材料分析高分辨电子显微学.
第13章材料分析方法

6
第一节 电子束与样品相互作用产生的信号
三、透射电子 若入射电子能量很高,且样品很薄,则会有一部分电子
穿过样品,这部分入射电子称透射电子 透射电子中除了能量和入射电子相当的弹性散射电子外,还 有不同能量损失的非弹性散射电子,其中有些电子的能量损 失具有特征值,称为特征能量损失电子 特征能量损失电子的能量与样品中元素的原子序数有对应关 系,其强度随对应元素的含量增大而增大 利用电子能量损失谱仪接收特征能量损失电子信号,可进行 微区成分的定性和定量分析
内层电子击出时,原子处于能量较高的激发态,外层电子将 向内层跃迁填补内层空位,发射特征X射线释放多余的能量 产生于样品表层约1m的深度范围 其能量或波长与样品中元素的原子序数有对应关系 其强度随对应元素含量增多而增大 特征X射线主要用于材料微区成分定性和定量分析
10
第一节 电子束与样品相互作用产生的信号
目前,扫描电子显微镜二次电子像的分辨率已优于 3nm, 高性能的场发射枪扫描电子显微镜的分辨率已达到 1nm 左 右,相应的放大倍数可高达30万倍
与光学显微镜相比, 扫描电子显微镜不仅图像分辨率高, 而且景深大,因此在断口分析方面显示出十分明显的优势
扫描电子显微镜开始发展于20世纪 60年代,随其性能不断 提高和功能逐渐完善, 目前在一台扫描电镜上可同时实现 组织形貌、微区成分和晶体结构的同位分析, 现已成为材 料科学等研究领域不可缺少的分析工具
六、俄歇电子 处于能量较高的激发态原子,外层电子将向内层跃迁填
补内层空位时,不以发射特征X射线的形式释放多余的能量, 而是向外发射外层的另一个电子,称为俄歇电子 产生于样品表层约1nm的深度范围 其能量与样品中元素的原子序数存在对应关系, 能量较低, 一般在 50~1500eV 范围内 其强度随对应元素含量增多而增大 俄歇电子主要用于材料极表层的成分定性和定量分析
分析电子显微学导论

绪 论
实验技术的进步
成像与变倍 场像,弱束暗场像) 衍射(包括微/纳米衍射) 成像 像 选区电子衍射 衍衬成像(明场像,中心暗 会聚束电子 高分辨成像(相位衬度)
X射线能谱和电子能量损失谱成分分析和 负球差系数成
高分辨原子序数衬度(Z衬度)成像 全息成像等。
绪 论
样品制备的发展
生物薄膜样品的制备 金属块体的复型技术 块体金属样品制成薄膜方法(窗口法、博尔曼法、双喷电解抛光法)
绪 论
分析电子显微镜(AEM:analytical electron microscope)就 是具有成分分析功能的透射电子显微镜(TEM:transmission electron microscope)。它是一种以高能电子束为照明源,通过 电磁透镜将穿透样品的电子(即透射电子)聚焦成像的电子光 学仪器。我们将从以下三个方面(仪器、技术和样品制备)粗 略了解分析电子显微学的发展过程。
绪 论
仪器的发展
1924年,德布罗意( de Broglie)提出电子具有波动性; 1926年,布什(Busch)发现旋转对称非均匀磁场可作为电磁透镜; 1931年,Rudenberg 提出电子显微镜的概念并提出专利申请; 1933年,克诺尔(Knoll)和卢斯卡(Ruska)制造出第一台电子显微镜; 1936年,Boersch证明了电子束经过电磁透镜聚焦后在后(背)焦面上形成 衍射花样; 1939年,西门子公司生产出第一批商品透射电子显微镜; 1944年,Le Poole在电子显微镜中加入衍射透镜(即中间镜)和选区光阑后 实现选区电子衍射; 20世纪50年代,Ruska在商业电子显微镜中实现选区电子衍射; 20世纪60年代,会聚束电子衍射实现;
Introduction to Analytical Electron Microscopy
第五章 高分辨(相位)衬度的起源与理论

