计算机网络知识点总结

合集下载

计算机三级网络技术知识点总结

计算机三级网络技术知识点总结

计算机三级网络技术知识点总结计算机三级网络技术知识点总结1.网络基础知识1.1.OSI参考模型1.1.1.物理层1.1.2.数据链路层1.1.3.网络层1.1.4.传输层1.1.5.会话层1.1.6.表示层1.1.7.应用层1.2.TCP/IP协议族1.2.1.IP协议1.2.2.TCP协议1.2.3.UDP协议1.2.4.HTTP协议1.3.网络设备1.3.1.网卡1.3.2.集线器1.3.3.交换机1.3.4.路由器1.3.5.网关1.4.子网划分和路由1.4.1.子网掩码1.4.2.CIDR表示法1.4.3.路由表1.4.4.静态路由1.4.5.动态路由1.5.网络安全1.5.1.防火墙1.5.2.VPN1.5.3.IDS/IPS1.5.4.加密算法1.5.5.访问控制列表2.网络实施与维护2.1.网络拓扑与布线2.1.1.总线型拓扑2.1.2.星型拓扑2.1.3.环型拓扑2.1.4.局域网布线2.1.5.广域网布线2.2.网络管理2.2.1.SNMP协议2.2.2.CMIP协议2.2.3.网络监测工具2.2.4.问题排查与故障修复2.2.5.日志管理2.3.网络服务2.3.1.DHCP服务器2.3.2.DNS服务器2.3.3.FTP服务器2.3.4.Web服务器2.3.5.邮件服务器2.4.网络性能与优化2.4.1.带宽管理2.4.2.数据压缩2.4.3.QoS策略2.4.4.缓存技术2.4.5.负载均衡3.网络安全与管理3.1.信息安全基础3.1.1.机密性3.1.2.完整性3.1.3.可用性3.1.4.认证与授权3.1.5.非阻断性3.2.网络风险评估与管理3.2.1.风险评估方法3.2.2.风险处理方法3.3.防火墙与入侵检测系统3.3.1.防火墙类型3.3.2.防火墙配置与管理3.3.3.入侵检测系统类型3.3.4.入侵检测系统配置与管理3.4.VPN与远程访问3.4.1.VPN类型3.4.2.VPN配置与管理3.4.3.远程访问技术3.4.4.远程访问配置与管理3.5.网络安全策略与应急响应3.5.1.安全策略制定与执行3.5.2.安全事件监测与响应3.5.3.安全漏洞修复与补丁管理3.5.4.安全培训与教育附件:1.实验报告范例2.路由器配置示例3.防火墙策略示例法律名词及注释:1.信息安全等级保护制度:国家依法确定和组织实施的一种安全保护制度,用于保护信息系统和涉密信息。

计算机网络 知识点总结

计算机网络  知识点总结

【精品】计算机网络个人概要总结1.计算机网络的定义:多个独立的计算机通过通信线路和通信设备互连起来的系统,以实现彼此交换信息(通信)和共享资源的目的。

2.计算机网络功能:(1)数据通信。

(2)资源共享。

(3)并行和分布式处理(数据处理)。

(4)提高可靠性。

(5)好的可扩充性。

3.计算机网络从逻辑功能上可以分为资源子网和通信子网;4.计算机网络基本网络拓扑结构有五种:全连接形、星形、树形、总线形、环形。

5.按网络的作用范围来分,网络可分为3类:局域网、城域网、广域网。

6.网络延迟时间主要包括:排队延迟、访问延迟、发送时间、传播延迟。

7.网络协议:为主机与主机之间、主机与通信子网之间或子网中各通信节点之间的通信而使用的,是通信双方必须遵守的,事先约定好的规则、标准或约定。

8.网络协议的三要素:语法、语义、时序(同步)。

9.网络协议采用分层方式的优点:各层之间是独立的。

灵活性好。

结构上可分隔开。

易于实现和维护。

有利于标准化工作。

10.网络体系结构:计算机网络的各个层次及其相关协议的集合,是对计算机网络所完成功能的精确定义。

11.OSI模型采用七层结构:物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。

12.物理层:实现透明地传送比特流。

负责建立、保持和拆除物理链路;比特如何编码。

传送单位是比特(bit)。

13.数据链路层:实现无差错帧传送,包括把原始比特流分帧、排序、设置检错、确认、重发、流控等功能;负责建立、维护和释放数据链路;传送信息的单位是帧(frame)。

14.网络层:实现分组传送,选择合适的路由器和交换节点,透明地向目的站交付发送站所发送的分组或包。

传送的信息单位是分组或包(packet)。

15.传输层:实现端到端的数据发送。

信息单位是报文(message)。

16.会话层:为完成一个相对独立的统一任务而进行的双方按序传送报文和有关的非传送操作的过程。

需要解决会话的顺序,同步问题,活动管理。

高中信息技术:计算机网络知识点总结

高中信息技术:计算机网络知识点总结

高中信息技术新课程标准教材信息技术( 2019 — 2020学年度第二学期 )学校:年级:任课教师:信息技术教案 / 高中信息技术编订:XX文讯教育机构计算机网络知识点总结教材简介:本教材主要用途为学习本知识能够调动学生的激情与兴趣,对相关教师和学生创造力的开发有促进作用,对教学效果提升有着积极的影响,本教学设计资料适用于高中信息技术科目, 学习后学生能得到全面的发展和提高。

