(完整word版)热处理课程设计

(完整word版)热处理课程设计
(完整word版)热处理课程设计

1 前言

本次课程设计主要是制定典型零件的生产工艺,是以《金属热处理原理》、《金属热处理工艺学》和《金属材料学》为基础的一门综合课程设计。从本次课程设计中,我们可以获得综合运用所学的基本理论、基本知识、基本技能,独立分析和解决实际问题的能力;培养严肃、认真、科学的工作作风和勇于进取开拓的创新精神。通过本次课程设计,可以使我们初步掌握典型零部件生产工艺过程;掌握典型零件的选材、热处理原则和工艺制定原理;理论联系实际,综合运用基础课及专业课程多方面的知识去认识和分析零部件热处理生产过程的实际问题,培养解决问题的能力。

热处理工艺是整个机器零件和工模具制造的一部分,热处理是通过改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。合理的热处理工艺方案,不但可以满足设计及使用性能的要求,而且具有最高的劳动生产率,最少的工序周转和最佳的经济效果。

通过课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才是真正的知识,才能提高自己的实际动手能力和独立思考的能力。

2 零件图分析

万能分度头是通用设备的必备设备,它可以辅助机床完成被加工零件在圆周任意度上的分度工作。如对零件分度钻孔,铣槽,铣削圆弧和零件划线工作。其主轴的回转现可在0°-90°之间任意调整。分度主轴可配备各种类型的卡盘及夹具。

技术要求:硬度45-50HRC

A,B段硬度<30HRC

2.1受力分析及性能要求

主轴是机床上传动力的零件,由于负荷不同,受力大小也不同,常承受弯曲、扭矩、冲击、同时受到在滑移和转动部位受摩擦作用。因此主轴的性能要求是高硬度、足够的韧性及疲劳强度、强度、形状畸变要求。

上述万能分度头主轴,从工件整体来说作为机床传动件,必须具备一定的强韧性,同时后端直径48.2及A、B两部位受击段,由于承受一定的扭转、摩擦力,因此要求具备较高的强度、硬度。

3 材料的选择

依据主轴的工作条件,与滑动轴承相配合,主轴承受的载荷较小,主轴的转速也较小,工作表面精度要求不高的特点,可以选用调质钢或渗碳钢。渗碳钢表面有高的弯曲、接触、疲劳强度及高的耐磨性,心部有良好的塑性和韧性,但是从所给的零件图要求来看,此空心主轴要求内表面也有一定的耐磨性和抗疲劳性,而且渗碳钢热处理变形较大,工艺性能较差,因此渗碳钢不适合做此类轴,因而选用调质钢。

3.1调质钢简介

(1)组织特点:结构钢淬火得到的马氏体组织经高温回火后,得到在α相基体上分布有极细小的颗粒状碳化物。它的显微组织根据含有不同合金元素而引起的回火稳定性的差别和回火温度,可得到回火屈氏体或索氏体组织。

(2)成分特点:①低碳:含碳量一般为0.3-0.5%,以保证心部有足够的塑性和韧性,含碳量低时淬硬性不够,含碳量高时心部韧性下降。②合金元素:主加元素为Cr、Mn、Ni、Si等,它们的主要作用是提高钢的淬透性,从而提高心部的强度和韧性;辅加元素为W、Mo、V、Ti等强碳化物形成元素,这些元素通过形成稳定的碳化物来细化奥氏体晶粒。

(3)性能及应用:调质钢具有良好的综合力学性能,有较高的强度,良好的塑性和韧性。因而被广泛用于制造各种机械零件,如轴类、轴承和高强度结构。

3.2调质钢的选择

常用做轴类的调质钢有:45钢,40Cr,40MnVB等,参数见表1。

表1 机床主轴材料

钢号45钢40Cr 40MnVB

成分W(C)=0.45% W(C)=0.45%,W(Cr)<1.5% W(C)=0.40%,W(Mn)<1.5, W(V)<1.5%, W(B)<1.5%

临界硬度(HRC)42 41 44

临界直径/mm

(20-48 ℃)水

13-16.5 30-38 60-67

(1)45钢是普通的中碳结构钢,冷热加工性能都不错,机械性能较好,且价格低、来源广,所以应用广泛。它用做截面尺寸较小或不要求完全淬透的零件,经过调质处理后,硬度可达到220-250HBS,表面淬火之后硬度为48-52HRC。

(2)40Cr一般用做淬透性较高的零件,合金元素Cr可阻碍碳化物在高温回火时聚集长大,保证钢的高强度,铬还阻碍α相的再结晶,能保持细小的晶块结构,具有优良的机械性使α相也能保持高的强度,40Cr经调质处理后,硬度可达到

220-250HBS,表面淬火后的硬度为52-61HRC。

(3)40MnVB为要求淬透性更高一级的钢种,常用做大截面零件,合金元素Mn 的加入对钢的冲击韧性有所改善,能使钢的韧-脆转化温度下降,V可以细化奥氏体晶粒,微量的B可以显著提高钢的淬透性,经调质处理后,硬度可达到220-250HBS,表面淬火后的硬度为52-61HRC。

由上可以看出合金钢有较高的淬透性,适用于大截面零件,而且还有高的冲击韧性和低的韧-脆转化温度。但是合金钢经常遇到的一个特殊问题就是高温回火脆性,高温回火后的冷却速度是影响钢韧性的主要因素,冷却速度越慢,室温冲击韧性愈低,韧-脆转化温度愈高,因而合金调质钢的热处理过程不易把握。与合金调质钢相比,碳素结构钢的淬透性较低,尽管如此,由于碳素调质钢价格便宜,来源广,综合考虑:在满足零件要求(调制硬度235HBS,表面淬火硬度为48HRC)的前提下,应该选择45钢。

4 确定加工路线

工艺路线:锻造→机加工(粗车留精车量4mm)→调质→机加工(精车磨量0.5-0.6mm)→直径48.2mm局部淬火、回火→机加工(粗磨留精磨量0.15-0.25mm)→A、B中间段淬火、回火→机加工(精磨或精磨后超精加工)→成品

5 热处理工艺方法选择

5.1 调质

调质,即淬火加高温回火,以获得回火索氏体组织,主要用于中碳碳素结构钢或低合金结构钢以获得良好的综合机械性能。

5.1.1 淬火方法的选择

常用的淬火方法有单液淬火法、中断淬火法(双淬火介质淬火法)、分级淬火法、等温淬火法。

(1)单液淬火法,把已加热到淬火温度的工件淬入一种淬火介质,使其完全冷却。它是最简单的淬火方法,常用于形状简单的碳钢和合金钢工件。

(2)中断淬火法(双淬火介质淬火法),把加热到淬火温度的工件,先在冷却能力较强的淬火介质中冷却至接近Ms点,然后转入慢冷的淬火介质中冷却至室温,以达到在不同淬火冷却温度区间,有比较理想的淬火冷却速度。

(3)分级淬火法,把工件由奥氏体化温度淬入高于该种钢马氏体开始转变温度的淬火介质中,在其中冷却直至工件各部分温度达到淬火介质的温度,然后缓慢冷至室温,发生马氏体转变。

(4)等温淬火法,工件淬火加热后,若长期保持在下贝氏体转变区的温度,使之完成奥氏体的等温转变,获得下贝氏体组织,这种淬火方法称为等温淬火。

因为待加工的零件形状复杂,尺寸较大,为了防止淬火过程中发生变形,开裂,因而我选用中断淬火法。

5.1.2 回火方法的选择

以下某一温度,保持一定时间,然后冷却到室温的热钢件淬火后,再加热到A

1

处理工艺称为回火。回火的目的是稳定组织,消除淬火应力;调整硬度、强度、塑性、韧性。

根据回火温度的不同,分为低温回火、中温回火、高温回火三种。

(1)低温回火(150~250℃),组织是回火马氏体,和淬火马氏体相比,回火马氏体既保持了钢的高硬度、高强度和良好耐磨性,又适当提高了韧性。硬度为61~65HRC,主要用于高碳钢,合金工具钢制造的刃具、量具、模具及滚动轴承,渗碳、碳氮共渗和表面淬火件等。

(2)中温回火(350~500℃),组织为回火屈氏体,对于一般碳钢和低合金钢,中温回火相当于回火的第三温度区,此时碳化物开始聚集,基体开始回复,淬火应力基本消除。硬度为 35~50HRC,具有高的弹性极限,有良好的塑性和韧性,主用于弹性件及模具处理。

(3)高温回火(500~650℃),组织为回火索氏体,硬度为220~330HBS。淬火和随后的高温回火称为调质处理,经调质处理后,钢具有优良的综合机械性能。因此,高温回火主要适用于中碳结构钢或低合金结构钢,用来制作汽车、拖拉机、

