有理数相关概念知识树
七年级上册数学知识树

1.单项式中的所有字母的指数的和叫做这个 单项式的次数,数字因数叫做这个单项式的 指数。
2.几个单项式的和叫做多项式,多项式里次 数最高项的指数,叫做这个多项式的次数。
3.把多项式中的同类项合并成一项,叫做合 并同类项。
1.含有未知数的等式——方程。
2.只含有一个未知数,未知数的次数都是1, 这样的方程叫做一元一次方程。 3.等式两边加(或减)同一个数(或式子), 结果仍相等。 4.等式两边同乘一个数,或除以同一个不为 0的数,结果仍相等。
1.我们把从实物中抽象出的各种图形统称为 几何图形。 2.有些几何图形的各部分不都在同一平面内, 它们是立体图形。 3.两点确定一条直线。
4.两点之间,线段最短。
5.有理数的乘方
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的
加数的符号,并用较大的绝对值去减较小的绝对值,
互为相反数的两个数相加得0.
3.一个数同0相加,仍得这个数。 4.减去一个数,等于加这个数的相反数。
1.两数相乘,同号得正,异号得负,并把绝 对值相乘。
七年级上册数学知识形认识初步
1.正数和负数
2.有理数
正整数、0、负整数 正分数、负分数
(1)数轴
直线、原点、 正方向
(2)相反数
只有符号不同的两个 数叫做互为相反数
(3)绝对值
一般地,数轴上表示数a的 点与原点的距离叫做数a 的绝对值。
3.有理数的 加减法
4.有理数的 乘除法
2.任何数同0相乘,都得0.
3.除以一个不等于0的数,等于乘这个数的 倒数。 4两数相除,同号得正,异号得负,并把绝 对值相除。0除以任何一个不等于0的数,都 得0.
关于有理数的知识点总结

关于有理数的知识点总结一、有理数的概念及性质1. 有理数的定义有理数是指可以表示为两个整数的比的数,它通常用分数形式表示。
实际上,每个有理数都可以写成一个整数和一个非零整数的商。
例如,2/3、-5/4、3等都是有理数。
2. 有理数的性质(1)有理数可以用分数形式表示,例如2/3、-5/4等。
(2)有理数中包括正整数、负整数、零以及所有的分数。
(3)有理数的数轴表示:有理数可以用数轴上的点来表示,正数在原点的右侧,负数在原点的左侧,0在原点上。
二、有理数的表示和分类1. 有理数的表示有理数可以用分数形式表示或者小数形式表示。
对于分数形式,它可以用a/b的形式表示,其中a为分子,b为分母;对于小数形式,它可以用有限小数或者循环小数来表示。
2. 有理数的分类有理数可以分为正数、负数和零三种。
其中正数是大于0的数,负数是小于0的数,零表示0。
三、有理数的加法和减法1. 有理数的加法(1)同号数的加法:两个正数相加或者两个负数相加,结果为正数;例如2+3=5,(-2)+(-3)=-5。
(2)异号数的加法:两个正数相加或者一个正数和一个负数相加,结果的绝对值大的减去绝对值小的,符号取绝对值大的数的符号;例如2+(-3)=-1,(-2)+3=1。
2. 有理数的减法有理数的减法可以转化为加法来进行,即a-b=a+(-b)。
也就是说,将减法问题转化为加法问题,然后按照加法的规则进行计算。
四、有理数的乘法和除法1. 有理数的乘法(1)同号数的乘法:两个正数相乘或者两个负数相乘,结果为正数;例如2*3=6,(-2)*(-3)=6。
(2)异号数的乘法:一个正数和一个负数相乘,结果为负数;例如2*(-3)=-6。
2. 有理数的除法有理数的除法同样可以转化为乘法来进行,即a/b=a*(1/b)。
也就是说,将除法问题转化为乘法问题,然后按照乘法的规则进行计算。
五、有理数的绝对值1. 有理数绝对值的定义有理数a的绝对值定义为a的非负数表示,即a的绝对值记为|a|,有两种定义形式:(1)当a>=0时,|a|=a;(2)当a<0时,|a|=-a。
第一章 有理数知识点、考点、难点总结归纳

