第14章 模糊数学分析方法

合集下载

模糊数学方法及其应用

模糊数学方法及其应用

第j类的聚类中心为向量: x(j)(x1 (j),x2 (j), ,xm (j))
第j类中第k个变量的平均值:
x ( j) k
x k (j) n 1 jin j1x i(jk ) (k 1 ,2 , ,m );x (j) (x 1 (j),x 2 (j), ,x m (j))
x k 1 ni n 1x ik (k 1 ,2 , ,m );x (x 1 ,x 2 , ,x m )
k 1
k 1
符号 ∧和∨分别表示两个元素取小和取大。
例如:
8
当前您正浏览第八页,共四十一页。
x 1 ( 0 . 1 0 . 2 0 . 3 )x 2 ( 0 . 4 0 . 5 0 . 6 )
m
(xikxjk)0.10.20.30.6
k1 m
(xikxjk)0.40.50.61.5 r120.6/1.50.4
m
m
r ij(x ik x j) k/ x ik x jk (i,j 1 ,2 , ,n )
k 1
k 1
x 1 ( 0 . 1 0 . 2 0 . 3 )x 2 ( 0 . 1 0 . 2 0 . 3 )
m
(xikxjk)0.10.20.30.6
k1 m
xikxjk0.10.20.30.6 r120.6/0.61.0
m
其中
Mma(x ij k1
xikxjk)
显然|rij|∈[0,1] ,若rij<0, 令rij’=(rij+1)/2,则rij’∈[0,1]。
7
当前您正浏览第七页,共四十一页。
(2)夹角余弦法
见相似性度量聚类中的相似系数。
(3)相关系数法 见相似性度量聚类中的相关系数。

数学建模方法详解--模糊数学

数学建模方法详解--模糊数学

数学建模方法详解--模糊数学在生产实践、科学实验以及日常生活中,人们经常会遇到模糊概念(或现象)。

例如,大与小、轻与重、快与慢、动与静、深与浅、美与丑等都包含着一定的模糊概念。

随着科学技术的发展,各学科领域对于这些模糊概念有关的实际问题往往都需要给出定量的分析,这就需要利用模糊数学这一工具来解决。

模糊数学是一个较新的现代应用数学学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科。

统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定性的领域扩大到了模糊领域,即从精确现象到模糊现象。

在各科学领域中,所涉及的各种量总是可以分为确定性和不确定性两大类。

对于不确定性问题,又可分为随机不确定性和模糊不确定性两类。

模糊数学就是研究属于不确定性,而又具有模糊性的量的变化规律的一种数学方法。

本章对于实际中具有模糊性的问题,利用模糊数学的理论知识建立数学模型解决问题。

1.1 模糊数学的基本概念1.1.1 模糊集与隶属函数 1. 模糊集与隶属函数一般来说,我们对通常集合的概念并不陌生,如果将所讨论的对象限制在一定的范围内,并记所讨论的对象的全体构成的集合为U ,则称之为论域(或称为全域、全集、空间、话题)。

如果U 是论域 ,则U 的所有子集组成的集合称之为U 的幂集,记作)(U F 。

在此,总是假设问题的论域是非空的。

为了与模糊集相区别,在这里称通常的集合为普通集。

对于论域U 的每一个元素U x ∈和某一个子集U A ⊂,有A x ∈或A x ∉,二者有且仅有一个成立。

于是,对于子集A 定义映射}1,0{:→U A μ即⎩⎨⎧∉∈=,0,,1)(A x A x x A ,μ则称之为集合A 的特征函数,集合A 可以由特征函数唯一确定。

所谓论域U 上的模糊集A 是指:对于任意U x ∈总以某个程度)]1,0[(∈A A μμ属于A ,而不能用A x ∈或A x ∉描述。

模糊数学方法

模糊数学方法

经典集合论只能把自己的表现力限制在那些有明确外延 的概念和事物上,它明确地限定:每个集合都必须由明 确的元素构成,元素对集合的隶属关系必须是明确的, 决不能模棱两可。
但是,在客观世界中还普遍存在着大量的模糊现象。由 于现代科技所面对的系统日益复杂,模糊性总是伴随着 复杂性出现。
各门学科,尤其是人文、社会学科及其它“软科学” 的数学化、定量化趋向把模糊性的数学处理问题推向 中心地位。
0.6 0.6 0.5 B x1 x2 x3
d A, B 0.8 0.6 0.4 0.6 0.7 0.5 0.6 1 A, B d A, B 0.2 3 e A, B 0.2 3 A, B 0.2 A和 B 的 在有限论域X上有两个模糊子集 A 和 B ,