机床等承受较大载荷的结构零件,如曲轴、连杆、螺栓、机床主轴及齿轮等重要的

机器零件。

因为该主轴需要进行调制处理,所以采用高温回火。

5.2 表面淬火的选择

表面淬火是指被处理工件在表面有限深度范围内加热至相变点以上,然后迅速

冷却,在工件表面一定深度范围内达到淬火目的的热处理工艺。利用表面淬火得到

表面硬化后,零件的心部仍可保持原来的显微组织和性能不变,从而达到提高疲劳

强度、提高耐磨性并保持心部韧性的优良综合性能。

常用的表面加热淬火方法有感应加热表面淬火、火焰淬火、电接触加热表面淬

火、电解液加热表面淬火、激光加热表面淬火、电子束加热表面淬火、等离子束加

热表面淬火等。

(1)感应加热表面淬火,即以电磁感应原理在工件表面产生电流密度很高的

涡流来加热工件表面的淬火方法。根据所产生交流电流的频率不同,可分为高频淬

火、中频淬火及高频脉冲淬火三类。

(2)火焰淬火,即用温度极高的可燃气体火焰直接加热工件表面的表面淬火方法。

(3)电接触加热表面淬火,即以当低电压大电流的电极引入工件并与之接触,以电极与工件表面的接触电阻发热来加热工件表面的淬火方法。

(4)电解液加热表面淬火,即工件作为一个电极(阴极)插入电解液中,利

用阴极效应来加热工件表面的淬火方法。

综合考虑了上述几种方法各自的特点和局限性后,我选用了感应淬火,因为它

具有工艺简单、工件变形小、生产效率高、省能、环境污染少、工艺过程易于实现

机械化和自动化等优点。

6制定热处理工艺制度

表2 45钢加热和冷却的临界点

钢号 Ac 1 Ac 3 Ar 1 Ms

45钢 725℃ 780℃ 682℃ 220-250℃

6.1 正火工艺的制定

为了消除毛胚锻造应力,降低硬度以及改善切削加工性能,同时均匀组织,细化晶粒,为了后续加热处理做准备。

(1)正火温度,选用830-850℃。一般正火加热温度是将工件加热到Ac 3或Ac cm

以上30-50℃,45钢的临界点温度为780℃,正火时一般采用热炉装料,加热过程中工件内温差较大,为了缩短工件在高温时的停留时间,一般加热温度稍高。

(2)正火保温时间,保温时间与钢的化学成分、工件形状、尺寸、炉子类型、装炉量等多种因素有关,一般按每毫米厚度保温1.5-2.5min 估算。主轴的直径为115.4mm ,考虑加工余量5mm ,因而其有效厚度为50mm ,保温时间为4h 左右。

(3)正火的冷却方式一般采用空冷。

6.2 调制工艺的制定

毛胚经镗孔、车出大台阶后进行调制处理,其目的是为了提高主轴整体的强韧性,满足性能要求。

(1)加热温度,亚共析钢淬火加热温度为Ac 3+30-50℃,一般在空气炉中加热比在盐浴中加热高10-30℃,综合考虑淬火加热温度应选用810-830℃。

850℃ 正 火 4h

(2)淬火加热时间,应包括工件整个截面加热到预定淬火温度,并使之在该温度下完成组织转变、碳化物溶解和奥氏体成分均匀化所需的时间。常用经验公式为:τ=α·k·D

式中τ——加热时间,min;

α——加热时间系数,min/mm;

k——装炉量修正系数;

D——工件有效厚度,mm。

对于管型工件的有效厚度,当高度/壁厚≧1.5时,可按1.5壁厚计算[5],图1中最大壁厚为15mm,考虑到圆锥部位的壁厚稍大一些,因而取最大壁厚为20mm。工件的有效厚度D=50mm,加热系数α和装炉修正系数k分别见表3和表4,对于45钢,α=1.0,k=1.0,则τ=1.0×1.0×50=50min,考虑到透热之后,还需要5-15min 的组织转变时间,因而我选择1h的保温时间。

表3 常用钢的加热系数(min/mm)[2]

工件材料

直径

/mm <600℃气体介

质炉中预热

750-850℃盐浴炉

中加热或预热

800-900℃气体

介质炉中加热

1100-1300℃盐

浴炉中加热

碳素钢

≤50

>50 0.3-0.4

0.4-0.5

1.0-0.2

1.2-1.5

低合金钢

≤50

>50 0.45-0.5

0.5-0.55

1.2-1.5

1.5-1.8

高合金钢

高速钢0.35-0.40

0.3-0.35

0.3-0.35

0.65-0.85

0.17-0.2

0.16-0.18

工件装炉方式修正系数K 工件装炉方式修正系数K 表4 工件装炉修正系数[5]

1.0 1.0

1.0 1.4

2.0 4.0

0.5d

1.4 0.5d

2.2

2d

1.3 1d

2.0

1.7 2d

1.8

(3)冷却方法的选择,考虑到所给主轴的形状复杂,尺寸较大,淬火过程易发生形变或开裂,我选用中断淬火法。把加热到淬火温度的工件,先在冷却能力强的盐水中冷却至接近Ms点,然后取出转入油冷,以达到在不同淬火冷却温度区间,有比较理想的淬火冷却速度。这样既保证了获得较高的硬度层和淬硬层深度又可减少内应力及防止发生变形或开裂。在水中停留时间为每5-6mm有效厚度约1s。由于出水温度难以掌握,须凭经验操作,当水中的工件抖动停止,在水中30S取出可放入油中油冷。另外,工件入水宜动不宜静,应按照工件的几何形状,作规则运动。静止的冷却介质加上静止的工件,导致硬度不均匀,应力不均匀而使工件变形大,甚至开裂。

(4)回火温度的确定:根据零件要求,调质后的硬度为235-265HBS,查表5,选择回火温度为600-640℃。

表5 45钢调质硬度[5]

钢号 回火 HBS 45

600-640

200-230 560-600 220-250 540-570

250-280

(5)回火时间的确定:回火时间一般从工件入炉后炉温升至回火温度时开始计算,一般为1-3h ,在实践中常用工件的有效厚度估算,表6是单个工件的保温时间表,多个工件堆积可适当延长保温时间。由于工件的有效厚度是50mm ,二十个工件同时加热,我选择保温时间为3h 。

有效厚度/mm

<25

25-50

50-75

75-100

100-125

125-150

保温时间/min

盐炉 20-30 30-45 45-60 75-90 90-120 120-150

空气炉 40-60 70-90 100-120 150-180 180-210 210-240

(6)回火后的冷却:回火后工件一般在空气中冷却。

6.3 淬火工艺的制定

6.3.1 直径48.2mm 局部淬火、回火加热规范的确定 其目的是为了提高扭转工件部位的强度、硬度。

830℃

1h

水冷

230℃油

620℃ 空冷

3h

调 质

表6 中、高温回火保温时间参数表[2]

(1)淬火温度:加热温度,亚共析钢淬火加热温度为Ac3+30-50℃,一般在空气炉中加热比在盐浴中加热高10-30℃,综合考虑淬火加热温度应选用810-830℃。, (2)加热时间:加热系数选择为1.2~1.5之间,零件有效厚度D 为17mm ,K 装炉修正系数选择为1.0。有上可得t =1.0×1.0×17min=17min ,故保温17min,先水淬20s 在油冷。淬火回火工件必须要垂直挂吊如图所示:

(3)回火温度根据表5选择350℃,回火时间一般从工件入炉后炉温升至回火温度时开始计算,一般为1-3h ,在实践中常用工件的有效厚度估算,表6是单个工件的保温时间表,多个工件堆积可适当延长保温时间。由于工件的有效厚度是17mm ,二十个工件同时加热,我选择保温时间2h 。

6.3.2 局部(A 、B 中间段)感应淬火、回火

A 、

B 中间段感应淬火,回火目的都是为了提高该部位表面硬度及耐磨性。

17min

830℃

230℃油冷

350℃

2h

局 部 淬 火

空冷

(1)淬火加热温度和加热方式的选择:常用加热方式有两种,一种为同时加热法,即对工件需淬火表面同时加热,一般在设备功率足够、生产批量比较大的情况下采用;另一种为连续加热法,即对工件需淬火部位中的一部分同时加热,通过感应器与工件之间的相对运动,把已加热部位逐渐移到冷却为之冷却,待加热部位移至感应器中加热,如此连续进行,直至需硬化的全部部位淬火完毕。由于所要加工的工件淬火部位比较分散,难以实现对其同时加热,因而选择连续加热法。一般高频加热淬火温度可比普通加热淬火温度高30-200℃,因而我选880-900℃。在连续加热条件下,通过控制工件与感应圈相对位移速度来实现。选用的感应器阳极电压13.5kv,阳极电流6A,屏极电流1.2A,工件连续淬火时相对移动速度100mm/min。

(2)冷却方式和冷却介质的选择:常用的冷却方式是喷射冷却法和浸液冷却法。喷射冷却法即当反应器加热终了时把工件置于喷射其中,向工件喷射淬火介质进行淬火冷却,其冷却速度可以通过调节液体压力、温度及喷射时间来控制。浸液淬火法即当工件加热终了时,浸入淬火介质中进行冷却。考虑到零件加工部位的分散性,零件形状复杂,我选择喷射冷却法,这样比较容易控制冷却速度。冷却介质使用水溶液。

(1)回火温度根据下表选择300℃

表5 45钢调质硬度[5]

钢号回火温度(℃)硬度(HRC)

