激光通信技术

合集下载

激光通信技术

激光通信技术

激光通信技术
激光通信技术是一种利用激光进行通信传输的技术。

随着科技的不断进步,激
光通信技术在通信领域中扮演越来越重要的角色。

本文将深入探讨激光通信技术的原理、应用和发展趋势。

激光通信技术的原理
激光通信技术主要利用激光器产生的激光束进行通信传输。

激光具有高方向性、高相干性和高能量密度等优点,能够在大气和真空中传输信息。

通常,发射端使用激光器产生激光束,接收端接收并解码激光信号,实现通信传输的过程。

激光通信技术的应用
激光通信技术在军事、航天、通信和医疗等领域得到广泛应用。

在军事领域,
激光通信技术能够实现安全高效的通信传输,提高作战效率。

在航天领域,激光通信技术可以实现地面和卫星之间的高速通信,加快信息传输速度。

在通信领域,激光通信技术可以实现长距离、高速的数据传输,逐渐替代传统的光纤通信技术。

激光通信技术的发展趋势
随着激光器技术和通信技术的不断发展,激光通信技术的应用领域将进一步拓展。

未来,激光通信技术可能在无线通信、无人机通信和深空通信等领域发挥重要作用。

激光通信技术的发展还面临一些挑战,如信号干扰、光束精确对准和通信安全
等问题。

未来,需要进一步加强激光通信技术的研究和发展,以应对这些挑战。

总的来说,激光通信技术具有广阔的应用前景和发展空间。

随着技术的不断进步,激光通信技术将在通信领域中扮演越来越重要的角色。

激光通信资料

激光通信资料

激光通信摘要激光通信作为一种高效的通信技术,其在数据传输领域有着广泛的应用。

本文将介绍激光通信的基本原理、发展历程以及未来发展趋势。

一、激光通信的基本原理激光通信是利用激光器发射出的激光来传输信息的一种通信方式。

激光通信系统由发射机、接收机和激光通信信道组成。

发射机将信息转化为激光信号发送出去,接收机则接收激光信号并将其转化为原始信息。

激光通信信道的特点包括高速、高带宽和抗干扰能力强等。

二、激光通信的发展历程激光通信技术最早起源于上世纪60年代。

随着激光器技术的不断发展和成熟,激光通信系统的传输速率也不断提高。

目前,激光通信已广泛应用于卫星通信、光纤通信以及无线通信等领域。

激光通信的发展历程经历了从实验室研究到商用应用的过程,取得了显著的进展。

三、激光通信的应用激光通信在军事、航空航天、通信和医疗等领域都有着广泛的应用。

例如,激光通信可以实现卫星之间的高速通信,也可以用于激光雷达系统进行目标探测和跟踪,还可以应用于光纤通信系统提高传输速率和带宽等。

四、激光通信的未来发展趋势随着信息技术的不断发展,激光通信技术也在不断创新和完善。

未来,激光通信系统将更加智能化、高效化和安全化。

同时,激光通信在量子通信、光网络和云计算等领域有着广阔的应用前景,将成为未来通信技术发展的重要方向。

结论激光通信作为一种高效的通信技术,将在未来通信领域发挥重要作用。

通过不断的研究和创新,激光通信技术的应用领域将得到进一步拓展,为人类社会的发展和进步提供更多可能性。

以上是对激光通信技术的简要介绍,希望能对读者对激光通信有更深入的了解和认识。

通信电子领域中的激光通信技术

通信电子领域中的激光通信技术

通信电子领域中的激光通信技术激光通信技术在通信电子领域中有着广泛的应用,它利用光的介质传输信息,具有高速、高可靠性、安全性好等优势。

目前,激光通信技术主要应用在空间通信、海洋监测、军事通信等领域。

一、激光通信技术的工作原理激光通信技术是利用激光的光束进行通信传输,首先需要将信息转换成数字信号,再用激光发射器将数字信号转换成激光光束,利用激光光束传输信息。

在接收端,利用光电探测器将激光光束转换为电信号,再用解调器将电信号转换为原始数据,实现通信传输。

二、激光通信技术在空间通信中的应用激光通信技术在空间通信中具有重要的应用价值,可以大幅提高通信速率和传输距离。

使用激光通信技术的卫星可以实现高速、高质量的地球观测、气象监测、无人机监控等任务。