2 2 A 2 A, A e A, B n n


x x
i 1 A i B i
n
2
1 0 1 A x1 x2 x3
1 1 0 B x1 x2 x3
A, A 0.3 B, B 0.433 A 0.6 B 0.866
欧几里得距离定义如下: 绝对欧几里得距离: e A, B
x x
i 1 A i B i
n
2
1 相对欧几里得距离: A, B e A, B n
怎样用距离来描述一个模糊集合的模糊程度呢?要定 义一个跟 A 最贴近的集合,这个集合用来 A 表示,如 A 的相应元素的隶属度 果 A 里某元素的隶属度>0.5, 为1,如果<=0.5,则相应的隶属度为0,即

模糊数学-模糊数学基本知识

模糊数学-模糊数学基本知识

隶属函数参数化
1. 三角形隶属函数
0
trig ( x;
a,
b,
c)
x a ba
cx
cb
0
xa a xb b xc
cx
trig(x; a,b, c) max(min( x a , c x), 0) ba cb
参数a,b,c确定了三角形MF三个顶点的x坐标。
2. 梯形隶属函数
0
xa
trap(x, a, b, c, d )
g(x;50,20)
bell(x:20,4,50)
❖ (2)模糊子集运算的基本性质
模糊集合间的并、交、补(余)运算 具有如下的性质.
1)幂等律 A~ A~ A~, A~ A~ A~
2)交换律 A~ B~ B~ A~; A~ B~ B~ A~
3)结合律 ( A~ B~) C~ A~ (B~ C~),
论域U上的模糊集A由隶属函数uA来表征, uA的大小反映了x对于模糊子集的从属程度。 模糊子集完全由隶属函数来描述。
❖ 模糊子集的表示方法 (1)向量法
(2)查德表示法 有限集 无限集
模糊集举例 例4 设U={1,2,3,4,5,6}, A表示“靠近4”的数,则 AF (U),各数属于A的程度A(ui) 如表。
经典集合论的例子: 设U={ 红桃,方块,黑桃,梅花 }
V={ A,1,2,3,4,5,6,7,8,9, 10,J, Q, K } 求U×V
解: U×V={ (红桃,A),(红 桃, 2),……,(
梅花, K) }
35
模糊关系论例子: 设有一组学生U:
U={ 张三,李四,王五 } 他们对球类运动V:
( A~ B~) C~ A~ (B~ C~).