45 150 55 200 55 300 50 400 41 500 33 550 26 600 22

(2)回火时间的确定:回火时间一般从工件入炉后炉温升至回火温度时开始计算,一般为1-3h ,在实践中常用工件的有效厚度估算,选择2h 。

7 热处理设备选择

常用的热处理加热设备按能源分有燃料加热设备和电加热设备;按工作温度可分为高温炉(>1000℃)、中温炉(650℃-1000℃)和低温炉(≤650℃)。生产上常用的加热设备有电阻炉、浴炉、气体渗碳炉、高频感应加热设备等。炉型的选择应依据不同的工艺要求及工件的类型来决定。

热处理设备的选择要从设备经济性、可靠性、配套性、安全性、安全性以及工厂的实际情况等来选择[6]

。 7.1 箱式电阻炉的选择

热处理电阻炉是以电为能源的,通过炉内电热元件将电能转化为热能而加热工件的炉子,是一种造价相对便宜的炉子,以降低成本。中温箱式电阻炉可用于退火、正火、回火或固体渗碳等。表6为中温箱式电阻炉各种参数,主轴的尺寸为222×115.4×48.2mm ,并且为单件小批生产,故在回火过程中选择RX3-30-9型号的箱式电阻炉。主轴平放在炉膛内,一次最多可放20根。

表6 中温箱式电阻炉产品规格及技术参数

[7]

型号

功率

电压 相数 最高工作炉膛尺寸(长×

炉温850℃时的指标

900℃

感应淬火

300℃ 空冷

2h 回火

/KW /V

温度℃ 宽×高)/(mm ×mm ×mm )

空载耗能/KW

空炉升温时间/h 最大装载

量/kg RX3-15-9 15 380 1 950 600×300×250 5 2.5 80 RX3-30-9 30 380 3 950 950×450×350 7 2.5 200 RX3-45-9 45 380 3 950 1200×600×400 9 2.5 400 RX3-60-9 60 380 3 950 1500×750×450 12 3 700 RX3-75-9

75

380

3

950

1800×900×550

16

3.5

1200

(1)鉴于所需要的加热温度,选择中温箱式电阻炉进行加热。中温箱式电阻炉可用为大批量生产考虑经济性和实用性,故选用正火选用RX3-75-9箱式电阻炉批量生产。调制淬火选用RX3-45-9箱式电阻炉批量生产。回火选用RX3-75-9箱式电阻炉批量生产。

(2)鉴于工件需要局部淬火根据淬火温度,直径48.2mm选用RDM-30-6中温盐浴炉局部淬火、选用GY2-10-8外部电热中温浴炉加热回火。

7.2 感应加热设备的选择

(1)局部(A、B中间段)选用GP100-CM型立式高频加热电源,感应器选择自喷水式,感应加热装置根据电源频率不同,可分为超高频、高频、超音频、中频、工频感应加热装置。也可按变频方式分为电子管变频装置、机式变频装置、晶闸管变频装置及工频加热装置。常见的电子管式高频、超音频变频装置的型号见表7,变频装置由晶闸管调压器、升压变压器、高压整流器,电子管振荡器等构成的主回路电路及微机控制调压电源系统组成。选择的设备频率为250KHz,因而选择

GP100-CM型号的电子管式高频设备。

表7 电子管式高频装置的型号及主要技术数据

型号输入

容量

/KVA

振荡

功率

/KW

输出

功率

/KW

振荡频率

/KHz

冷却

水耗

量/L

主要

用途

设备组

设备外形尺寸

mm×mm×mm

GP10-C2 15 10 8 500-1000 8000

淬火

焊接

振荡柜800×900×1500

GP30A-C2 50 30 25 200-300 1500

淬火

焊接振荡柜

整流柜

变压器

2200×900×2000

1200×900×1200

1150×800×1050

GP100-CM 180 100 85 200-300 3200

淬火

焊接振荡柜

整流柜

变压器

2200×900×2000

1600×1050×2000

800×500×1400

GP200-C2 400 200 170 150、50 800 淬火振荡柜1600×2000×2200

1600×2000×1800

焊接整流柜

变压器

600×670×

1500

7.3 感应器的选择

感应器是感应加热的主要工装,选择感应器的原则是保证工件表面加热层温度均匀、电效率高、容易制造、安装操作方便。按感应器形状可分为圆柱外表面加热感应器,内孔表面加热感应器、平面加热感应器以及特殊形状表面加热感应器等。

零件图中AB两处待加工部位为圆柱外表面,因而可以使用圆柱外表面加热感应器,如图3所示。零件图AB中间段部位为内孔表面,选用内孔表面加热感应器,如图4所示。

图3 高频外表面连续淬火感应器[7]

a)感应器结构 b)淬火时位置

8 工装设计

工装设计主要指的是热处理过程中所用到的辅具和夹具以及其他设备所进行的选择。

8.1 淬火介质冷却设备

图4 内孔感应器[8]

选用普通型间隙淬火槽,由于此类淬火槽水的热容量很大,冷却能力很强,工件在水中淬火时,阻碍冷却。为此淬火水槽应设置搅拌或其他使介质运动的装置,以破坏蒸汽膜和使介质温度均匀化,水温控制在15—25℃,可获得一致的淬火效果。热处理冷却设备应能保证工件在冷却时具有相应的冷却速度和冷却温度。淬火冷却设备主要指盛油介质的槽子,油的粘度大,并影响冷却能力和温度均匀度,因此油槽应控制油温和加热搅拌。油温一般保持在40-95℃,最常用的在50-75℃之间,油槽应设冷却循环系统和加热装置,还应防止水混入,注意设置排水口。一般的淬火槽的尺寸都能够满足淬火要求如选普通淬火槽

8.2 清洗设备的选择

零件在热处理前需清除锈斑、油渍、污垢、切削冷却液和研磨剂等,以保证不阻碍加热和冷却,不影响介质和气氛的纯度。以防零件出现软点、渗层不均匀、组织不均匀等影响热处理质量的现象。热处理后也常需清洗,以去除零件表面残油、残渣和炭黑等附着物,以保障热处理零件清洁度、防锈和不影响下道工序加工等要求。根据零件对清洁度要求、生产方式、生产批量及工件外形尺寸选用相应的清洗设备。

一般清洗机常用于清除残油和残盐,可分为间歇式和连续式两种。前者有清洗槽、室式清洗机,强力加压喷射式清洗剂等;后者有传送带式清洗机及各类生产线、自动线配置的悬挂输送链式、链板式、推杆式和往复式等各类专用清洗设备。根据主轴的生产特点,小批量的中小型零件,我选择室式清洗机。

8.3 工装夹具的选择

工件调制选用(a)夹具,进行局部淬火选用(b)将工件垂直挂立。

9 检验设备及方法选择

表13 主轴的技术要求和质量检验[9] [10]

检验项目正火调质局部淬火,回

局部(A、B中间

段)淬火,回火

硬度≤197HBW 淬火后工件硬度

≥50HRC,回火后

工件硬度为

235-265HBW

局部淬火部

位硬度为

45-50HRC

主轴直径48.2mm段

和A、B中间段硬度应

为45-50HRC

显微组织结构钢正火后晶主轴等主要零件测定硬化层细化的马氏体组织

粒度≥5级,为均匀铁素体加片状珠光体组织调质后金相组织

为均匀索氏体,

不允许存在游离

铁素体

深度为

1.0-1.5mm,

淬火后马氏

体3-7级

畸变径跳量不能超过加工余量的1/2,对变形超差者,也采用200KN液压校直机矫正。

外观所有经过热处理件都必须进行外观检查,不允许有开裂、烧伤、磕碰、腐蚀等缺陷

质量检测方法用磁粉探伤或其

他无损检测方

法;用金相显微

镜检查

检查部位:工件

表面;布氏硬度

计检查;用金相

显微镜检查

洛氏硬度计

测量;硬度法

测量

采用顶尖、百分表检

查径跳量

其他其他项目如力学性能、化学成分、物理性能等需要检查时按规定检查,对易产生淬火开裂件进行100%无损探伤检查

10 热处理缺陷分析[10]

在实际的热处理过程中,由于原材料的缺陷、工艺设计不当、工序不当、操作不当等原因,易造成各种热处理缺陷的产生。轴类在加工过程中可能出现的热处理缺陷如下:

(1)硬度过高,W(C)>0.45%的中、高碳钢在正火过程中容易出现硬度过高现象。产生原因:冷却速度快,组织中珠光体片间距变细,碳化物弥散度增大;装炉量大,炉温不均匀。严格控制工艺参数,可消除硬度过高缺陷。

(2)淬火畸变,产生原因:热处理前后组织比体积不同是引起体积变化的主要原因,加热温度不均,淬火冷却时的不同时性形成的热应力和组织应力使工件局部发生塑性变形。消除方式:降低淬火加热温度对减少热应力和组织应力畸变都有作用,缓慢加热或对工件进行预热,可减少加热过程中的热畸变,合理捆扎和吊挂工件。根据工件的形状采用合理的淬入方式。

(3)淬火开裂,产生原因:冷却不当,在Ms温度以下快冷,因组织应力大引起开裂,还可能是淬火后未及时回火,工件内部的显微裂纹在淬火应力作用下扩展成宏观裂纹。消除方式:正确进行预先热处理,避免正火、退火组织缺陷。合理选择淬火介质和淬火方法。易开裂工件,淬火后要及时回火。