同时,激光通信技术还可以为星际探测任务提供通信支持,利用激光通信技术可以将中继卫星的数据直接传输到地球,避免了信号传输的中转步骤,提高了传输效率。

三、激光通信技术在海洋监测领域中的应用激光通信技术在海洋监测领域中的应用也相当广泛,可以对海底浮标、海洋生态环境等信息进行实时监测和传输。

利用激光通信技术可以实现海底浮标与浮标之间的无线通信,还可以对海洋生态环境进行数值模拟,帮助预测海洋环境的变化趋势。

四、激光通信技术在军事通信中的应用激光通信技术在军事通信中的应用也相当广泛,具有快速、隐蔽等特点,可以实现对敌方防空系统的干扰和破坏。

利用激光通信技术可以实现军事情报的快速传输和保密传输,提高了军队指挥信息的安全性和准确性。

五、激光通信技术的未来发展激光通信技术的未来发展前景十分广阔,可以在很多领域实现高速、高品质的通信传输。

随着技术的不断发展,激光通信技术在光源输出功率、检测探头灵敏度、通信距离等方面将会有着大幅度的提高。

同时,在材料科学、微纳电子技术等领域的不断革新,也会给激光通信技术的发展带来新的机遇和挑战。

总之,激光通信技术在通信电子领域中的应用相当广泛,已经成为了信息传输的重要手段之一。

空间相干激光通信技术

空间相干激光通信技术

空间相干激光通信技术空间相干激光通信技术是一种利用激光在空间中传输信息的新兴通信技术。

它不仅具有高速、大容量的特点,还能实现高质量的通信信号传输。

本文将详细介绍空间相干激光通信技术的原理、应用以及发展前景。

一、空间相干激光通信技术原理空间相干激光通信技术利用激光的高直观性和低发散度特点,通过激光器将信息转换为光信号进行传输。

与传统的无线通信技术相比,空间相干激光通信技术具有更高的传输速率和更低的能量损耗。

同时,激光的窄束特性使得信号在传输过程中几乎不受干扰,能够实现高质量的通信信号传输。

1.卫星通信空间相干激光通信技术在卫星通信中有着广泛的应用。

传统的卫星通信主要依靠微波信号进行数据传输,但受限于频段资源的有限性,传输速率和容量都较低。

而空间相干激光通信技术可以实现高速、高容量的数据传输,可以大大提升卫星通信的效率和性能。

2.地面通信空间相干激光通信技术在地面通信中也有着广泛的应用。

传统的地面通信主要依靠光纤进行数据传输,但光纤的布设和维护成本较高,限制了其在一些特殊环境中的应用。

而空间相干激光通信技术可以实现无线传输,无需布设光纤,具有更高的灵活性和便捷性。

3.无人机通信空间相干激光通信技术在无人机通信中也有着重要的应用。

传统的无人机通信主要依靠无线电波进行数据传输,但无线电波易受到干扰和限制,传输距离和速率有限。

而空间相干激光通信技术可以实现高速、远距离的数据传输,可以提升无人机通信的可靠性和效率。

三、空间相干激光通信技术发展前景随着信息技术的快速发展,对通信技术的需求也越来越高。

空间相干激光通信技术作为一种新兴的通信技术,具有巨大的发展潜力。

目前,国内外已经开始加大对空间相干激光通信技术的研发和应用力度。

预计在不久的将来,空间相干激光通信技术将会得到更广泛的应用,并取得重要的突破。

总结:空间相干激光通信技术是一种利用激光在空间中传输信息的新兴通信技术。

它具有高速、大容量的特点,能够实现高质量的通信信号传输。

激光通信空间传输技术

激光通信空间传输技术

01
02
03
半导体激光器
研究高功率、高效率的半 导体激光器,提高激光输 出的稳定性和可靠性。
光纤激光器
利用光纤作为增益介质, 实现高功率、高效率的激 光输出,同时具有良好的 光束质量。
固体激光器
研究新型固体激光材料, 提高激光器的能量转换效 率和输出功率。
大气湍流对信号影响及补偿措施
大气湍流模型
研究大气湍流的统计特性 和物理模型,为信号传输 提供准确的预测和补偿。
该试验成功实现了卫星与地面站之间的激光通信,标志着中国在卫星激光通信领域取得了 重要突破。
地面站与飞行器间数据传输需求
高数据传输速率
随着空间探测任务的日益复杂, 对数据传输速率的要求也越来越 高,激光通信能够满足这一需求