模糊数学评价与衡量方法教程

模糊数学评价与衡量方法教程

模糊综合评价法(见课件)模糊数学是从量的角度研究和处理模糊现象的科学.这里模糊性是指客观事物的差异在中介过渡时所呈现的“亦此亦比”性.比如用某种方法治疗某病的疗效“显效”与“好转”、某医院管理工作“达标”与“基本达标”、某篇学术论文水平“很高”与“较高”等等.从一个等级到另一个等级间没有一个明确的分界,中间经历了一个从量变到质变的连续过渡过程,这个现象叫中介过渡.由这种中介过渡引起的划分上的“亦此亦比”性就是模糊性.一、单因素模糊综合评价的步骤 1. 根据评价目的确定评价指标(evaluation indicator )集合},,,{21m u u u U例如评价某项科研成果,评价指标集合为U ={学术水平,社会效益,经济效益}.2.给出评价等级(evaluation grade )集合},,,{21n v v v V如评价等级集合为V ={很好,好,一般,差}. 3.确定各评价指标的权重(weight )},,,{21m W权重反映各评价指标在综合评价中的重要性程度,且 1i . 例如假设评价科研成果,评价指标集合U ={学术水平,社会效益,经济效益}其各因素权重设为}4.0,3.0,3.0{ W .4.确定评价矩阵R请该领域专家若干位,分别对此项成果每一因素进行单因素评价(one-way evaluation ),例如对学术水平,有50%的专家认为“很好”,30%的专家认为“好”,20%的专家认为“一般”,由此得出学术水平的单因素评价结果为 0,2.0,3.0,5.01 R同样如果社会效益,经济效益两项单因素评价结果分别为1.0,2.0,4.0,3.02 R 2.0,3.0,2.0,2.03 R那么该项成果的评价矩阵为2.03.02.02.01.02.04.03.002.03.05.0321R R R R 5.进行综合评价通过权系数矩阵W 与评价矩阵R 的模糊变换得到模糊评判集S : 设m j W 1)( ,n m ji r R )(,那么n mn m m n n m s s s r r r r r r r r r R W S ,,,,,,2121222211121121其中“ ”为模糊合成算子.进行模糊变换时要选择适宜的模糊合成算子,模糊合成算子通常有四种:(1) ),( M 算子n k r r s jkj mj jk j m j k ,,2,1,,min max )(11=符号“ ”为取小, “ ” 为取大.例如:n k s R W S 1)( =)4.03.03.0(2.03.02.02.01.02.04.03.002.03.05.0 = 2.03.03.03.0 其中)2.04.0()3.03.0()5.03.0(1 S =)2.03.03.0( =3.0其他k S ()4,3,2 k 求法相同. (2) (M ﹒), 算子n k r r s jk j mj jk j m j k ,,2,1,max )(11=例如n k s R W S 1)( =)4.03.03.0(2.03.02.02.01.02.04.03.002.03.05.0 = 08.012.012.015.0 其中)2.04.0()3.03.0()5.03.0(1 S =)08.009.015.0( =15.0其他k S ()4,3,2 k 求法相同. (3) ),( M 算子“ ”是有界和运算,即在有界限制下的普通加法运算.对t 个实数t x x x ,,,21 有t i i t x x x x 121,1min .利用),( M 算子,有n k r s m j jk j k ,,2,1,,min ,1min 1例如n k s R W S 1)( =)4.03.03.0(2.03.02.02.01.02.04.03.002.03.05.0 = 3.07.08.08.0 其中)2.04.0()3.03.0()5.03.0(1 S =)2.03.03.0( =0.8其他k S ()4,3,2 k 求法相同. (4) (M ﹒), 算子n k r s m j jk j k ,,2,1,,1min 1例如n k s R W S 1)( =)4.03.03.0(2.03.02.02.01.02.04.03.002.03.05.0 = 3.07.08.08.0 其中3.0(1 S •3.0()5.0 •4.0()3.0 •)2.0 =)08.009.015.0( =0.32以上四个算子在综合评价中的特点是:),( M 和(M ﹒), 在运算中能突出对综合评判起作用的主要因素,在确定W 时不一定要求其分量之和为1,即不一定是权向量,故为主因素突出型.),( M 和(M ﹒), 在运算时兼顾了各因素的作用,W 为名符其实的权向量,应满足各分量之和为1,故为加权平均型.最后通过对模糊评判向量S 的分析作出综合结论.一般可以采用以下三种方法:(1) 最大隶属原则模糊评判集S =),,,(21n S S S 中i S 为等级i v 对模糊评判集S 的隶属度,按最大隶属度原则作出综合结论,即),,,m ax (21n S S S MM 所对应的元素为综合评价结果.该方法虽简单易行,但只考虑隶属度最大的点,其它点没有考虑,损失的信息较多.(2) 加权平均原则加权平均原则是基于这样的思想:将等级看作一种相对位置,使其连续化.为了能定量处理,不妨用“n ,,2,1 ”依次表示各等级,并称其为各等级的秩.然后用S 中对应分量将各等级的秩加权求和,得到被评事物的相对位置.这就是加权平均原则,可表示为n i k ini ki iss u 11*)((12-1)其中k 为待定系数(k =1或k =2),目的是控制较大的i s 所起的作用.可以证明,当 k 时,加权平均原则就是最大隶属原则.