(4)感应淬火易出现硬度不足,产生原因:单位表面功率低,加热时间短,加热表面与感应器间隙过大,这些因素都使感应加热温度降低,淬火组织中有较多

的未溶铁素体。还可能是加热结束至冷却开始的时间间隙太长,喷液时间短,喷液供应量不足或喷液压力低,淬火介质冷却速度慢,使组织中出现非马氏体组织。消除方式:正确选择感应设备,严格按照工艺参数加工。

结束语

热处理工艺的制定,必须居于工件的服役条件情况,不但要分析其性能要求,还要根据零件的外形条件,对其他不同的不为采用不同的热处理方法,只有这样才能取得良好的效果。

真是书到用时方恨少,通过这次课程设计我真是深有体会。做课程设计之前,我没有一个完整的设计思路,这足以显示我学得不够精不够深,所学的知识没有形成一个完整的体系。不能运用自如,这可以说明我们实践太少,所学的知识没有及时的整理和消化学习尚欠努力。不过通过这次课程设计让我对典型零件的热处理生产工艺过程设计的方法、步骤、思路等有了深刻的了解,基本上可以把所学的专业课知识综合地运用于实践当中,这对我以后的学习工作起到一定的作用。

再次感谢杨玲老师的认真辅导以及同学们的帮助,无论是学习还是生活,他们让我有了一个更好的认识,生活是实在的,要踏实走路。课程设计时间虽然很短暂,但我学习了很多的东西,使我眼界大开,感受颇深。

热处理工艺课程设计

热处理工艺课程设计 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

热处理工艺课程设计高速高载齿轮的热处理工艺 姓名:成** 学号:******* 学院:扬州大学机械工程学院 专业:材料成型及控制工程 设计指导老师:黄新

前言 热处理工艺是金属材料工程的重要组成部分。通过热处理可以改变材料的加工工艺性能,充分发挥材料的潜力,提高工件的使用寿命。本课程设计是在《材料科学基础》﹑《金属热处理工艺学》﹑《失效分析》﹑《金属力学性能》等课程学习的基础上开设的,是理论与实践相结合的重要教学环节。通过该课程设计,可使学生在综合运用所学专业基础理论和专业知识能力方面得到训练,学会独立分析问题和解决问题的方法,提高工程意识和工程设计能力。 热处理工艺是整个机械加工过程种的一个重要环节,它与工件设计及其它加工工艺之间存在密切关系。如何实现工件设计时提出的几何形状和加工精度,满足设计时所要求的多种性能指标,热处理工艺制定的合理与否,有着至关重要的作用。 现代工业的飞速发展对机械零部件﹑工模具等提出的要求愈来愈高。热处理不仅对锻造机械加工的顺利进行和保证加工效果起着重要作用,而且在改善或消除加工后缺陷,提高工件的使用寿命等方面起着重要作用。为获得理想的组织与性能,保证零件在生产过程中的质量稳定性和使用寿命,就必须从工件的特点﹑要求和技术条件,认真分析产品在使用过程中的受力状况和可能失效形式,正确选择材料;再根据生产规模﹑现场条件﹑热处理设备提出几种可行的热处理方案,最后根据其经济性﹑方便性﹑质量稳定性和便于管理﹑降低成本等因素,确定出一种最佳方案。

课程设计退火炉温度控制系统资料讲解

课程设计退火炉温度 控制系统

课程设计设计题目:退火炉温度控制系统 学院: 专业: 班级: 姓名: 学号: 指导老师: 日期:

摘要 退火炉是金属热处理中的重要设备,它把压力容器加热到一定温度并维持一段时间,然后让其自然冷却。其目的在于消除压力容器的整体压力。提高压力容器的使用寿命。温度是退火炉的主要被控变量,是保证其产品质量的一个重要因素。退火炉温度控制的稳定性和控制精度直接影响产品的质量。 本文以AT89C51单片机为控制核心,采用模块化的设计方案,包括硬件设计与软件设计两部分。硬件设计包括温度检测模块,按键模块,执行模块,LED显示模块,单片机最小系统。本设计要求采用电热丝加热,通过A/D转换将采集到的温度数据输入单片机中,与系统给定值比较,从而对退火炉的温度进行控制,通过按键输入控制信号,三位LED显示炉温。最后设计出最少拍无纹波控制器,通过MATLAB仿真检验是否有纹波。

目录 第1章绪论 (3) 1.1设计背景与算法 (3) 第2章课程设计的方案 (5) 2.1概述 (5) 2.2系统组成总体结构 (5) 第3章程序设计与程序清单 (7) 3.1单片机最小系统设计 (7) 3.1.1单片机选择 (7) 3.1.2时钟电路设计 (8) 3.1.3复位电路设计 (9) 3.2程序清单与电路图 (11) 3.3温度控制电路 (17) 第4章控制算法 (18) 4.1程序框图 (18) 4.2算法设计 (19) 第5章课程设计总结................................................ - 22 -

热处理设备课程设计---实验大纲

《热处理设备》课程设计教学大纲 课程编码:050251005 课程英文名称:Heat-treatment Equipment Course Design 课程总学时:3周讲课:10 实验:0 上机:40 适用专业:金属材料工程 大纲编写(修订)时间:2017.7 一、大纲使用说明 本大纲根据金属材料工程专业2017版教学计划制订。 (一)适用专业 金属材料工程。 (二)课程设计性质 本课程设计是学生在修完热处理原理与工艺学等专业基础课程,并完成工艺课程设计后进行的一次综合性和实践性很强的教学实践活动,是教学中的一个重要环节。 (三)主要先修课程和后续课程 1.先修课程:工程制图、机械设计基础、热处理原理与工艺学、热处理设备等。 2.后续课程:学生进入毕业设计教学环节。 二、课程设计目的及基本要求 课程设计教学实施目的是: 1.通过课程设计实践,树立正确的设计思想,培养综合运用热处理设备课程和其他先修课 程的理论与生产实际知识来分析和解决炉子设计问题的能力。 2.学习热处理炉设计的一般方法,掌握炉子设计的一般规律。 3.进行常规热处理炉设计基本技能的训练:例如计算、绘图、查阅资料及手册、运用标准及规范。 4.熟悉计算机Auto CAD 软件的使用操作,进行计算机辅助设计和绘图的训练。 课程设计教学的基本要求: 1.能从热处理炉功能要求出发,制订或分析设计方案,合理地选择炉型结构、确定炉体基本尺寸、合理选定耐火材料、确定炉体钢结构和钢材的规格型号。 2.能应用热平衡计算法确定热处理炉的输入总功率。能够进行电阻炉电热元件的计算或根据燃料种类进行燃料燃烧计算,进而选择燃烧装置。 3.能够从使用与维护、经济性和耐用性等问题出发,对热处理工件夹具、支架等进行结构设计。 4.绘图表达设计结果,图样符合国家制图标准,尺寸及公差标注完整、正确,技术要求合理、全面。 5.初步掌握Auto CAD 软件的使用操作,使用计算机绘制炉体总图、零件图。 三、课程设计内容及安排 1. 主要内容: 课程设计题目以箱式电阻炉、台车炉、盐浴炉、井式炉的设计为主,也可选做其它设计题目,其工作量要在3周内完成。

16Mn钢(热处理课程设计)

目录 第一章金属热处理课程设计简介 (1) 一、课程设计的任务与性质 (1) 二、课程设计的目的 (1) 三、设计内容与基本要求 (1) 四、设计步骤 (2) 第二章材料16Mn基本参数 (2) 一、16Mn材料简介 (2) 二、16Mn材料的性能及用途 (3) 三、16Mn材料化学成分 (3) 四、16Mn物理力学性能 (3) 第三章热处理工艺设计 (4) 一、16Mn热处理概述 (4) 二、16Mn热处理 (4) 三、基本参数确定 (9) 第四章 16Mn钢热处理分析 (10) 一、16Mn钢热处理后组织分析 (10) 二、16Mn钢热处理后材料性能检测 (13) 第五章设计与心得体会 (17) 参考文献 (19)

第一章金属热处理课程设计简介 一、课程设计的任务与性质 《金属热处理原理与工艺》课程是一门重要的专业课程,金属材料热处理工艺设计及实验操作是一种重要的教学环节,通过金属材料热处理工艺金相组织分析、性能检测等实验,可以培养学生掌握热处理实验方法、原理及相关设备,运用热处理的基本原理和一般规律对实验结果进行分析讨论,有助于强化学生解决问题、分析问题的能力。 二、课程设计的目的 1、课程设计属于《金属热处理原理与工艺》课程的延续,通过设计实践,进一步学习掌握金属热处理工艺设计的一般规律和方法。 2、培养综合运用金属学、材料性能学、金属工艺学、金属材料热处理及结构工艺等相关知识,进行工程设计的能力。 3.培养使用手册、图册、有关资料及设计标准规范的能力。 4.提高技术总结及编制技术文件的能力。 5.是金属材料工程专业毕业设计教学环节实施的技术准备。 三、设计内容与基本要求 设计内容:完成合金结构钢(16Mn)的热处理工艺设计,包括工艺方法、路线、参数的确定,热处理设备及操作,金相组织分析,材料性能检测等。 基本要求: 1.课程设计必须独立的进行,每人必须完成不同的某一种钢材热处理工艺设计,能够较清楚地表达所采用热处理工艺的基本原理和一般规律。 2.合理地确定工艺方法、路线、参数,合理选择热处理设备并正确操作。 3.正确利用TTT、CCT图等设计工具,认真进行方案分析。 4.正确运用现代材料性能检测手段,进行金相组织分析和材料性能检测等。 5.课程设计说明书力求用工程术语,文字通顺简练,字迹工整,图表清晰。 四、设计步骤 方案确定: 1.根据零件服役条件合理选择材料及提出技术要求。