第一章有理数知识点、考点、难点总结归纳大家好,今天我们来聊聊有理数这个知识点。
有理数是我们日常生活中经常会遇到的一种数,它们可以表示为两个整数的比值,比如1/2、3/4等等。
有理数在数学中非常重要,因为它们可以帮助我们解决很多问题。
有理数有哪些知识点呢?下面我们就来一一梳理。
我们来说说有理数的基本概念。
有理数包括正有理数、负有理数和零。
正有理数就是大于零的有理数,比如1/2、3/4等等;负有理数就是小于零的有理数,比如-1/2、-3/4等等;零是有理数,但它既不大于零也不小于零。
我们来看一下有理数的运算。
有理数的加法、减法、乘法和除法都很简单,我们可以通过以下几个例子来说明。
例一:正有理数相加。
假设我们有两个正有理数a和b,那么它们的和就是a+b。
例如,1/2+1/3=5/6。
例二:正有理数相减。
假设我们有两个正有理数a和b,那么它们的差就是a-b。
例如,3/4-1/2=1/4。
例三:正有理数相乘。
假设我们有两个正有理数a和b,那么它们的积就是a*b。
例如,1/2*3/4=3/8。
例四:正有理数相除。
假设我们有两个正有理数a和b(b≠0),那么它们的商就是a/b。
例如,3/4÷1/2=3/2=1.5。
有理数的运算还有很多其他的形式,比如负有理数的加法、减法、乘法和除法等。
但是这些都比较复杂,我们以后再学吧。
除了基本的运算之外,有理数还有一些重要的性质和定理。
比如,有理数的相反数是它的负倒数;有理数的绝对值是它的大小;有理数的平方根有两个,一个是正的,一个是负的;有理数的小数部分可以无限精确地表示为分数形式等等。
这些性质和定理在解决一些实际问题时非常有用。
我们来说说有理数的解题方法。
其实,有理数的解题方法和其他类型的题目差不多。
我们需要先理解题目的意思,然后根据题目的要求选择合适的方法进行计算。
有时候,我们还需要运用一些特殊的技巧来简化计算过程。
只要我们掌握了有理数的基本知识和解题方法,就可以轻松地解决很多数学问题了!今天我们就来聊到这里。
第一章 有理数 知识树说教材

第 内一 容章 分有 析理 数
五条运算律
让学生体会: 数域扩充后运算律的一致性
四、思想方法分析
数形结合思想
绝 对 值 号 乘 方 符 号
对立统一 思想 转 化 思想
数轴 加减 乘 除 乘 混 法法 法 法 方 合 法法 法 法 法 运 则则 则 则 则 算
负 号
一个工具
分 类 思 想
三个符号
绝对值
利用绝对值比较两负数大小 掌握绝对值的概念及计算 互为相反数的点在数轴上的特点 掌握相反数的概念 借助数轴比较大小 理解数轴上的点和 有理数的对应关系 数轴 相反数 加法 绝对值
互逆
加法法则
加法运算律 减法法则 加减混合运算 减法 乘法法则
掌握数轴的概念
初步了解集合的含义
有理数
有理数 的相关 概念
有理数 的相关 运算
运 算 基 础
物理 化学
其它学科 第 知一 识章 联有 系理 数
生物
地理
做好铺垫
六、通用工具(联系中考)
知识发展的重要线索
2010年:1、(3分) 下列四个数中最小的 是( ) (A)-10(B)-1 (C)0 D)0.1
2012年:1.和数轴上的点一一 对应的是( )
A、整数
B、有理数
C、无理数 D、实数
二、新课标对本学段学习目标要求:
探究
提 出 问 题
思 考 问 题
解 决 问 题
形成创新精神 和实践能力
形成
亲 历 感 受
学会 反思 兴 趣 信 心
运算 推理
能力
知识与 技能
观 念
过程与 方法
数据处理
情感态度 与价值观 总 体 目 标
七年级数学第一单元有理数知识点