例如:对 2.0,3.0,3.0,3.0 S ,评价等级集合为V ={很好,好,一般,差},各等级赋值)(i 分别为{4,3,2,1},仿照普通加权平均法的计算公式,有1k u =2.03.03.03.02.013.023.033.04 =2.64即该项成果的综合评价结果为好稍偏一般.(3) 模糊向量单值化如果给等级赋予分值,然后用S 中对应的隶属度将分值加权求平均就可以得到一个点值,便于比较排序.设给n 个等级依次赋予分值n c c c ,,,21 ,一般情况下(等级由高到低或由好到差),n c c c 21,且间距相等,则模糊向量可单值化为n i k ini ki iss cc 11 (12-2)其中k 的含义与作用同(12-1)中的k 相同.多个被评事物可以依据(12-2)式由大到小排出次序.以上三种方法可以依据评价目的来选用,如果需要序化,可选用后两种方法,如果只需给出某事物一个总体评价结论,则用第一种方法.二、多级模糊综合评判有些情况因为要考虑的因素太多,而权重难以细分,或因各权重都太小,使得评价失去实际意义,为此可根据因素集中各指标的相互关系,把因素集按不同属性分为几类.可先在因素较少的每一类(二级因素集)中进行综合评判,然后再对综合评判的结果进行类之间的高层次评判.如果二级因素集中有些类含的因素过多,可对它再作分类,得到三级以至更多级的综合评判模型.注意要逐级分别确定每类的权重.以二级综合评判为例给出其数学模型: 设第一级评价因素集为},,,{21m u u u U各评价因素相应的权重集为},,,{21m W第二级评价因素集为},,,{21ik i i i u u u U m i ,,2,1相应的权重集为},,,{21ik i i i W相应的单因素评判矩阵为:nk jl i r R k l ,,2,1二级综合评判数学模型为m mR W R W R W W B 2211三、模糊综合评判应用举例某地对区级医院2001~2002年医疗质量进行总体评价与比较,按分层抽样方法抽取两年内某病患者1250例,其中2001年600例,2002年650例.患者年龄构成与病情两年间差别没有统计学意义,观察三项指标分别为疗效、住院日、费用.规定很好、好、一般、差的标准见表12-1,病人医疗质量各等级频数分布见表12—2.表12-1 很好、好、一般、差的标准指标 很好 好 一般 差 疗效 治愈 显效 好转 无效 住院日≤1516~20 21~25 >25 费用(元) ≤14001400~1801800~220>2200表12-2 两年病人按医疗质量等级的频数分配表 指标很好 质量好 等级一般差疗效01年 02年 160 170380 41020 1040 60 住院日01年 02年 180 200 250 310130 12040 20费用 01年 02年 130 110270 320130 12070 100现综合考虑疗效、住院日、费用三项指标对该医院2001与2002两年的工作进行模糊综合评价.1.据评价目的确定评价因素集合评价因素集合为U ={疗效,住院日,费用}. 2.给出评价等级集合如评价等级集合为V ={很好,好,一般,差}. 3.确定各评价因素的权重设疗效,住院日,费用各因素权重依次为0.5,0.2,0.3,即)(3.0,2.0,5.0 W 4.2001年与2002年两个评价矩阵R 分别为600/70600/130600/270600/130600/40600/130600/250600/180600/40600/20600/380600/1601R=117.0217.0450.0217.0067.0217.0417.0300.0067.0033.0633.0267.0650/100650/120650/320650/110650/20650/120650/310650/200650/60650/10650/410650/1702R=154.0185.0492.0169.0031.0185.0477.0308.0092.0015.0631.0262.05.综合评价作权系数矩阵W 与评价矩阵R 的模糊乘积运算.如果突出疗效,且只需对该地区级医院2001~2002年医疗质量进行总体工作情况给出一个总体评价结论,可采用),( M 算子,确定模糊评判集S ,按最大隶属度原则进行评判:n k s R W S 111)( = )3.02.05.0(117.0217.0450.0217.0067.0217.0417.0300.0067.0033.0633.0267.0 = 117.0217.0500.0267.0n k s R W S 122)( = )3.02.05.0(154.0185.0492.0169.0031.0185.0477.0308.0092.0015.0631.0262.0= 154.0185.0500.0262.0按最大隶属度原则,两年最大隶属度均为0.500,可以认为对某地区区级医院2001年与2002年医疗质量评价结果均为“好”.如果突出疗效,且对该地区级医院2001~2002年医疗质量进行排序,也可采用),( M 算子确定的模糊评判集S ,按加权平均原则进行评判:实用标准文案文档将评价等级很好,好,一般,差分别赋值为4,3,2,1.2001年的评价结果为41411)(iiiiikssu=117.0217.0500.0267.0117.01217.02500.03267.04=2.833 2002年的评价结果为41411)(iiiiikssu=154.0185.0500.0262.0154.01185.02500.03262.04=2.790 2001年的工作质量略好于2002年.以上评判结果均没有充分兼顾住院日与费用的作用,如果充分考虑各因素的作用在作权系数矩阵W与评价矩阵R的模糊运算的时候可以采用),(M算子或(M﹒), 算子.。