箱式电阻炉课程设计

一、设计任务书 题目:设计一台中温箱式热处理电阻炉; 生产能力:160 kg/h ; 生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产; 要求:完整的设计计算书一份和炉子总图一张。 二、炉型的选择 根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度650℃,不通保护气氛。 三、确定炉体结构及尺寸 1.炉底面积的确定 因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。已知生产率p 为160 kg/h ,按照教材表5-1选择箱式炉用于退火和回火时的单位面积生产率p 0为 100 kg/(m 2﹒h ),故可求得炉底有效面积: F 1=P P 0=160100 =1.6m 2 由于有效面积与炉底总面积存在关系式F 1F ?=0.60~0.85,取系数上限,得炉底实际面积: F = F 10.85=1.6 0.85 =1.88m 2 2.炉底长度和宽度的确定 由于热处理箱式电阻炉设计时应考虑出料方便,取L B ?=2,因此,可求得: L =√F 0.5?=√1.880.5?=1.94m B =L 2?=1.942?=0.97 m 根据标准砖尺寸,为便于砌砖,取L =1.970 m ,B =0.978 m ,如总图所示。 3.炉膛高度的确定 按照统计资料,炉膛高度H 与宽度B 之比H B ?通常在0.5~0.9之间,根据炉子工作条件,取H B ?=0.654m 。 因此,确定炉膛尺寸如下: 长 L =(230+2)×8+(230×1 2+2)=1970 m 宽 B =(120+2)×4+(65+2)×2+(40+2)×3+(113+2)×2=978mm 高 H =(65+2)×9+37=640 mm 为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为: L 效=1700 mm B 效=700 mm H 效=500 mm 4.炉衬材料及厚度的确定 由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即113mm QN ?0.8轻质粘土砖,+80 mm 密度为250 kg m 3?的普通硅酸铝纤维毡,+113mm B 级硅藻土砖。 炉顶采用113 mmQN ?1.0轻质粘土砖,+80 mm 密度为250 kg m 3?的普通硅酸铝纤维毡,+115 mm 膨胀珍珠岩 。 炉底采用三层QN ?1.0轻质粘土砖(67×3)mm ,+50 mm 密度为250 kg m 3?的普通硅酸铝

金属学课程设计——45号钢车床主轴热处理工艺设计

金属学课程设计——45号钢车床主轴热处理工艺设计《金属学与热处理》课程设计 45号钢车床主轴热处理工艺设计 学生姓名:X X X 学生学号:xxxxxxxxxxxxx 院(系):xxxxxxxx学院年级专业:xxxxxxxxxxxxxxx 指导教师:xxxxxxxxxxx 二〇一一年十二月 课程设计任务书 题目 45号钢车床主轴热处理工艺设计 1、课程设计的目的 使学生了解、设计45号钢车床主轴热处理生产工艺,主要目的:(1)培养学生 综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。(2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。(3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。 2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等) (1)零件使用工况及对零件性能的要求分析; (2)45号钢材料成分特点及性能特点分析; (3)车床主轴热处理工艺参数; (4)表面淬火方式确定; (5)设计说明书撰写,不低于3000字。 3、主要参考文献

[1] 崔明择主编.工程材料及其热处理[M]. 北京:机械工业出版社,2009.7. [2]崔忠析主编.金属学与热处理(第二版)[M]. 北京:机械工业出版社,2007.5 [3]王建安. 金属学与热处理[M]. 北京:机械工业出版社,1980 [4] 中国机械工程学会.热处理手册[M]. 北京:机械工业出版社,2006.7 [5] 范逸明.简明金属热处理工手册[M].北京:国防工业出版社,2006.3 4、课程设计工作进度计划 第18周:对给定题目进行认真分析,查阅相关文献资料,做好原始记录。 第19周:撰写课程设计说明书,并进行修改、完善,提交设计说明书。指导教师 日期年月日 (签字) 教研室意见: 年月日学生(签字): 接受任务时间: 年月日 课程设计(论文)指导教师成绩评定表题目名称 45号钢车床主轴热处理工艺设计 分得评分项目评价内涵值分 遵守各项纪律,工作刻苦努力,具有良好的科学01 学习态度 6 工作态度。 工作 表现通过实验、试验、查阅文献、深入生产实践等渠02 科学实践、调研 7 道获取与课程设计有关的材料。 20% 03 课题工作量 7 按期圆满完成规定的任务,工作量饱满。 能运用所学知识和技能去发现与解决实际问题, 04 综合运用知识的能力 10 能正确处理实验数据,能对课题进行理论分析, 得出有价值的结论。

热处理原理与工艺课程设计

* * 大学 热处理原理与工艺课程设计 题目: 50Si2Mn弹簧钢的热处理工艺设计 院(系):机械工程学院 专业班级:** 学号:******* 学生姓名:** 指导教师:** 起止时间:2014-12-15至2014-12-19

课程设计任务及评语 院(系):机械工程学院教研室:材料教研室 学号******* 学生姓名** 专业班级*** 课程设计题目50Si 2 Mn弹簧钢的热处理工艺设计 课程设计要求与任务一、课设要求 熟悉设计题目,查阅相关文献资料,概述50Si 2 Mn弹簧钢的热处理工艺,制 定出热处理工艺路线,完成工艺设计;分析50Si 2 Mn弹簧钢的成分特性;阐述 50Si 2 Mn弹簧钢淬火、回火热处理工艺理论基础;阐述各热处理工序中材料的组织和性能;阐明弹簧钢的热处理处理常见缺陷的预防及补救方法;选择设备;给出所用参考文献。 二、课设任务 1.选定相应的热处理方法; 2.制定热处理工艺参数; 3.画出热处理工艺曲线图; 4分析各热处理工序中材料的组织和性能; 5.选择热处理设备 三、设计说明书要求 设计说明书包括三部分:1)概述;2)设计内容;3)参考文献。 工作计划 集中学习0.5天,资料查阅与学习,讨论0.5天,设计6天:1)概述0.5天,2)服役条件与性能要求0.5天,3)失效形式、材料的选择0.5天,4)结构形状与热处理工艺性0.5天,5)冷热加工工序安排0.5天,6)工艺流程图0.5天,7)热处理工艺设计1.5天,8)工艺的理论基础、原则0.5天, 09)可能出现的问题分析及防止措施0.5天,10)热处理质量分析0.5天,设计验收1天。 指 导 教 师 评 语 及 成 绩成绩:学生签字:指导教师签字: 年月日

课程设计报告模板--热处理设备

北华航天工业学院《热处理设备课程设计》 课程设计报告报告题目: 作者所在系部: 作者所在专业: 作者所在班级: 作者姓名: 作者学号: 指导教师姓名: 完成时间:

《热处理设备》课程设计任务书 课题名称750 ℃60 kg/h的箱式电阻炉设计完成时间12.27-31 指导教师陈志勇、范涛职称高工、助教学生姓名班级 总体设计要求和技术要点 总体设计要求:1.通过设计,培养学生具有初步的设计思想和分析问题、解决问题的能力,了解设计的一般方法和步骤。2.初步培养学生的设计基本技能,如炉型的选择、结构尺寸设计计算、绘图、查阅手册和设计资料,熟悉标准和规范等。3.使学生掌握设计热处理设备的基本方法,能结合工程实际,选择并设计常用热处理设备,培养学生对工程技术问题的严肃认真和负责的态度。设计一台热处理箱式电阻炉,其技术要点为:1.用途:中碳钢、低合金钢毛坯或零件的淬火、正火、调质处理及回火。 2.工件:中小型零件,无定型产品,处理批量为多品种,小批量; 3.最高工作温度: 750℃; 4.生产率:60 kg/h ; 5.生产特点:周期式成批装料,长时间连续生产。 工作内容及时间进度安排 1.热处理设备设计准备 0.5天 2.箱式电阻炉结构尺寸计算、选择炉体材料、计算分配电阻炉加热功率 0.5天 3.计算电热元件尺寸、进行结构设计 0.5天 3.核算设备技术经济指标 0.5天 4.绘制电阻炉总图、电热元件零件图 1.0天 5.编写设计说明书、使用说明书 0.5天 6.设计总结 0.5天 7.答辨 1.0天 课程设计成果 1、设计说明书:设计说明书是存档文件,是设计的理论计算依据。说明书的格式如下:(1)统一模板,正规书写;(2)说明书的内容及计算说明项目:(a)、对设计课题的分析;(b)、设计计算过程;(c)、炉子技术指标;(d)、参考文献。 2、设计图纸:(1)电阻炉总图一张(A3),要求如下:(a)、图面清晰,比例正确;(b)、尺寸及其标注方法正确;(c)、视图、剖视图完整正确;(d)、注出必要的技术条件。(2)零件图3张:电热元件零件图,炉门图,炉衬图(A4)。 3、使用说明书:电阻炉的技术规范及注意事项等。