大容量数据传输
激光通信具有传输容量大的特点 ,能够满足地面站与飞行器之间
大容量数据的传输需求。
特点
激光通信具有传输速度快、容量 大、保密性好、抗干扰能力强等 优点,是实现高速、大容量通信 的重要手段。
空间传输技术概述
空间传输技术
指利用激光在大气或空间中进行信息传输的技术,包括自由空间光通信和卫星 激光通信等。
技术原理
通过调制激光束的强度、相位、频率等参数,将信息加载到激光上,然后通过 光学系统发射到空间中,接收端通过光学系统接收并解调激光信号,实现信息 传输。
01
接收来自发射端的激光信号,并进行精确指向和跟踪。
光检测器与解调器
02
将接收到的光信号转换为电信号,并进行解调处理,还原出原
始传输信息。
解码与信号处理单元
03
对接收到的信号进行解码和解密处理,确保信息的完整性和安
全性。

卫星激光通信技术详解

卫星激光通信技术详解

卫星激光通信技术详解卫星激光通信技术是一种利用激光器和卫星进行通信的技术。

它采用了激光光束作为传输媒介,具有高速、高效、高带宽和低延迟等特点,成为未来通信技术的重要发展方向。

一、卫星激光通信技术的原理卫星激光通信技术的原理是利用光传输数据,通过将数据转化为激光光束,通过卫星进行传输。

激光通过其特殊的性质,可以实现高速、高效的数据传输。

1. 激光发射卫星激光通信技术首先需要通过地面站向卫星发射激光光束。

激光发射器利用激光二极管将电的能量转化为激光光束,并经过光纤传输到卫星上。

2. 激光接收卫星接收到激光光束后,需要通过接收器将其转化为电信号。

接收器通过光电转换将激光光束转化为电信号,并通过数据处理系统进行解码和处理。

3. 数据传输经过解码和处理后,电信号会被转化为原始的数据。

数据经过调制和编码处理后,可以通过卫星传输到地面站,实现高速、高效的数据传输。

二、卫星激光通信技术的优势卫星激光通信技术相较于传统的卫星通信技术具有以下优势:1. 高带宽由于激光通信采用的是光传输技术,它可以提供很高的传输速率和大带宽,能够满足现代通信对高速大容量传输的需求。

2. 低延迟卫星激光通信技术采用光传输,信号传输速度非常快,可以实现低延迟的传输。

这对于实时性要求较高的应用领域非常重要,如在线游戏、高清视频传输等。

3. 高度可靠卫星激光通信技术在传输过程中,光信号不会受到电磁干扰影响,而且光在大气中传输的损耗也相对较小。

它具有很高的可靠性,不容易发生信号中断或传输错误的情况。

4. 网络覆盖广卫星激光通信技术可以实现全球范围的通信覆盖,可以在任何地方建立通信网络,并提供通信服务。

这对于人迹罕至地区或海洋等无线地区的通信非常有利。

三、卫星激光通信技术的应用领域卫星激光通信技术具有广泛的应用领域,包括但不限于:1. 互联网通信卫星激光通信技术可以用于建立全球范围的互联网通信网络,为各种应用提供高速的互联网接入服务。

2. 海洋通信卫星激光通信技术可以在海洋上建立通信网络,为海上作业、船舶通信等提供稳定的通信服务。

激光技术在通信中的应用

激光技术在通信中的应用

激光技术在通信中的应用引言随着信息技术的迅速发展,通信行业经历了从模拟到数字、从有线到无线的巨大转变。

在这一过程中,激光技术以其独特的优势成为通信领域不可或缺的一部分。

本文将探讨激光技术在通信中的应用及其带来的变革。

激光技术简介激光(Light Amplification by Stimulated Emission of Radiation)是一种具有高方向性、高亮度和高单色性的光源。