七年级数学第一单元有理数知识点有理数是七年级数学的重要基础内容,它为后续的数学学习打下了坚实的基础。
下面我们来详细了解一下有理数的相关知识点。
一、有理数的定义有理数是整数(正整数、0、负整数)和分数的统称。
有理数的小数部分是有限或为无限循环的数。
例如,5 是整数,属于有理数;025 是有限小数,属于有理数;1/3 是无限循环小数,也属于有理数。
与之相对的是无理数,无理数是无限不循环小数,如圆周率π。
二、有理数的分类1、按定义分类有理数可以分为整数和分数。
整数包括正整数、0、负整数。
例如 3、0、-5 等。
分数包括正分数和负分数。
比如 1/2、-3/4 等。
2、按性质分类有理数可以分为正有理数、0、负有理数。
正有理数包括正整数和正分数,比如 2、3/5 。
负有理数包括负整数和负分数,例如-1、-2/7 。
三、数轴数轴是规定了原点、正方向和单位长度的直线。
数轴的作用非常大,它可以帮助我们直观地理解有理数的大小关系。
在数轴上,右边的数总比左边的数大。
例如,在数轴上表示 2 的点在表示 1 的点的右边,所以 2 大于 1 。
任何一个有理数都可以用数轴上的一个点来表示。
四、相反数只有符号不同的两个数叫做互为相反数。
例如,5 和-5 互为相反数,0 的相反数是 0 。
互为相反数的两个数的和为 0 。
五、绝对值绝对值的定义:数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是 0 。
例如,|5| = 5 ,|-3| = 3 ,|0| = 0 。
绝对值的性质:(1)绝对值具有非负性,即绝对值总是大于或等于 0 。
(2)互为相反数的两个数的绝对值相等。
六、有理数的大小比较1、正数都大于 0 ,负数都小于 0 ,正数大于一切负数。
2、两个负数比较大小,绝对值大的反而小。
例如,比较-2 和-5 的大小。
因为|-2| = 2 ,|-5| = 5 ,2 < 5 ,所以-2 >-5 。
有理数的思维导图

有理数的思维导图一、有理数的基本概念有理数是指可以表示为两个整数之比的数,即形如a/b的数,其中a和b都是整数,且b不等于0。
有理数包括正有理数、负有理数和0。
二、有理数的分类1. 正有理数:大于0的有理数,如1/2、3/4等。
2. 负有理数:小于0的有理数,如1/2、3/4等。
3. 0:既不是正有理数也不是负有理数,但可以表示为0/1。
三、有理数的运算1. 加法:有理数加法的法则与整数加法类似,只需将两个有理数的分子相加,分母保持不变。
如:1/2 + 3/4 = 5/4。
2. 减法:有理数减法的法则与整数减法类似,只需将减数的分子乘以减数的分母,然后加上被减数的分子,分母保持不变。
如:1/2 3/4 = 1/4。
3. 乘法:有理数乘法的法则是将两个有理数的分子相乘,分母相乘。
如:1/2 × 3/4 = 3/8。
4. 除法:有理数除法的法则是将除数的分子乘以被除数的分母,除数的分母乘以被除数的分子。
如:1/2 ÷ 3/4 = 2/3。
四、有理数的性质1. 有理数是稠密的:在任意两个有理数之间,都存在无穷多个有理数。
2. 有理数是有序的:可以比较任意两个有理数的大小。
3. 有理数是封闭的:有理数在加法、减法、乘法和除法运算下都保持封闭性,即运算结果仍然是有理数。
4. 有理数是可数的:有理数可以与自然数一一对应,因此有理数是可数的。
五、有理数与无理数的关系1. 无理数:不能表示为两个整数之比的数,如π、√2等。
2. 有理数与无理数的区别:有理数可以表示为分数,而无理数不能表示为分数。
3. 有理数与无理数的联系:有理数和无理数共同构成了实数集,实数集包含了所有有理数和无理数。
六、有理数在实际生活中的应用1. 金融领域:有理数在金融领域中有着广泛的应用,如利率、汇率、股票价格等。
2. 科学研究:在科学研究中,有理数被用于表示各种物理量和化学量,如长度、质量、时间等。
3. 工程技术:在工程技术中,有理数被用于计算各种参数和指标,如建筑物的尺寸、材料的强度等。
七年级有理数知识点总结