课程设计论文热处理工艺设计

目录 第一章 热处理工设计目的 (1) 第二章 课程设计任务 (1) 第三章 热处理工艺设计方法 (1) 3.1 设计任务 (1) 3.2 设计方案 (2) 3.2.1 12CrNi3叶片泵轴的设计的分析 (2) 3.2.2 钢种材料 (2) 3.3设计说明 (3) 3.3.1 加工工艺流程 (3)

3.3.2 具体热处理工艺 (4) 3.4分析讨论 (11) 第四章 结束语 (13) 参考文献 (14)

12CrNi3叶片泵轴的热处理工艺设计 一. 热处理工艺课程设计的目的 热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是热处理原理与工艺课程的最后一个教学环节。其目的是: (1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。 (2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。 (3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。 二. 课程设计的任务 进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择热处理设备,设计或选定装夹具,作出热处理工艺卡。最后,写出设计说明书,说明书中要求对各热处理工序的工艺参数的选择依据和各热处理后的显微组织作出说明。 三. 热处理工艺设计的方法 1. 设计任务 12CrNi3叶片泵轴零件图如图3.1

图3.1 12CrNi3叶片泵轴 2、设计方案 2.1.工作条件 叶片泵是由转子、定子、叶片和配油盘相互形成封闭容积的体积变化来实现泵的吸油和压油。叶片泵的结构紧凑,零件加工精度要求高。叶片泵转子旋转时,叶片在离心力和压力油的作用下,尖部紧贴在定子内表面上。这样两个叶片与转子和定子内表面所构成的工作容积,先由小到大吸油再由大到小排油,叶片旋转一周时,完成两次吸油与排油。泵轴在工作时承受扭转和弯曲疲劳,在花键和颈轴处收磨损。因此,要求轴有高的强度,良好的韧性及耐磨性。 2.1.1失效形式 叶片泵轴的主要失效形式是疲劳断裂,在花键和轴颈处可能发生工作面的磨损、咬伤,甚至是咬裂。 2.1.2性能要求 根据泵轴的受力情况和失效分析可知 ,叶片泵轴主要是要求轴具有高的强度,良好的韧性及耐磨性,以保证轴在良好的服役条件下长时间的工作。 2.2钢种材料 12CrNi3A钢属于合金渗碳钢,比12CrNi2A钢有更高的淬透性,因此,可以用于制造比12CrNi2A钢截面稍大的零件。该钢淬火低温回火或高温回火后都具有良好的综合力学性能,钢的低温韧性好,缺口敏感性小,切削加工性能良好,当硬度为HB260~320时,相对切削加工性为60%~70%。另外,钢退火后硬度低、塑性好,因此,既可以采用切削加工方法制造模具,也可以采用冷挤压成型方法制造模具。为提高模具型腔的耐磨性,模具成型后需要进行渗碳处理,然后再进行淬火和低温回火,从而保证模具表面具有高硬度、高耐磨性而心部具有很好的韧性,该钢适宜制造大、中型塑料模具。12CrNi3高级渗碳钢的淬透性较高 ,退火困难。由于不渗碳表面未经镀铜防渗 ,因此渗碳后进行低温回火 , 降低硬度 , 便于切去不渗碳表

热处理箱式电阻炉课程设计

热处理箱式电阻炉课程设计 一、设计任务 1、炉型:箱式炉 2、设计要求:(1)生产率或一次装炉量:100kg/h (2)零件尺寸:长、宽、高尺寸最大不超过150mm (3)零件材料:中、低碳钢、低合金钢及工具钢 (4)零件热处理工艺:淬火加热 3、任务分析: (1)生产率或一次装炉量为100kg/h ,属小型炉; (2)生产长、宽、高尺寸最大不超过150mm 的零件,选择箱式炉合理; (3)淬火加热工艺表明所设计的箱式炉属于中温范畴。 二、电阻炉的炉体结构设计 1、炉型选择:由于所生产的零件尺寸较小,都不大于150mm ,且品种较多,热处理 工艺为淬火加热,具体品种的淬透性不同,工艺有所差别,故采用周期作业中温箱式热处理炉进行设计。(额定温度为950℃) 2、炉膛设计 (1)典型零件的选定 参照设计任务的要求,选用40Cr 钢齿轮模拟设计 ①齿轮参数:分度圆mm d 128= 齿顶圆mm d a 136= 齿数32=z 模数 4=m 齿宽mm b 70= 全齿高mm h 9= 齿根圆mm d f 118= 齿轮孔径mm d 40=孔 ②设定工艺曲线: 加热时间 t=a ×k ×D (a :加热系数,k :工件装炉条件修正系数,D :工件 《热处理手册》第四版第二卷,机械工业出版p55 工艺周期为5h 《热处理设备》p117表5-4

有效厚度) 查表得:a 为1.2-1.5min/mm 取1.3 min/mm k 取1.8 故时间 t=1.3×1.8×70=163.8min 取加热时间3h ,保温时间2h 工艺周期为5h (2)确定炉膛尺寸 一次装炉量=生产率×周期=100kg/h ×5h=500kg 单位重量 kg kg d d 337.6108.7b ])2 ( )2[(m 322 =???-=孔π 零件个数 809.78337 .6500 ≈== n 个 查表可知,炉底单位面积生产率 h m kg P ?=20100 有效面积 22 01100 100m m P P F === 有效 由于工件之间距离为工件高度的0.3-0.5,故取工件之间距离为30mm 设计每次装炉80个零件,分两层分布,每层40个,纵向8个,横向5个 实际炉底面积 224.125.18 .01 m m K F F ≈== = 有效实 (K 为炉底利用系数,通常为0.8-0.85) 取 长 L=1.4m , 宽 B=1.0m 炉子高度一般为(0.52-0.90)B ,取0.6B ,故H=0.6m 3、炉体各部分结构 (1)炉衬:分为内层耐火层和外层保温层 内层:用QN —1.0的轻质耐火粘土砖 外层:B 级硅藻土砖,热导率为t 1023.0131.03 -?+,最高使用温度为900℃ (2)炉墙: 耐火层:QN —1.0轻质耐火粘土砖,规格为230×113×65mm ,热导率为 t 3110256.029.0-?+=λ,厚度 mm 1131=δ 保温层:B 级硅藻土砖,规格为230×113×65mm ,热导率为 t 1023.0131.03 -2?+=λ,厚度 mm 2302=δ 炉膛尺寸: L=1.4m B=1.0m H=0.6m 《热处理设备课程设计指导书》附表2

热处理工艺设计课程设计

北华航天工业学院 《热处理工艺设计》 课程设计报告 报告题目:CA8480轧辊车床主轴 和淬火量块 热处理工艺的设计 作者所在系部:材料工程系 作者所在专业:金属材料工程 作者所在班级:B10821 作者学号:20104082104 作者姓名:倪新光 指导教师姓名:翟红雁 完成时间:2013.06.27

课程设计任务书 课题名称 CA8480轧辊车床主轴和淬火量块 热处理工艺的设计 完成时间06.27 指导教师翟红雁职称教授学生姓名倪新光班级B10821 总体设计要求 一、设计要求 1.要求学生在教师指导下独立完成零件的选材; 2.要求学生弄清零件的工作环境。 3.要求学生通过对比、讨论选择出最合理的预先热处理工艺和最终热处理工艺方法; 4.要求学生分别制定出预先热处理和最终热处理工艺的正确工艺参数,包括加热方式、加热温度、保温时间以及冷却方式; 5.要求学生写出热处理目的、热处理后组织以及性能。 工作内容及时间进度安排 内容要求时间备注 讲解并自学《金属热处理工艺》课本第六章;收集资料, 分析所给零件的工作环境、性能要求, 了解热处理工艺设计的方法、内容和步骤; 通过对零件的分析,选择合适的材料以及技术要 求 0.5天 热处理工艺方法选择和工艺路线的制定 确定出几种(两种以上)工艺 线及热处理 方案,然后进行讨论对比优缺点, 确定最佳工艺 路线及热处理工艺方案 1.5天 热处理工艺参数的确定及热处理后组织、性能 查阅资料,确定出每种热处理工艺的参数, 包括加热方式、温度和时间,冷却方式等,并绘 出相应的热处理工艺曲线 1.5天 编写设计说明书按所提供的模板 0.5天 答辩1天 课程设计说明书内容要求 一. 分析零件的工作环境,确定出该零件的性能要求,结合技术要求,选出合适的材料,并阐述原因。 二. 工艺路线和热处理方案的讨论。要求两种以上方案进行讨论,条理清晰,优缺点明确。 三. 每种热处理工艺参数的确定(工序中涉及到的所有热处理工艺)。写出确定参数的理由和根据,(尽可能写出所使用的设备)要求每一种热处理工艺都要画出热处理工艺曲线; 四. 写出每个工序的目的以及该零件热处理后常见缺陷。

热处理设备课程设计淬火盐水槽的设计

2015—2016学年第二学期 热处理设备课程设计淬火盐水槽设计 设计者: 班级: 指导教师: 设计日期:

目录 一.淬火槽设计 1.基本要求 2.设计内容 二.设备计算和选择 1.淬火盐水槽的尺寸确定 1.1淬火盐水槽的结构形式 1.2淬火盐水槽的尺寸计算 2.冷却循环系统的组成 3.冷却器的计算与选择 三.绘图 四.收获总结 致谢

一、淬火槽设计 1.基本要求 冷却是热处理生产的重要组成部分。淬火冷却设备的主要作用是实现对材料的淬火冷却,达到所要求的组织和性能;同时减少或避免工件在冷却过程中开裂和变形。 对淬火冷却设备的基本要求是: ①能容纳足够的淬火介质,以满足吸收高温工件的热量的需要; ②能控制淬火介质的温度、流量和压力参数等,以充分发挥淬火介质的功能; ③能造成淬火介质与淬火工件之间的强烈运动,,以加快热交换过程; ④对容易开裂和变形的工件,应设置适当的保护装置,以防止开裂和减少变形; ⑤设置介质冷却循环系统,以维持介质温度和运动; ⑥保护环境和生产安全。 2.设计内容 ①根据工件的特性、淬火方法、淬火介质、生产量和生产线的组成情况,确定淬火槽的结构类型; ②根据每批淬火件的最大重量、最大淬火尺寸确定淬火槽的容积; ③选择淬火介质在槽内的运动形式,确定供排介质的位置。确定驱动介质运动装置的安装位置; ④选择淬火槽的结构材料,考虑材料的抗蚀性和避免应用催化介质变质的材料; ⑤绘制水槽结构图,给出用料明细表; ⑥给出配套冷却器(型号、换热量)。 二、设备计算和选择 1.淬火槽的尺寸确定 1.1淬火槽的结构形式 此次设计的淬火槽结构形式为普通型间隙作业淬火槽,主体结构由槽体、介质进排液管及溢流槽组成。 ①槽体 淬火槽槽体材质采用Q235钢。其屈服强度δs=235MPa,抗拉强度δ

沈阳理工大学-大创版-热处理工艺课程设计教学大纲

《热处理工艺课程设计》教学大纲 (Design of Heat Treating Processes) 课程编号:050251002 学时/学分:3周/6学分 一、大纲说明 本大纲根据金属材料工程专业2012年教学计划制订 (一)适用专业:金属材料工程 (二)课程设计性质:金属材料工程专业必修课、考查课。 (三)主要先修课程和后续课程 1、先修课程:材料的力学性能,材料工程基础,材料的现代检测方法,材料科学基础 2、后续课程:工程材料学,热处理设备设计,材料的表面处理 二、课程设计目的及基本要求 1. 课程设计目的 (1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其受到卓越工程师基本的训练。 (2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。 (3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。 2. 基本要求 在指导教师的指导下,独立完成2个典型零件的热处理工艺设计,写出设计说明书。 两个热处理工艺的类型为:(1)设计典型零件的一个普通热处理工艺;(2)钢的化学热处理工艺设计、表面热处理工艺设计、特种热处理工艺设计、铸铁热处理工艺设计和有色金属材料热处理工艺设计,任选其一。 热处理工艺制定以学生生产实习的企业为设计依据,包括零件图纸、材料种类、设备条件、管理规程等。 三、课程设计内容及安排 第一周钢的普通热处理工艺设计 第二周钢的化学热处理工艺设计、表面热处理工艺设计、特种热处理工艺设计、铸铁热处理工艺设计和有色金属材料热处理工艺设计,任选其一。 第三周周一~周三撰写设计说明书 周四~周五答辩 四、指导方式 教师面对面指导设计工作,解答疑难问题。

课程设计论文--热处理工艺设计(精选.)

沈阳理工大学热处理工艺课程设计 目录 第一章 热处理工设计目的 (1) 第二章 课程设计任务 (1) 第三章 热处理工艺设计方法 (1) 3.1 设计任务 (1) 3.2 设计方案 (2) 3.2.1 12CrNi3叶片泵轴的设计的分析 (2) 3.2.2 钢种材料 (2) 3.3设计说明 (3) 3.3.1 加工工艺流程 (3) 3.3.2 具体热处理工艺 (4) 3.4分析讨论 (11) 第四章 结束语 (13) 参考文献 (14)

沈阳理工大学热处理工艺课程设计 12CrNi3叶片泵轴的热处理工艺设计 一. 热处理工艺课程设计的目的 热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是热处理原理与工艺课程的最后一个教学环节。其目的是: (1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。 (2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。 (3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。 二. 课程设计的任务 进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择热处理设备,设计或选定装夹具,作出热处理工艺卡。最后,写出设计说明书,说明书中要求对各热处理工序的工艺参数的选择依据和各热处理后的显微组织作出说明。 三. 热处理工艺设计的方法 1. 设计任务 12CrNi3叶片泵轴零件图如图3.1 图3.1 12CrNi3叶片泵轴

2、设计方案 2.1.工作条件 叶片泵是由转子、定子、叶片和配油盘相互形成封闭容积的体积变化来实现泵的吸油和压油。叶片泵的结构紧凑,零件加工精度要求高。叶片泵转子旋转时,叶片在离心力和压力油的作用下,尖部紧贴在定子内表面上。这样两个叶片与转子和定子内表面所构成的工作容积,先由小到大吸油再由大到小排油,叶片旋转一周时,完成两次吸油与排油。泵轴在工作时承受扭转和弯曲疲劳,在花键和颈轴处收磨损。因此,要求轴有高的强度,良好的韧性及耐磨性。 2.1.1失效形式 叶片泵轴的主要失效形式是疲劳断裂,在花键和轴颈处可能发生工作面的磨损、咬伤,甚至是咬裂。 2.1.2性能要求 根据泵轴的受力情况和失效分析可知 ,叶片泵轴主要是要求轴具有高的强度,良好的韧性及耐磨性,以保证轴在良好的服役条件下长时间的工作。 2.2钢种材料 12CrNi3A钢属于合金渗碳钢,比12CrNi2A钢有更高的淬透性,因此,可以用于制造比12CrNi2A钢截面稍大的零件。该钢淬火低温回火或高温回火后都具有良好的综合力学性能,钢的低温韧性好,缺口敏感性小,切削加工性能良好,当硬度为HB260~320时,相对切削加工性为60%~70%。另外,钢退火后硬度低、塑性好,因此,既可以采用切削加工方法制造模具,也可以采用冷挤压成型方法制造模具。为提高模具型腔的耐磨性,模具成型后需要进行渗碳处理,然后再进行淬火和低温回火,从而保证模具表面具有高硬度、高耐磨性而心部具有很好的韧性,该钢适宜制造大、中型塑料模具。12CrNi3高级渗碳钢的淬透性较高 ,退火困难。由于不渗碳表面未经镀铜防渗 ,因此渗碳后进行低温回火 , 降低硬度 , 便于切去不渗碳表面的渗碳层。材料加工成叶片泵轴需进行复杂的化学热处理,使心部硬度为 HRC31~HRC41,表面硬度不低于HRC60,从而使泵轴表面有较高硬度,心部呈现

课程设计退火炉温度控制系统

课程设计设计题目: 退火炉温度控制系统 学院: 专业: 班级: 姓名: 学号: 指导老师: 日期:

摘要 退火炉是金属热处理中的重要设备,它把压力容器加热到一定温度并维持一段时间,然后让其自然冷却。其目的在于消除压力容器的整体压力。提高压力容器的使用寿命。温度是退火炉的主要被控变量,是保证其产品质量的一个重要因素。退火炉温度控制的稳定性和控制精度直接影响产品的质量。 本文以AT89C51单片机为控制核心,采用模块化的设计方案,包括硬件设计与软件设计两部分。硬件设计包括温度检测模块,按键模块,执行模块,LED显示模块,单片机最小系统。本设计要求采用电热丝加热,通过A/D转换将采集到的温度数据输入单片机中,与系统给定值比较,从而对退火炉的温度进行控制,通过按键输入控制信号,三位LED显示炉温。最后设计出最少拍无纹波控制器,通过MATLAB 仿真检验是否有纹波。

目录 第1章绪论 (3) 1.1设计背景与算法 (3) 第2章课程设计的方案?5 2.1概述?5 2.2系统组成总体结构 (5) 第3章程序设计与程序清单 (7) 3.1单片机最小系统设计 (7) 3.1.1单片机选择 (7) 3.1.2时钟电路设计 (8) 3.1.3复位电路设计?9 3.2程序清单与电路图 (11) 3.3温度控制电路................................ 错误!未定义书签。第4章控制算法?18 4.1程序框图? 18 4.2算法设计 (19) 第5章课程设计总结?错误!未定义书签。