它通过受激辐射放大光的过程产生,能够在不同的波长范围内工作,适用于多种通信场景。

激光技术在光纤通信中的应用光纤通信的原理光纤通信利用光波作为信息载体,通过光纤传输数据。

激光二极管或激光器产生的光束被导入光纤中,经过长距离传输后,由光电探测器接收并转换回电信号。

激光的优势- 高带宽:激光可以在很宽的频率范围内调制,提供高数据传输速率。

- 低损耗:与传统电缆相比,光纤的传输损耗更低,使得信号可以传输更远的距离而无需中继。

- 抗干扰性强:光纤不受电磁干扰影响,保证了通信的稳定性和安全性。

激光技术在空间通信中的应用空间通信的挑战空间通信面临着信号衰减、大气干扰等问题。

激光通信(也称为自由空间光通信)提供了一种解决方案。

激光通信的特点- 高方向性:激光束发散角小,可实现远距离精准传输。

- 高速率:可实现高达数Gbps甚至数十Gbps的传输速率。

- 安全性:激光束难以被截获,提高了通信的安全性。

激光技术在量子通信中的应用量子通信的概念量子通信是利用量子态的特性进行信息传输的一种方式,其中量子密钥分发(QKD)是其核心应用之一。

激光在QKD中的作用- 单光子源:激光器可以产生近乎单光子的光脉冲,用于建立安全的密钥。

- 量子态操控:激光技术可用于操控光子的量子态,实现量子比特的编码和传输。

结论激光技术已经成为现代通信系统中不可或缺的一部分。

无论是在光纤通信、空间通信还是新兴的量子通信领域,激光都展现出了其独特的优势和潜力。

随着技术的不断进步,未来激光技术在通信领域的应用将更加广泛和深入。

激光技术在通信领域的突破

激光技术在通信领域的突破

激光技术在通信领域的突破激光技术,以其高速度、高稳定性及高方向性的特点,在通信领域实现了革命性的突破。

在现代社会,数据需求的飞速增长迫切需要新型通信技术的支撑,而激光通信技术正是其中的佼佼者,它为信息的传输打开了新的可能。

激光通信技术利用几乎平行的光束来传输数据,这一点与无线电波通信截然不同。

由于激光的频率非常高,这使得激光通信能够携带更多的数据,实现更高的数据传输速率。

当前,一些先进的激光通信系统已经能够在实验室环境中达到数Gbps至数Tbps的传输速率,远超传统射频通信技术。

除了速度上的优势,激光通信还具有极强的抗干扰能力。

由于激光光束极窄,几乎不受电磁干扰的影响,这在复杂的电磁环境中显得尤为重要。

同时,因为激光的方向性很强,这也大大减少了信号被截获的风险,提升了通信的安全性。

激光通信技术的突破并非没有挑战。

一大挑战是激光在大气中的传播受到天气影响较大,如雾、雨等恶劣天气条件会严重影响通信质量。

科学家正在研究如何通过改进激光发射和接收设备,以及采用中继站等方式来克服这一难题。

另一挑战是激光通信系统的对准问题,由于激光束非常窄,因此发送端和接收端需要非常精确的对准,这在动态环境下尤为困难。

为了解决这一问题,研究人员正在开发更为先进的自动跟踪和对准算法。

尽管存在挑战,激光通信技术的前景依然被广泛看好。

国际空间站已经采用了激光通信技术进行数据传输,显著提高了传输速率和可靠性。

此外,随着卫星互联网的兴起,激光通信也被看作是实现高速卫星互联网连接的关键技术之一。

在未来,随着量子通信的发展,激光通信技术将可能与其结合,进一步提升通信的安全性。

量子密钥分发利用激光进行量子态的传输,可以保证密钥的安全,防止信息被窃听。

激光通信技术在通信领域已取得了显著突破,其高速率、安全性强的优点使其成为未来通信技术的重要发展方向。

尽管面临诸多挑战,但随着技术的不断进步,激光通信有望在不久的将来得到更广泛的应用,为全球通信带来新的速度和安全标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Modeling of Fine Tracking Sensor for Free Space Laser Communication SystemsHu Zhen,Song Zhengxun Tong Shoufeng, Zhao Xin, Song Hongfei, Jiang Huilin School of Electronics and Information Engineering Space Institute of Photo-Electronic TechnologyChangchun University of Science and TechnologyNo. 7089, Weixing Road, Changchun, P. R. China, 130022zhu@Abstract—The optical communication networks comprised of ground stations, aircraft, high altitude platforms, and satellites become an attainable goal, however, some challenges need to be overcome. One of challenges involves the difficulty of acquisition, tracking, and pointing (ATP) a concentrated beam of light arriving from another platform across the far reach of space. To meet the pointing accuracy requirement, the basic method of tracking between the terminals of optical communication systems includes the use of a beacon laser and tracking system with a quadrant detector sensor on each terminal. In some future optical communication networks, it is plausible to assume that tracking system and communication receiv ers will use the same sensor. In this paper, the architecture of the fine tracking assembly of the designing optical communication terminal (OCT) is described, and the fine tracking assembly sensor is modeled based on the correlation coefficient. The simulation and experiment results of the sensor show that the detecting accuracy satisfies the design demand for our developing OCT.Keywords-modeling; quadrant detector; fine tracking sensor; optical communication networksI.I NTRODUCTIONCommunication from one place to another on Earth is an attractive goal. To achieve this aim, the communication net-works that cover the globe are established. Future opticalcommunication network is pictured in Figure 1.Figure 1. Future optical communication network [1].The optical communication networks comprised of ground stations, aircraft, high altitude platforms, and satellites become an attainable goal, however, some challenges need to be overcome. Laser-based communication links between a satellite and another satellite or a high flying aircraft have been investigated for free-space communication systems They include European Space Agency’s (ESA) Artemis, Japan Aerospace Exploration Agency’s (JAXA) OICETS and the Department of Defense’s (DoD) TSAT [2]. Laser communication systems offer greater capabilities than RF