面电子波。在菲涅尔近似下,有
ψ ( x, y ) =
− 2πik [( x − X ) 2 + ( y − Y ) 2 ] i exp(−2πikZ ) q X Y ( , ) exp dXdY ∫∫ Zλ 2R
= q ( x, y ) * PR ( x, y )
(4-8)
其中,q(x,y) 为物函数,Ψ(x,y)为传播 R 距离后的电子波函数, PR(x,y)为菲涅尔传播因子:
高分辨研究简史
关于高分辨透射电子显微镜的基本成像理论,Boersch 早在 1946 年在研究电子与 原子的相互作用时就提出,固体中的原子会对在其中传播的电子束进行调制,改变电 子波的相位。他认为,利用电子波的相位变化,有可能观察到单个原子,可以用来分 析固体中原子的排列方式。 这一理论实际上成为现代实验高分辨电子显微分析方法的理 论依据; 1947 年, 德国科学家 Scherzer 提出, 磁透镜的离焦 (defocus, 即所谓的 Scherzer 最佳欠焦量,而非通常的高斯正焦)能够补偿因透镜缺陷(球差)引起的相位差,从而 可显著提高电子显微镜的空间分辨率。 高分辨试验方面的最初结果首先是由 Menter 在 1956 年做出的。 在 20 世纪 50 年代, 由于透射电镜的线分辨率只有 1.2 纳米,点分辨率更差,大大限制了这一时期高分辨 电子显微技术的应用。直到 1970 年代,透射电镜点分辨率已达到几个埃的水平,对高 分辨电子显微学的应用创造了良好的物质基础。 1957 年,美国 Arizona 洲立大学物理系的 Cowley 教授等利用物理光学方法来研究 电子束与固体的相互作用,并用所谓“多层法”计算相位衬度随样品厚度、离焦量的变 化,从而定量地解释所观察到的相位衬度像,即所谓高分辨像,从而建立和完善了高分 辨电子显微学的物理基础。1971 年,Cowley、Iijima 等人首次获得了可直接解释的氧化 物晶体的高分辨电镜像,证实了他们所看到的高分辨像与晶体结构之间具有对应关系, 实际上是晶体结构沿着特定方向上的二维投影。 这一时期高分辨电子显微像的分辨率已 优于 4 埃。 Cowley、Iijima 的工作开创了一个应用高分辨电子显微学的新时代,从此 高分辨电子显微术开始被广泛地利用与多种领域,成为现代物理、化学、材料科学、矿 物学、生物学等多种学科研究的常用技术。 在这一章节中, 先介绍要一下有关高分辨电子显微学的一些基本理论和概念。 之后,讨论一下高分辨电子显微术的图像模拟方法,以及主要应用对象,并简单 介绍一下近年来高分辨电子显微学的一些新进展,如球差矫正(Cs corrector) , 以及出射波重构(exit wave reconstruction)等新技术。
材料分析方法

a b c , b c a , c a b
V
V
V
(10-1)
式中,V 是正点阵单胞的体积,
V a (bc) b(c b) c (a b) (10-2)
图10-2 倒、正空间
基本矢量的关系
7
第二节 电子衍射原理
二、倒易点阵与爱瓦尔德图解
(一) 倒易点阵的概念
2.倒易点阵的性质
1) 基本矢量
2
第一节 概 述
一、常见的电子衍射花样 晶态、准晶态和非晶态物质的衍射花样见图10-1
a)
b)
c)
d)
图10-1 常见的电子衍射花样
a) 单晶体 b) 多晶体 c) 准晶体 d) 非晶体
3
第一节 概 述
二、电子衍射的特点
与X射线衍射相比,电子衍射具有如下特点:
1) 电子波波长很小,故衍射角2 很小(约10-2rad)、反射球半 径(1/)很大,在倒易原点O*附近的反射球面接近平面
第二节 电子衍射原理
二、倒易点阵与爱瓦尔德图解
(一) 倒易点阵的概念
2. 倒易点阵的性质
2) 倒易矢量 在倒易空间内,由倒易原点O*指向坐标为hkl
的阵点矢量称倒易矢量,记为ghkl
ghkl ha kb lc
(10-4)
倒易矢量ghkl与正点阵中的(hkl)晶面之间的几何关系为
ghkl (hkl),
爱瓦尔德球内三个矢量k、k 和 ghkl清晰地描述了入射束方向、 衍射束方向和衍射晶面倒易矢量之间的相对几何关系。 倒易
矢量 ghkl代表了正空间中(hkl)晶面的特性, 因此又称 ghkl为衍 射晶面矢量
如果能记录倒易空间中各 ghkl矢量的排列方式,就能推算出正 空间各衍射晶面的相对方位, 这是电子衍射分析要解决的主
电子显微分析