模糊数学方法_模糊规划

模糊数学方法_模糊规划

m λ ax t0 ( x) + d0λ ≤ f0 i = 1, 2, …, m. (4) s.t.diλ − di ≤ ti ( x) −bi ≤ di − diλ x ≥0
设普通线性规划(4)的最优解为 设普通线性规划 的最优解为x*, λ , 则 的最优解为 模糊线性规划(2)的模糊最优解为 的模糊最优解为x 模糊线性规划 的模糊最优解为 *, 最优值 为t0 (x*). 所以,求解模糊线性规划 相当于求 所以,求解模糊线性规划(2)相当于求 解普通线性规划(1), (3), (4). 解普通线性规划 此外,再补充两点说明: 此外,再补充两点说明: ① 若要使某个模糊约束条件尽可能满 只需将其伸缩指标降低直至为0; 足,只需将其伸缩指标降低直至为 ; 若模糊线性规划(2)中的目标函数为 ② 若模糊线性规划 中的目标函数为 求最大值,或模糊约束条件为近似大(小 于 求最大值,或模糊约束条件为近似大 小)于 等于,其相应的隶属函数可类似地写出. 等于,其相应的隶属函数可类似地写出
⑶再分别将两个目标函数模糊化,变为解普通 再分别将两个目标函数模糊化, 线性规划问题: 线性规划问题:
ax λ, m x1 + 2x2 − x3 + 2λ ≤10, 2x1 + 3x2 + x3 −12λ ≥ 8, s.t. x1 + 3x2 + 2x3 ≤10, 此时f 此时 1 = 5.43, x1 + 4x2 − x3 ≥ 6. f 2 = 14.86.
把约束条件带有弹性的模糊线性规划记为
in m f = t0 ( x) t ( x) = [b , d ] (2) i i i s.t. x ≥ 0

Python数学实验与建模课件第14章模糊数学

Python数学实验与建模课件第14章模糊数学

第14章
14.1模糊数学基本概念
第7页
定义 14.2 论域U 到[ 0 , 1闭]区间上的任意映射 M : U [0,1], u M (u),
都确定了U 上的一个模糊集合, M (u)叫做 M 的隶属函数,或称为u对 M 的 隶属度。记作 M {(u, M(u)) | u U },使得 M(u) 0.5的点称为模糊集 M 的 过渡点,此点最具有模糊性。
(0.3 0.2) (0.35 0.4) (0.1 0.2)]
[0.3 0.2 0.1, 0.3 0.2 0.1, 0.2 0.35 0.1]
[0.3, 0.3, 0.35].
第14章
14.1模糊数学基本概念
#程序文件 Pex14_6.py import numpy as np a=np.array([0.3,0.35,0.1]); aa=np.tile(a,(len(a),1)) b=np.array([[0.3,0.5,0.2],[0.2,0.2,0.4],[0.3,0.4,0.2]]) c=np.minimum(aa.T,b) # 两个矩阵的元素对应取最小值 T=c.max(axis=0) # 矩阵逐列取最大值 print("T=",T)
x
A。描述这一事实的是特征函数
A(
x
)
1, 0,
唯一确定。
x A, 即集合 A由特征函数 x A,
第14章
14.1模糊数学基本概念
第6页
在模糊数学中,称没有明确边界(没有清晰外延)的集合为模糊集合。 常用大写字母来表示。元素属于模糊集合的程度用隶属度来表示。用于计算 隶属度的函数称为隶属函数。它们的数学定义如下。
的模糊集 M 和 N 可表示为
M