systems, such as smaller size and weight of the terminals, less transmitter power, higher immunity to interference, and larger data rate, but present greater challenges in implementation. One of challenges involves the difficulty of acquisition, tracking, and pointing (ATP) a concentrated beam of laser arriving from another platform across the far reach of space [3].To meet the pointing accuracy requirement the optical communication terminals (OCT) mounted on satellite or other platforms use the Ephemeredes data (the position of the satellite according to the orbit equation) or navigation system for rough pointing, and a tracking system for fine pointing to another OCT. The basic method of tracking between OCT includes the use of a beacon laser and tracking system with a quadrant detector sensor on each OCT. In some future optical communication networks, it is plausible to assume that tracking system and communication receivers will use the same sensor. The reason is the possibility to design simple OCT at a reduced cost, mass, and volume in order to implement very compact, lightweight and low-power consumption precision beam-steering technologies. In view of this, a 4-quadrant detector (4QD) will be adapted in our developing OCT. Having a good mathematical description of the sensor is crucial for successful implementation of the tracking system, as it allows testing various control techniques prior to building a hardware prototype. This paper described the architecture of the fine tracking assembly of the designing OCT, proposed an approach to mathematical modeling of the fine tracking assembly sensor, and performed a number of experiments to validate the derived models.The remainder of this paper is organized as follows. Section II described the ATP subsystem architecture, the fine tracking assembly components briefly. The operating principle of 4QD, the operation of the position detecting sensor, the transfer characteristics for the different spot in sizes, and mathematical model of the sensor are presented in Section III. Section IV gives the simulation and experiment results of the sensor. Finally, our work is summarized in Section V.Supported by High-Tech Research and Development Plan of China (863).978-1-4244-4412-0/09/$25.00 ©2009 IEEEII.A RCHITECTURE OF F INE T RACKING A SSEMBLY A.System DescriptionMost acquisition, tracking, and pointing subsystems of free-space laser communication platforms consist of two structures, a coarse pointing assembly (CPA) and a fine pointing assembly (FPA). The CPA is loaded with the tasks of the initial acquisition and to change the orientation of the communication transceiver in bigger, but lower bandwidth higher amplitude movements. The FPA needs to be extremely precise and with fast response system in order to compensate for the fast changes in beam orientation and suppresses the disturbances such as the base vibration of the platform.Developed ATP subsystem for space-based laser communication system also comprises of CPA and FPA. The CPA, which consists of a coarse tracking sensor using a charge coupled device (CCD), a 2-axis gimbal mechanism, and a controller for gimbal mechanism. The FPA, which consists of a fine tracking sensor using a 4-quadrant detector (4QD), a fast steering mirror (FSM), a controller for the FSM. The 4QD, which is an important component in the FPA, requires the characteristics of fine resolution and high speed response for this reason. A block diagram of the experiment setup of theFPA is shown in Figure 2.Figure 2. The experiment setup of the FPA.B.The Experiment Setup of FPAThe laser source is the incoming collimated beam incident on the fast steering mirror at 45º, which is with a wavelength of 532nm. The beam splitter is used at 45º angles to split the beam in two directions: one beam is focused on a photodiode of laser communication receiver and the other is focused on the 4QD. The fast steering mirror with a 25.4 mm diameter glass mirror surface is operated open-loop, containing