B A
Methods of microstructure analysis
The most commonly used microstructure analysis methods in materials science and engineering
• • • optical microscopy X-ray diffraction electron microscopy
Sumio Iijima (饭岛澄男)discovered carbon nanotubes using TEM in 1991 Nature,354 (1991) 56.
TEM images
Structure model of carbon nanotubes
High resolution TEM (HREM)
Thin specimen
• resolution: <1Å • specimen: thin specimen (10-100nm)
Screen/detector
JEM-2010F FEG TEM
various TEMs
FEI Titan
Characterization of nanomaterials
Why learn electron microscopy
• The properties of materials are mainly determined by its microstructure. By controlling the microstructure of the materials, one can make a material with the required properties. • To achieve such goal, one should first “know” the microstructure of the materials. • Electron microscopy is a method to analyses the microstructure of the materials, especially for nanomaterials and nanotechnology
03-电子显微分析-基础知识与TEM(3-TEM)

二、透射电子显微像的质厚衬度及透射电镜样品
使用透射电镜观察分析材料的形貌、组织、结构,需具备以 下两个前提: 一是制备适合TEM观察的试样,厚度100-200nm,甚至更薄;
TEM试样大致有三种类型: 粉末颗粒 材料薄膜 复型膜
二是建立电子图像的衬度理论
24
二、像衬度及复型像
(一)电子像衬度(像衬度)——质厚衬度
一般都采用双聚光镜系统。
②成象放大系统
主要组成:
➢ 物镜
成
➢ 中间镜(1-2个)
像
放
➢ 投影镜(1-2个)
大 系
统
11
物镜
①形成显微像
将来自试样同一点的不同方向的弹性散射束会聚于其像
作用:平面上,构成与试样组织结构相对应的显微像。 ②形成衍射花样
将来自试样不同点的同方向、同相位的弹性散射束会聚 于其后焦面上,构成含有试样晶体结构信息的衍射花样
22
(2)放大倍数
透射电镜的放大倍数是指电子图象对于所观察试样区的 线性放大率。
最高放大倍数表示电镜的放大极限。实际工作中,一般 都是在低于最高放大倍数下观察,以得到清晰的图像。
(3)加速电压
电镜的加速电压指电子枪的阳极相对于阴极的电压 决定电子枪发射的电子束的波长和能量 200kV电镜是一种比较理想的电镜(0.00251nm )
三、电子衍射
四、透射电子 显微像
电子衍射和X-ray衍射异同点 电子衍射基本公式 电子衍射花样 阿贝显微镜成像原理 透射电子显微镜中选区电子衍射 电子衍射花样的标定
像衬度:质厚衬度、衍射衬度、相位衬度 选择衍射成像原理 双光束条件 电子衍射分析的特点
一、透射电子显微镜
结构组成与工作原理 ➢ 光学成像系统 ➢ 真空系统 ➢ 电气系统
电子显微学考试