模糊数学模型分析--讲义共174页

模糊数学模型分析--讲义共174页

在模糊数学中,我们称没有明确边界(没有清晰外延) A B 的集合为模糊集合。常用大写字母下加波浪线的形式来表示, B A 如 、 等。


元素属于模糊集合的程度用隶属度或模糊度来表示。 用于计算隶属度的函数称为隶属函数,即模糊集的特征函数。 隶属度即论域元素属于模糊集合的程度。用 A ( xi ) 来表示。 隶属度的值为[0,1]闭区间上的一个数,其值越大,表示该 元素属于模糊集合的程度越高,反之则越低。 计算隶属度的函数称为隶属函数。用 A ( x) 表示。 隶属度和隶属函数的表示形式看起来很相似,但是它 们的意义是完全不一样的。 A ( xi ) 指论域中特定元素xi属于 A的隶属度,而 A ( x) 中的x是一个变量,可表示论域中的任 一元素。
我国的模糊技术研究
1) 70年代后期传到我国,起步晚,但发展快,“国际四强” 2) 理论研究居世界领先地位,但应用与发达国家有差距 3)“模糊技术产业化” 3) 近几年国内掀起了模糊控制技术的研究与开发热,成绩喜人 - 企业:大型家电集团已成功开发了国产模糊控制洗衣机 如: “小天鹅”,“海尔”,“小鸭”,“金羚” 等名牌智能洗衣机 - 研究机构,高校:郑州轻工业学院模糊控制中心 清华大学热能工程系 北京师范大学模糊控制中心 西南交通大学智能控制中心
借助于下意识的联想灵感来展开思路抓住问题的个别条件或关键词展开联想或猜想综合所得到的联想和猜想得到一些结论进一步思考找出新思路和方法不要对交流失去信心建模思想模糊数学研究和处理模糊性现象的数学概念与其对立面之间没有一条明确的分界线模糊分类问题已知若干个相互之间不分明的模糊概念需要判断某个确定事物用哪一个模糊概念来反映更合理准确模糊相似选择按某种性质对一组事物或对象排序是一类常见的问题但是用来比较的性质具有边界不分明的模糊性与模糊数学相关的问题二模糊聚类分析根据研究对象本身的属性构造模糊矩阵在此基础上根据一定的隶属度来确定其分类关系模糊综合评判综合评判就是对受到多个因素制约的事物或对象作出一个总的评价如产品质量评定科技成果鉴定某种作物种植适应性的评价等都属于综合评判问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