no internal sensor or feedback mechanism. Its angular range is ±2.5 mrad with a 0.05 μrad resolution and its resonant frequency is in the range of 2KHz [4]. The 4QD is a model QP50-6-18 produced by Pacific Silicon Sensor, Inc., which has a diameter of 7.98 mm active area and 18μm gap width [5]. The 4QD-measured position error signals are conditioned and fed to the analog-to-digital converters (ADCs) of the DSP controller. The actuator control signals from the digital-to-analog converters (DACs) of the DSP controller are fed back to the FSM driver, which directly drives the FSM actuator.III.M ODELING OF F INE T RACKING S ENSORA.Operating principle of the 4QDThe 4QD is the fine tracking sensor used in this work, which detects the position of the incoming laser beam with a very high accuracy. It is consists of four separate silicon photodiodes, or quadrants, arranged in a quadrant geometry, as shown in Figure 3. The photodiodes A, B, C, D, where A, B, C, D are the four quadrants respectively, are equal and are separated by small gaps. Its operation principle is based on conversion of optical energy into electrical energy. The photodiodes A, B, C, D convert incoming light into currents I A ,I B , I C , I D , and then the currents are transformed into relative voltage levels V A , V B , V C , V D , by the operational amplifiercircuits. Voltage generated by each quadrant is proportional tooptical energy illuminating its surface. Figure 3. Position detector circuit of fine tracking sensor.B.Operation of the position detecting sensorTo illustration the position sensing operation of the sensor, we assume that the shape of the laser beam or the spot can be represented as a circle with uniform distribution of power onto the 4QD detector. In general, the spot can appear on the four quadrant detector active area as suggested in Figure 4. If the spot is in the perfect centre of the 4QD, which is the cross point of the two gap lines, then currents I A , I B , I C , I D , from all the four photodiodes will be the same. The spot displacement along the x- and y-axes of the detector will be detected as a relative change between these four current outputs, and then removed in the fine tracking control loop.These currents or voltages are added and subtracted in the following manner to calculate the E X and E Y , so-called the pointing error, relative to the centre of the detector,D C B A C B DA X D CB AC BD A X X V V V V V V V V K I I I I I I I I KE ++++−+=++++−+=)()()()( (1)DC B AD C BA Y D CB A DC B A YY V V V V V V V V K I I I I I I I I K E ++++−+=++++−+=)()()()( (2)where K X and K Y are the correlation coefficient of the x-axisand y-axis directions respectively.Figure 4. Relative position of the spot and the 4QD centre.C.Transfer characteristics for the sensor in sizeThere are some constraints to be considered when using position sensor. First, incident laser spot must be smaller than the detector’s total active area, but larger than the gap between separated active areas. Second, the total positional detection range is limited to the incident laser spot size or the detector’s active area size, whichever is smaller. Another consequence of geometry is that detection range increases with spot size, while positional resolution decreases, as shown in Figure 5 [6]. This is because a given movement in a small spot creates a much bigger differential signal than the same movement in the larger beam, as is indicated in Figure 5 with dashed lines. In our effort, the laser spot size is appropriately limited to half thedetector’s active area size.Figure 5. Transfer characteristics for the diffenent spot in size.D.Mathimatical model of the sensorThe x-axis and y-axis outputs of the fine tracking sensor are directly related to the energy of the laser beam that falls in each quadrant. In order to make a mathematical model of the quadrant detector sensor, two main parts are considered: the first part represents the calculation of the illuminated energy of the four