七年级有理数知识点总结
1. 有理数的定义
有理数是整数和分数的统称,可以表示为分子和分母都是整数的分数形式。
2. 有理数的分类
有理数可以分为正有理数、负有理数和零。
3. 有理数的比较
对于两个有理数的大小比较,可以通过比较其大小关系,如大于、小于、等于。
4. 有理数的运算
4.1 加法和减法
对于有理数的加法和减法运算,可以采用分数的通分法来进行计算,并将分子部分进行加减运算,保持分母不变。
4.2 乘法和除法
对于有理数的乘法和除法运算,可以将分数进行约分后,分别
计算分子和分母的乘除运算。
5. 有理数的应用
有理数在实际生活中有广泛的应用,例如计算货币、温度等。
6. 有理数的绝对值
有理数的绝对值就是去掉其符号,保留其数值部分。
7. 有理数的倒数
有理数的倒数就是将其分子和分母交换位置后得到的新有理数。
8. 有理数的表示与运算规律
有理数可以通过分数形式或小数形式来表示,并且在运算时遵
守数字的运算规律。
以上是对七年级有理数知识点的简要总结。
有理数的应用广泛
且实用,掌握了这些知识点,可以更好地理解和运用有理数概念。
有理数知识点总结归纳

有理数知识点总结归纳一、有理数的定义有理数是整数(正整数、0、负整数)和分数的统称。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因而有理数集的数可分为正有理数、负有理数和零。
整数可以看作分母为 1 的分数。
有限小数和无限循环小数都可以化为分数,因此它们也属于有理数。
例如,5 是正整数,属于有理数;-3 是负整数,属于有理数;1/2 是分数,属于有理数;0333(3 循环)可以化为 1/3,也是有理数。
二、有理数的分类1、按定义分类有理数可以分为整数和分数。
整数包括正整数、0、负整数。
例如,3、0、-5 都是整数。
分数包括正分数和负分数。
比如,1/2、-3/4 都是分数。
2、按性质分类有理数可以分为正有理数、0、负有理数。
正有理数包括正整数和正分数,例如 2、3/4 。
负有理数包括负整数和负分数,比如-1、-5/6 。
三、有理数的基本性质1、顺序性对于任意两个有理数a 和b,在数轴上,右边的数总比左边的数大。
即如果 a < b ,那么 b a 是正数。
2、封闭性有理数的四则运算(加、减、乘、除)结果仍为有理数。
例如,2 + 3 = 5(有理数), 4 1 = 3(有理数), 2 × 3 = 6(有理数), 6 ÷ 2 = 3(有理数)3、传递性如果 a < b 且 b < c ,那么 a < c 。
例如,-1 < 0 , 0 < 1 ,则-1 < 1 。
四、数轴数轴是规定了原点、正方向和单位长度的直线。
任何一个有理数都可以用数轴上的一个点来表示。
例如,数字 2 可以用数轴上距离原点 2 个单位长度,且在原点右边的点表示;-3 可以用数轴上距离原点 3 个单位长度,且在原点左边的点表示。
数轴上两个点表示的数,右边的总比左边的大。
正数大于 0 ,负数小于 0 ,正数大于负数。
五、相反数绝对值相等,符号相反的两个数互为相反数。
例如,5 和-5 互为相反数,0 的相反数是 0 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴的实际应用
题型二
利用数轴考察 点的运动情况
题型一
借助数轴求两点 间的距离
数 轴
a的相反数是—a
a>0;-a<0
a<0;-a>0
— ( —a )=a
a=0;-a=0
a-b的相反数是b-a
a+b的相反数是-a-b
表示 与求法
多重
奇数个“﹣”
符号化简
结果为“﹣”
偶数个“﹣”
结果为“+”
相
反
数
在一个数的前面加“—”
数轴
数的性质
a,a>0 a = 0,a=0
-a,a<0
数轴上表示数a点 与原点的距离叫做a的绝对值
记作 a
有理数 比大小
意义
0的绝对值最小的有理数
绝 对 值
绝对值的非负性 绝对值相等的两个数,
相等或互为相反数
题型二
有理数大小的比较
题型三
绝对值在实际 生活中的应用
题型一
绝对值性质的应用
若a>0,b<0, |a| >|b|, 用>把a、-a、
b、-b连接起来。
绝 对 值
判断 ①绝对值是它本身的数 只有两个,它们是0和1 ②一个有理数的绝对值必是正数
③2的相反数的绝对值是2
④任何有理数的绝对值都不是
负数
符号不同,数字相同 的两个数
0的相反数是0
意义
位于原点两侧 与原点距离相等 关于原点对称
例2: 若x+1是-9的相反数,
求x的值
例1:
已知数轴上点A和点B分别表示
互为相反数的两个数a、b( a<b ),
并且A、B两点间的距离是 4 1
求a、b两数
4
题型二
相反数与数轴的 综合应用
相 反 数
题