念,为处理分析这些“模糊”概念的数据,便产生了模糊集合论。
根据集合论的要求,一个对象对应于一个集合,要么属于,要么不属于,二者必居其一, 且仅居其一。这样的集合论本身并无法处理具体的模糊概念。为处理这些模糊概念而进行的种种 努力,催生了模糊数学。模糊数学的理论基础是模糊集。模糊集的理论是1965年美国自动控制专 家查德(L. A. Zadeh)教授首先提出来的,近10多年来发展很快。 模糊集合论的提出虽然较晚,但目前在各个领域的应用十分广泛。实践证明,模糊数学 在农业中主要用于病虫测报、种植区划、品种选育等方面,在图像识别、天气预报、地质地震、 交通运输、医疗诊断、信息控制、人工智能等诸多领域的应用也已初见成效。从该学科的发展趋 势来看,它具有极其强大的生命力和渗透力。
Y= X
~
~
×
R
~
= (0.167,0.333,0.417,0.083)
二、模糊综合评判的原理 (1)确定评价指标集合论域U: (2)确定评语集合论域V:
(二)各种不确定因素可分为两类:
1、随机性。特征:关于对象在类属和性态方面的定义是完全确定的,但对象出 现的条件方面是概率的、不确定的。和必然性相对。 2、模糊性。特征:表征对象在认识中的分辨界限是不确定的,即对象在类属、 性态方面的定义是不精确的、不明晰的。和精确性相对。
客观事物 以事物出现的 条件为依据 数理统计
第三节 模糊关系与模糊矩阵
一、模糊关系 1、关系,描写事物之间联系的数学模型之一就是关系,常用符号“X”来表 示。 2、模糊关系,是普遍关系的推广,普通关系只能描述元素间关系的有无, 而模糊关系则描述元素之间关系的多少。 例14-6 在医学上常用公式:体重B(公斤)=身高A(厘米)-100来表示 标准体重,这就给出了身高(A)与体重(B)的普通关系。 若A={140,150,160,170,180} B={40,50,60,70,80} 身高与体重的普通关系如表14.8所示:
例14-7 设有一组同学(徐X,张X,王X),他们选修英,日,俄,法四种外语中 的任几门,他们选修和结业成绩如下: 徐X 英语 85 徐X 日语 70 徐X 俄语 75 张X 英语 90 王X 英语 70 王X 法语 80
用A表示学生集合:A={徐X,张X,王X}, 用B表示语种集合:B={英,日,俄,法}。 若用成绩除以100折合成隶属度来描述掌握外语的程度,则由如表14.10可以构 造出一个在A×B直积空间中存在的模糊关系 R ,用它来表示小组成员“掌握外 ~ 语程度”的模糊关系。 表14.10 掌握外语的程度 英语 徐X 张X 王X 0.85 0.90 0.70 俄语 0.75 0 0 日语 0.70 0 0 法语 0 0 0.8
确 定 性
必 然 性
随 机 性
精 确 性
模糊数学
不 确 定 性
以事物性态、类 属边界为判据
模 糊 性
随机性与模糊性的关系
二、普通集合及其特征函数 1、集合的基本概念
论域,被讨论对象的全体叫做论域,对称全域,通常用大写字母U、E、X、Y等 来表示。 元素,组成某一集合的单个对象就称为该集合的一个元素,通常用小写字母表 示。 子集,由同一集合中的部分元素组成一个新集合,称为原集合的一个子集,通 常用大写字母表示。 集合的表示方法,把集合中的全部元素列出,并用括事情把它们括起来表示集 合的全域。
一、教育技术研究中的不确定性 (一) 教育技术研究中具有许多不确定性因素,这些不确定性因素来源主要有如下
几个方面: 1、研究对象活动出现条件的不确定性,具有概率的特征。 2、研究对象类属的边界具有不清晰和性态不确定的特征。 3、研究对象信息显示的不充分及其无序性所导致的不清晰特征。 4、研究中使用的某些概念、命题在语言语义上的多义与歧义导致的不确定性。 5、某些数学运算、逻辑推理误差所导致的不确定性。 6、描述对象的内涵和外延与对象称谓之间的不贴切,词不达意所导致的不确定。
模糊数学分 析的基概念 教育技术研究中的不确定性 普通集合及其特征函数 模糊集合及其隶属函数 隶属函数的分布统计求法 对比平均法求隶属函数 模糊统计法求隶属函灵敏 模糊关系与 模糊矩阵 模糊关系 模糊矩阵 模糊关系矩阵的运算 模糊关系的合成 模糊关系合成图解法 模糊变换 模糊综合评判的原理 模糊综合评判应用实例-网络课程评价 模糊聚类分析基本原理 模糊等价矩阵聚类法 最大树法
隶属函数 的确定
模糊综合 评判方法
模糊聚类 分析方法
第一节 模糊数学分析的基本概念
在自然科学或社会科学研究中,存在着许多定义不很严格或者说具有模糊性的概念。这里 所谓的模糊性,主要是指客观事物的差异在中间过渡中的不分明性,如某一生态条件对某种害虫、 某种作物的存活或适应性可以评价为“有利、比较有利、不那么有利、不利”;灾害性霜冻气候 对农业产量的影响程度为“较重、严重、很严重”,等等。这些通常是本来就属于模糊的概