photodiodes by incoming laser beam, and another important issue is the shape of the incoming beam. In reality the laser energy is not uniformly distributed over the whole profile, but has a certain shape. Assuming that the laser beam used as the fine tracking has a uniform intensity distribution(see Figure 4.), the energy in each of the four quadrants is given using each illuminated area by the following equations:»¼º«¬ª++−+−++=)arcsin()arcsin(2224222222r y r x r y r y x r x xy r S A π(3)»¼º«¬ª+−−+−−−=arcsin()arcsin(2224222222r y r x r y r y x r x xy r S B π(4)»¼º«¬ª+−−−−−+=)arcsin()arcsin(2224222222r y r x r y r y x r x xy r S C π (5)»¼º«¬ª++−−−+−=)arcsin()arcsin(2224222222r y r x r y r y x r x xy r S D π(6)Where S A , S B , S C , S D are the illuminated area of the four quadrants respectively, x and y are x-displacement and y-displacement or the relative positions of the spot centre and the 4QD centre, r is the radius of the incoming laser beam spot.The positing errors Ex, Ey (see (1) and (2)) in both x-axis and y-axis directions of the laser beam is also calculated using the each illuminated area of the four quadrants by following formulas.DC B A C BD AX D C B A C B D A XX S S S S S S S S K I I I I I I I I K E ++++−+=++++−+=)()()()( (7)DC B AD C B A YD C B A D C B A YY S S S S S S S S K I I I I I I I I K E ++++−+=++++−+=)()()()( (8)If we use (3) - (6) and substitute into (7) and (8), we canobtain the formulas of the positing errors and the displacements of the laser spot, which are the mathematical model of the 4QD sensor, as follows:»¼º«¬ª+−=++++−+=arcsin(221)()(2222r x r x r x r K S S S S S S S S K E X D C B A C B D A XX π (9) »¼º«¬ª+−=++++−+=)arcsin(221)()(2222r y r y r y rK S S S S S S S S K E Y D C B A D C B A YY π(10) Figure 6. Simulation results in the x-axis.IV.S IMULATION AND E XPERIMENT RESULTSIn order to develop a model of the quadrant detector a series of simulations and measurements has been performed. The laser beam has been steered across one quadrant in both x-axis and y-axis directions to obtain the complete characteristics. Figure 6 presents a summary of this simulation. The data have been recorded while moving the beam across quadrants B and A (see Figure 4). For the model described above the (9) and (10), the three different laser spot sizes (in mm) are shown in Figure 6, showing a saturation effect due to the finite beam size, which determines the tradeoff between angle dynamic range and null position sensitivity. As a result, we set the spot size to approximately half the 4QD diameter. Then we measured the 4QD response for various incoming laser power levels, as shown in Figure 7. The experimental results validate the derived models based on the correlationFigure 7. Experimental response in the x-axis.V.C ONCLUSIONThis paper presents an approach to modeling the quadrant detector sensor based on the correlation coefficient. The correlation coefficient of the sensor model is based on a series of measurements. Performance of the model has been assessed using the coefficient of determination. The simulation and experiment results of the sensor show that the detecting accuracy satisfies the design demand for our developing OCT.The obtained model of the fine tracking sensor has been used as the experimental setup for development of a model reference fine tracking control system for the free-space laser communications.R EFERENCES[1]Brandon L. Wilkerson, Dirk Giggenbach, Bernhard Epple, “Conceptsfor fast acquisition in optical communications systems”, SPIE Vol.6304, 2006[2] C. Hindman, S. Lacy, and N. Hatten, “Image Based Acquisition andTracking for Multi-Access Laser Communications”, IEEE Aerospace Conference, March 4-11, 2006, pp. 1-10.[3]John Maksyomwicz and Kenneth Conner, “Research Horizons, LaserBeam Acquisition and Tracking,” Crosslink, Ground Systems, Vol.7, Number 1 (Spring 2006), pp. 43.[4]Newport, FSM Datasheet, .[5]Pacific Silicon Sensor Quadrant Series Datasheet, http://www.pacific-.[6]APT technologies, 。

相关文档
最新文档