联供也都有较大的比例
浅谈冷热电三联产系统

建材发展导向2018年第09期376应用程度,加强房建施工的质量。
5 结语总而言之,目前绿色施工技术处于初步发展阶段,国家应大力支持进行财政补贴,居民也应该逐渐学会接受由绿色施工建设的房屋,促进资源可持续发展减少污染浪费,建筑业企业也应加强环保意识大力推广绿色施工技术的应用,减少物料浪费。
参考文献:[1] 祁振峰.绿色施工技术在房建施工中的应用[J].工程建设与设计, 2017(18):12-13.[2] 刘昱辰.绿色施工技术在房建施工中的应用[J].建材与装饰,2017 (31):40-41.[3] 王玉.绿色施工技术在房建施工中的应用[J].城市建设理论研究(电子版),2017(16):73-74.[4] 赵世明.绿色施工技术在房建工程中的运用[J].江西建材,2015 (13):112+114.能量品质、能源价格、空气品质、电网稳定性以及全球性气候改变,是21世纪人类所要面临的重要问题。
伴随着社会与经济的发展进步,这些问题将会变得越来越尖锐。
在传统的利用燃料生产电能的过程当中,有将近2/3的输入能量没被有效的利用,然后就释放到环境之中,带来严重的能量损失。
通过利用总能系统代替原来的传统电力系统,便可有效地利用热机将热量排放给环境,生产热水、蒸汽或者可以用于通风、制冷、除湿等功能,可称这种系统为冷热电联产系统(CCHP),或者被简称为热电联产系统(CHP)。
由于对输入的燃料能量利用进行梯级分类,冷热电联产系统在节能的方面具备很大的优势;使用燃料量的减少以及对于低排放技术的采用,能够很大程度上降低了系统的污染物排放,进而减轻对于环境的压力,此外能够产生出多种能量的输出,并有效的应对多种用户的不同需求。
冷热电联产系统相比于电网的独立运行,能够降低了对于大电网的依赖性,同时也可以增加电力供应的安全性。
在夏季采用吸收式制冷方式,不仅能够有效的减少制冷高峰时期对于电网产生的压力,与此同时也能够增加天然气使用量,进而提升天然气网络运行的可靠性。
《热电联产》课件

绪论
现役电厂中具备改造为热电联产机组的潜力也很大。 经调研,目前单机容量135~300MW的现役纯凝火电机组 中,具备供热改造调节的有86个电厂,总装机台数244台, 总装机容量63.47GW。分析表明,纯凝火电机组供热改造 技术可行,投资不大(130~220元/kW),改造工期较短 (2~3个月),可形成5000万吨标准煤左右的节能能力。 综上所述,到2010年,如果从新增热电联产装机、对现役 纯凝火电机组进行供热改造、对既有的部分小锅炉改造为 热电联产供热等方面进一步加大发展热电联产的力度,将 可形成1亿吨标准煤以上的节能能力,从而为推动实现我 国的节能减排目标做出更大贡献。
20
绪论
国家发改委编制《2010年热电联产发展规划及 2020年远景发展目标》提出:到2020年,全国热 电联产总装机容量将达到2亿kW(200GW),其 中城市集中供热和工业生产用热的热电联产装机 容量都约为1亿kW。 预计到2020年,全国总发电装机容量将达9亿kW 左右,热电联产占22%,在火电机组中达37%。 据上述规划,2001~2020年期间,全国每年要增加 热电联产装机容量约900万kW,年增加节能能力 约800万吨标准煤。
河南
陕西 甘肃
36.9
11.6 7
29.5
12.9 34.9
40.4
13.8 37.0
青海
宁夏 新疆 传统采暖区 传统采暖区占全国比重 27.0 1033.8 69.7% 26.6 1001.7 60.4% 2.0 32.9 1165.4 60.5%
13
绪论
♫ 国内北京、沈阳、郑州、太原、秦皇岛等 中心城市已有200、300MW抽凝机组或供热 机组在运行。 ♫ 南京华润电力公司、福建鸿山热电有限公 司600MW超临界燃煤抽凝机组分于2010年 和2011年先后投运。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从热电联产走向冷热电联产讲解
什么是热电联产?
热电联产是指在发电过程中,同时利用余热产生热能,将热能利用于供热或制
冷的技术。
热电联产不仅可以提高能源利用效率,减少环境污染,同时也可以降低能源消耗和产生的成本。
热电联产一般分为火力和燃气两类。
火力热电联产是指利用燃煤、燃油等化石
能源进行发电,同时利用余热产生热能。
燃气热电联产是指利用天然气等燃气进行发电,同时利用余热产生热能。
什么是冷热电联产?
冷热电联产是指在发电过程中,除了利用余热产生热能外,还可以利用余热产
生冷能。
冷热电联产可以实现能源的高效利用,降低二氧化碳等温室气体的排放。
冷热电联产一般采用燃气和吸收式制冷技术。
在燃气冷热电联产系统中,通过
利用燃气发电的余热,加热吸收式制冷剂,达到制冷的目的。
在吸收式制冷技术中,利用冷热联产系统产生的低温液体来提供制冷量,同时使用吸收剂将制冷量传递到所需的位置。
冷热电联产的优势
1.环保和节能:冷热电联产中,可以充分利用能源,减少能源的浪费,
降低温室气体排放,有利于环境保护。
2.经济效益:冷热电联产可以减少能源的消耗和成本,降低企业的能源
开支,提高经济效益。
3.提高能源利用效率:冷热电联产中,可以通过合理利用余热和余冷,
提高能源利用效率,同时增加能源的可靠性和安全性。
冷热电联产的现状和未来
目前,全球各地的企业和政府都在积极推进冷热电联产技术的应用。
在美国和
欧洲等发达国家,冷热电联产技术已经得到广泛应用,很多大型设施和建筑都采用了冷热电联产系统。
在中国,随着环境保护意识的不断提高和节能减排政策的加强,冷热电联产技
术得到了越来越多的关注和应用。
目前,许多大型企业和工业园区都在积极应用冷热电联产技术,为环境保护和节能减排做出贡献。
未来,随着技术的不断进步和应用的不断扩大,冷热电联产技术将在全球范围内得到广泛应用。
同时,政府和企业也将继续加强合作,推进冷热电联产技术的发展和应用,为人类社会的可持续发展做出贡献。