第1章 绪论 1.1 设计背景与算法 背景:退火炉是冶金和机械行业常用的热处理工业设备。一般说来,退货处理工艺师冶金和机械产品的最后处理工序,它的处理效果将直接影响产品的质量。因此,对退火炉的基本要求就是根据退火处理工艺曲线,提供准确的升温,保温及降温操作,同时保证颅内各处的温度均匀。在目前实际生产中,退火炉的种类很多,按燃料分有燃油炉、燃气炉、电炉等。电炉按台数计算占80%,燃油炉和燃气炉占20%。 退火是金属热处理中的重要工序,它是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)的一种金属热处理工艺。目的是使经过铸造、锻轧、焊接或切削加工的材料或工件软化,改善其塑性和韧性,使其化学成分均匀化,并去除其参与应力,或得到预期的物理性能。温度控制是热处理质量控制的重要技术措施,是退火控制的核心。智能温控将大大提高热处理质量,消除认为的不稳定因素,提高温度控制的精确程度,满足特殊材料的热处理要求。 同时,退火炉采用自动化技术控制温度,对保护生态环境方面也具有重要意义。退火炉的炉温动态特性直接影响产品的质量,生产过程中对钢材的温升曲线有较高的要求,温度过低,达不到退火的预期目的;温度过高将导致过热,甚至过烧。通过对退火炉中生产过程的优化控制和自动工艺管理控制,不但可以缩短生产周期,提高产量和质量,还可以减少人为因素造成的废品率。热处理后产生的废气对自然环境的污染很大,退火炉的燃料如果是欠氧燃烧,燃料燃烧不充分,则会产生大量黑烟,而过氧燃烧又会产生氮氧化合物等有害气体。若通过对燃烧过程进行有效控制,使燃烧在合理的空燃比下运行,则可以极大的减少退火炉对周边环境的污染,对构建科持续发展型社会就有积极的意义。 目前世界各国对能源消耗和大气环境的污染越来越重视,而我国既是钢铁大国又是能源大国,因此研究高性能退火炉温度控制系统具有极为重要的现实意义。 算法:在数字随动控制系统中,要求系统的输出值尽快地跟踪给定值的变化,最少拍控制是满足这一要求的一种离散化设计方法。 最少拍控制是一种直接数字设计方法。所谓最少拍,就是要求闭环系统对于某种特定的输入在最少个采样周期内达到无静差的稳态,是系统输出值尽快地跟踪期望值的变化。 闭环Z传函具有形式 z z z z N N ---+++=Φφφφ 221)(1

真空热处理炉课程设计

真空热处理炉 设计说明书 (课程设计) 一、设计任务说明说: WZC-60型真空淬火炉技术参数:

二、确定炉体结构和尺寸: 1、炉膛尺寸的确定 由设计说明书中,真空加热炉的有效加热尺寸 为900mm×600mm×450mm ,隔热屏部结构尺寸 主要根据处理工件的形状、尺寸和炉子的生产率决定, 并应考虑到炉子的加热效果、炉温均匀性、检修和装 出料操作的方便。一般隔热屏的表面与加热器之 间的距离约为50—100mm;加热器与工件(或夹具、 料筐)之间的距离为50一150mm。隔热屏两端通常不 布置加热器,温度偏低。因此,隔热屏每端应大于 有效加热区约150—300mm,或更长一些。从传热学 的观点看,圆筒形的隔热屏热损失最小,宜尽量采用。 则: L=900+2×(150~300)=1100~1400mm B=600+2×(50~150)+2×(50~100) =800~1100mm H=450+2×(50~150)+2×(50~100) L=1300㎜=650~950mm B=900㎜不妨,我们取L=1300 mm;B=900mm;H=850mm。 H=850㎜

2、炉衬隔热材料的选择 由于炉子四周具有相似的工作环境,我们一般选用相同的材料。为简单起见,炉门及出炉口我们也采用相同的结构和材料。这里我们选用金属隔热屏,由于加热炉的最高使用温度为1300℃,这里我们采用六层全金属隔热屏,其中三层为 钼层,外三层为不锈钢层。 按设计计算,第一层钼辐射屏与炉温相等,以后各辐射屏逐层降低,钼层每层降低250℃左右,不锈钢层每层降低150℃左右。 则按上述设计,各层的设计温度为: 第一层:1300℃;第二层:1050℃; 第三层:800℃;第四层:550℃; 第五层:400℃;第六层:250℃; 水冷夹层壁:100℃ 最后水冷加层壁的温度为100℃<150℃, 符合要求。 3、各隔热层、炉壳壁的面积及厚度 (1)、隔热屏 由于隔热层屏与屏之间的间距约8~15mm,这里我们取10mm。钼层厚度0.3mm,不锈钢层厚度0.6mm。屏的各层间通过螺钉和隔套隔开。

热处理工艺课程设计-精品

钢的热处理工艺设计说明 书 学生姓名 设计题目活塞杆Ⅱ 指导教师 系主任 完成日期年月日

目录 一目的————————————————————3二设计任务—————————————————— 3 三设计内容和步骤——————————————— 3 (1)零部件简图,钢种和技术要求——————— 3 (2)工作条件,破坏方式,性能要求—————— 4 (3)零部件用钢的分析—————————————4 四热处理工艺及参数的论述———————————9 五选择加热设备————————————————18 六工装图——————————————————— 19 七工序质量检验项目、标准方法———————— 20 八缺陷及其分析————————————————20 九参考文献————————————————— 22

一、目的 1. 深入了解热处理课程的基本理论 2. 初步学会制定零部件的热处理工艺 3. 了解与本设计有关的新技术,新工艺 4. 设计尽量采用最新技术成就,并注意和具体实践相结合,是设计具有一定的先进性和实践性. 二、设计任务 1. 编写设计说明书 2. 编制工序施工卡片 3. 绘制必要的工装图 三、设计内容和步骤 3.1零部件简图、钢种和技术要求 1.简图 2.钢种: 35CrMo 3.技术要求:

(1)调质处理HB217~269; (2)直径80外表面镀铬; (3)直径42表面高频处理,硬度HRC55~57; 3.2零部件的工作条件、破坏方式和性能要求的分析 (1)零部件的工作条件 活塞杆是支持活塞做功的连接部件,大部分应用在油缸、气缸运动执行部件中,是一个运动频繁、技术要求高的运动部件。 (2)零部件的主要破坏方式 1)断裂活塞杆断裂部位在活塞杆与十字头锁紧螺母旋合处的最末2~ 3 道螺纹的根部。该处螺纹系锻造成形后采用滚压加工, 螺纹直径为M95。活塞杆运行时间为2. 5 年。活塞杆在工作过程中主要承受交变的拉压载荷作用。 2)磨损颗粒污染为活塞杆损坏最快的因素之一,虽然在导向套上装有防尘圈及密封件等,但也难免将尘埃、污物带入液压系统,引发活塞杆的磨损。 3)腐蚀活塞杆在工作过程中活塞杆裸露在外直接和环境相接触,很易引发氧化,从而降低其使用寿命。 ( 3 )零部件性能要求 1.具有高的接触疲劳极限; 2.具有高的抗弯强度; 3.具有高的耐磨性; 4.具有足够的冲击韧性; 5.具有高的传递精度和最小的工作响音. 3.3零部件用钢的分析 1.相关钢种化学成分的作用 (1)35CrMo

柱塞热处理工艺课程设计

柱塞热处理工艺课程设计

1 前言 热处理工艺是金属材料工程的重要组成部分。通过热处理可以改变材料的加工工艺性能,充分发挥材料的潜力,提高工件的使用寿命。这次课程设计是在《材料科学基础》、《金属热处理工艺学》、《金属力学性能》、《失效分析》等课程学习的基础上开设的,是理论与实践相结合的重要教学环节。通过该课程设计我们在综合运用所学专业知识能力方面得到训练,学会独立分析问题和解决问题的方法,提高工程设计意识和工程设计能力。 总的来说本次热处理与工艺课程设计的目的有三个,(1)初步掌握典型零件部件生产工艺过程;(2)掌握典型零件的选材、热处理原则和工艺指定原理;(3)理论联系实际,综合运用基础课及专业课程多方面的知识去认识和分析零部件热处际问题,培养解决问题的能力。 热处理工艺是机械加工过程中的一个重要环节,它与工件设计及其加工工艺之间存在密切关系。如何实现工件设计时提出的几何形状和加工精度,满足设计时所要求的多种性能指标,热处理工艺制定的合理与否,有着至关重要的作用。设计热处理工艺之前,应该准确分析零件图,分析其工作条件,使用性能,技术要求等,才能为下一步材料的选择做准备。根据上一步的分析和对各种金属材料的学习,选择几种常用材料,并进行对比选择,选出最佳的材料进行下一步的工艺制定。 要想设计出合理的热处理工艺,必须了解所选材料的合金化原理,相变温度以及零件的服役条件,技术要求等,从而制定出合理的退火、正火、淬火、回火的工艺参数。此外合理的选择热处理设备也是重点之一,准确的选择加热和冷却设备可以确保有效的利用资源。热处理工艺的最佳方案可以保证零件达到使用性能及质量稳定可靠、工序简单、管理方便、生产效率高、原材料消耗少、生产成本低廉,并能能到节能、环保的要求。但是单一的热处理工艺方案通常情况是很难达到这几个方面的要求,所以可以根据零件的技术要求,通过几种热处理工艺方案的合理结合达到。任何零件在进行完热处理工艺后都会产生各种程度的缺陷,所以最后的检验是非常必要的,通过检验才知道是否符合我们的技术要求,我们通过分析这种因素后才能确定出一种最佳的方案。

相关文档
最新文档