电子显微学考试第一章复习题:1.什么是轴对称场?为什么电子只在轴对称场中聚焦和成像?所谓轴对称场,是指在这种场中,电位的分布对系统的主光轴具有旋转对称性。
非旋转对称磁场在不同方向会聚电子的能力是不同的。
因此,所有电子不能在轴上的同一点上会聚,就会出现象散。
2.磁透镜的像散是如何形成的?如何纠正?像散是由于透镜磁场的非旋转对称而引起的。
极靴内孔不圆、上下极靴的轴线错位、制作极靴的材料材质不均匀以及极靴孔周围局部污染等原因,都会使电磁透镜的磁场产生椭圆度。
透镜磁场的这种非旋转对称,使它在不同方向上的聚焦能力出现差别,结果使物点p通过透镜后不能在像平面上聚焦成一点。
像散消除器可以补偿像散。
3.什么是透镜畸变?为什么电子显微镜进行低倍率观察时会产生畸变?如何矫正?透镜的畸变是由球差引起的,图像的放大率会随着离轴径向距离的增加而增大或减小。
当透镜作为投影镜时,特别在低放大倍数时更为突出。
因为此时在物面上被照射的面积有相当大的尺寸,球差的存在使透镜对边缘区域的聚焦能力比中心部分大。
反映在像平面上,即像的放大倍数将随离轴径向距离的加大而增加或减小。
电子电路可以对其进行校正:在强激励下,球差系数CS显著降低;在不破坏真空的情况下,根据放大倍数选择不同内径的透镜杆靴;两个投影镜用于消除失真。
4.TEM的主要结构自上而下列出1)电子光学系统――照明系统、图像系统、图像观察和记录系统;2)真空系统;3)电源和控制系统。
电子枪、第一冷凝器、第二冷凝器、冷凝器光圈、样品台、物镜光圈、物镜、选择光圈、中间透镜、投影透镜、双目光学显微镜、观察窗、荧光屏和摄像室。
5.透射电镜和光学显微镜的区别是什么?光学显微镜用光束照明,简单直观,分辨本领低(0.2微米),只能观察表面形貌,不能做微区成分分析;tem分辨本领高(1a)可把形貌观察,结构分析和成分分析结合起来,可以观察表面和内部结构,但仪器贵,不直观,分析困难,操作复杂,样品制备复杂。
材料分析方法 第9章

观察采用在暗室条件下人眼较敏感的、 发绿光的荧光物质涂 制的荧光板 采用对电子束曝光敏感、 颗粒度很小的电子感光底片记录, 底片曝光时间采用自动、手动设置或计时等三种方式 近期的透射电镜多数均配备了 CCD 成像系统,可以将图像输 入到计算机的显示器上用于观察; 图像可采用多种文件格式 进行存储和输出。图像观察和记录非常方便
8
第一节 透射电子显微镜的结构与成像原理
二、成像系统 透射电镜外观参见图9-5;透射电镜镜筒结构和真空系统参见 图9-6。高性能透射电镜多采用5级(或5级以上)放大成像
图9-5 CM300透射电镜外观图
图9-6 JEM-2010F透射电镜
a) 镜筒剖面图 b) 真空系统
9
第一节 透射电子显微镜的结构与成像原理
(二) 物镜光阑 用于减小物镜的球差,选择成像电子束以获得 明场或暗场像,此外可提高图像衬度,故也称衬度光阑。 物镜光阑安装在物镜的背焦面上,孔径为20~120m
场发射枪性能优异,具有
束斑尺寸小、亮度高、能
量分散度小等特点
4
第一节 透射电子显微镜的结构与成像原理
一、照明系统
(一) 聚光镜
高性能透射电镜采用双聚光镜系统,见图9-3。第一聚光镜是 强励磁透镜,作用是缩小或调节束斑尺寸, 将电子枪交叉斑
减小10 ~ 50倍;第二聚光镜是弱 励磁透镜,用以调节照明强度
6
第一节 透射电子显微镜的结构与成像原理
二、成像系统
(二) 中间镜
中间镜是弱励磁、长焦距的变倍率透镜
样品 物镜 物镜背焦面
作用之一是利用其可变倍率控制 电镜的总放大倍数
物镜像平面 中间镜