3、归一化处理 由于
Y 中各元素之和,即 y =1,为了保证处理后 y ≠1,需
i i
m 1
m 1
~
要进行归一化处理,其方法是取Y’i=
yi
y
1
n
,故有:
i
Y’i=0.2/1.2=0.167 Y’i=0.4/1.2=0.333 Y’i=0.5/1.2=0.417 Y’i=0.1/1.2=0.083 经归一化后的模糊变换结果为:
R=
~
0.85 0.90 0.70
0.70 0 0
0.70 0 0
0 0 0.80Biblioteka 三、模糊关系矩阵的运算 设 和 S 是A×B中模糊关系。 ~ ~
R
(1)
R和 S
~
~
的并。
R∪ S ~
~
=(rij∨sij)
(2)
R和 S
~ ~
~ ~
的交。
(3)
R和 S
的补。
R∨ S ~
~
=(rij∩sij)
R=(1-Rij) S=(1-Sij)
~
0.2 = (0.2,0.5,0.3) × 0 0.2 =(0.2,0.4,0.5,0.1)
0.7 0.4 0.3
0.1 0.5 0.4
0 0.1 0.1
式中Y 各分量的计算如下: ~
Y1=(0.2∧0.2)∨(0.5∧0)∨(0.3∧0.2) =0.2∨0∨0.2 =0.2 y2=(0.2∧0.7)∨(0.5∧0.4)∨(0.3∧0.3) =0.2∨0.4∨0.3 =0.4 y3=(0.2∧0.1)∨(0.5∧0.5)∨(0.3∧0.4) =0.1∨0.5∨0.3 =0.5 y4=(0.2∧0)∨(0.5∧0.1)∨(0.3∧0.1) =0∨0.1∨0.1 =0.1
R=
~
r11 r21 rm1
r12 … r1n r22 … r2n rm2 … rmn
其中0≤rij≤1,1≤i≤m,1≤j≤n。 模糊矩阵是研究模糊关系的重要工具,当它用来表示模糊关系时,其中 rij表示集合A中第i个元素和集合B中第个j元素之间的关联程度,例14-7中小组 成员外语成员与外语学科的关联程度可以用如下矩阵形式表示它们之间的模糊 关系。
2、集合的基本运算 并集、交集、差集、补集。 三、模糊集合及其隶属函数 1、模糊集合:无明确边界的集合。 2、模糊集合的特点:把原来普通集合对类属、性态的非此即彼的绝对属于 或不属于的判定,转化为对类属、性态做从0到1不同程度的相对判定。 3、隶属函数:为了将普通集合与模糊集合加以区别,把模糊集合的特征函 数称为隶属函数。
其中,“∧”表示rij与sij相比较后取较小者 “∨”表示rij与sij相比较后取较大者
五、模糊关系合成图解法 图解法计算模糊关系的合成的步骤: 1、画出关系合成图 2、在图中找出xi到zj的各种可能途径; 3、在同一路径中相比较取隶属度最小者作为该路径 的隶属度; 4、把路径所取得隶属度中最大者作为qij的元素值; 5、画出模糊关系合成矩阵。
二、模糊矩阵
1、矩阵 矩阵可以用来表现关系,如果集合A有m个元素,集合B有n个元素、我 们可以用矩阵R来表示由集合A到集合B的关系
r11 R= r21 rm1 r12 … r1n r22 … r2n rm2 …rmn
其中rij=0或1,1≤i≤m,1≤j≤n。
2、模糊矩阵 当论域A×B为有限集时,模糊关系可以用矩阵形式 来表示,该矩阵元素rij 仅在闭区间[0,1]中取值,即0 ≤rij ≤1,此矩阵称为模糊矩阵。
例14-4 设论域U年龄={20,35,50,65},因素A={年青人,老年人},20
个人参与投票,结果如表14.7所示:
表14.7投票结果表
U∈A的次数
u
20 20 0
35 16 0
50 2 18
65 0 19
A 年表人 老年人
则有u20对“年青人”这一概念的隶属度: μ20=20/20=1 u20对“老年人”这一概念的隶属度: μ20=0/20=0 所以,μ20={1,0}。同理可求出年龄论域中各点对于因素集的隶属度 μ35={0.8,0} μ50={0.1,0.9} μ65={0,0.95}
第四节 模糊综合评判方法 一、模糊变换 1、模糊向量 对于一个有限模糊集合X可以表为: X = {x ,x ,x ,…,x } ~ 1 2 3 n xi是各元素相应的隶属度 R (xi),其中0≤xi≤1 ~ (i=1,2,…,n)对于只有一行的模糊矩阵又可以 看成模糊向量,如: X = {x1,x2,x3,…. ,xn}是一个模糊向量 ~ 2、模糊变换 现有一个模糊矩阵: R ={ rij},其中0≤rij≤1, ~ X × R =Y称为模糊变换。
第二节 隶属函数的确定
一、隶属函数的分布统计求法 利用统计试验计算隶属函数或隶属度的步骤: 1、确定集合的因素 2、选择部分学生进行试验 3、找出各因素数据中的最大值和最小值算出分组组距、计算数据落在各 组中的数,根据次数分布情况确定较为适合的隶属度。 二、对比平均法求隶属函数
相关文档
最新文档