本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。

iso分层下三层·物理层的功能:电压水平,数据传输速率,最大传输距离,物理接口·网络层协议有很多种,最常见的网络层协议主要有ip,ipx,beui是不可路由协议·传输层的基本功能:分段上层数据,建立端到端连接,将数据从一端主机传送到另一端主机,保证数据传输稳定性tcp/ip· ip数据包如tcp包包含5个元素:协议号,源地址,目的地址,源端口,目的端口。

· tcp/ip环境中端口共有65535个端口号,其中1024个端口号默认提供系统和一些经典应用层协议使用。

· tcp/ip特点:三次握手,差错检测,面向连接,速度慢,有顺序号和确认号。

upd速度快· icmp种echo request由ping产生,主机可通过它检测网络的可达性,echo reply 表示该节点可达。

· a类地址从1-126,1600个地址;b类地址128-191,65534个地址;c类192-223,254个地址。

· ipx特点:地址结构10个字节,接口的mac地址是逻辑地址的一部分;多种封装格式;路由协议rip,服务广告sap;netware客户机通过gns请求服务器。

· ip报文结构:ip报文头部中包含代表最小延迟,最大吞吐量,最高可靠性等信息· ip报文头部identification字段用来唯一标示每一纷数据报文;通常ip报文头部为20字节长。

计算机网络综合知识点及考试重点

计算机网络综合知识点及考试重点

计算机网络综合知识点及考试重点计算机网络是现代社会不可或缺的一部分,它连接了全球各地的计算机,允许人们分享信息和资源。

在计算机网络的学习和考试中,有一些关键的知识点和重点需要我们了解和掌握。

本文将提供一个综合的知识点概述,帮助你更好地准备学习和考试。

一、网络的基础概念1. 计算机网络的定义计算机网络是由多台计算机和网络设备通过通信线路连接起来,共享资源和信息的系统。

2. 网络的分类根据网络的规模和物理结构,网络可以分为局域网(LAN)、城域网(MAN)、广域网(WAN)等。

3. 网络的拓扑结构常见的网络拓扑结构包括星型、总线型、环型、树型等。

4. 网络的传输介质网络的传输介质可以是有线(如双绞线、同轴电缆)或无线(如无线局域网)。

5. OSI参考模型OSI(开放系统互联)参考模型将计算机网络的通信过程分为七个层次:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。

二、数据通信与网络互联1. 数据通信的基本概念数据通信是指计算机之间传输数据的过程,包括数据的发送、接收和处理。

2. 信道和传输介质信道是指数据传输的路径,传输介质是信道的物理媒体,如光纤、电缆等。

3. 数字传输技术数字传输技术包括调制解调、编码和解码等过程。

4. 网络协议与数据包网络协议是计算机网络中约定的通信规则,数据包是网络传输的基本单位。

5. IP地址与子网划分IP地址是唯一标识网络设备的地址,子网划分可以更好地管理和控制IP地址资源。

三、局域网与广域网1. 局域网的特点与技术局域网是在一个较小的地理范围内连接多台计算机和设备的网络,常用的局域网技术有以太网和无线局域网。

2. 广域网的特点与技术广域网覆盖更大的地理范围,常用的广域网技术有传输控制协议/因特网协议(TCP/IP)、异步传输模式(ATM)等。

3. 路由器与交换机路由器和交换机是网络中常用的设备,路由器用于在不同网络之间传输数据,交换机用于在局域网内传输数据。

计算机网络技术基础200个知识点

计算机网络技术基础200个知识点

计算机网络技术基础200个知识点计算机网络技术是现代社会不可或缺的重要组成部分,应用广泛而深入。

了解计算机网络的基本知识点对于每个从事相关领域的人士来说都是必备的。

本文将介绍200个计算机网络技术基础知识点,旨在帮助读者全面了解计算机网络的基础知识。

1. 计算机网络的定义及分类计算机网络是指通过通信链路将多台计算机互相连接起来,实现信息和资源的共享。

常见的计算机网络分类包括局域网(LAN)、城域网(MAN)、广域网(WAN)等。

2. 物理层物理层是计算机网络的基本层次,负责传输原始的二进制数据。

常见的物理层技术包括数字信号传输、模拟信号传输等。

3. 数据链路层数据链路层负责实现可靠的数据传输,常用的协议有以太网、令牌环等。

4. 网络层网络层负责实现不同网络之间的数据传输,常用的协议有IP协议、ICMP协议等。

5. 传输层传输层负责实现端到端的可靠数据传输,常用的协议有TCP协议、UDP协议等。

6. 应用层应用层负责实现特定的网络应用程序,常用的协议有HTTP协议、FTP协议等。

7. 套接字套接字是网络编程中的一种抽象,用于实现不同主机间的进程通信。

8. IP地址IP地址是一个用来唯一标识网络中计算机的地址,常见的IP地址格式为四个十进制数,每个数的取值范围为0-255。

9. 子网掩码子网掩码用于划分IP地址的网络部分和主机部分,用于网络的划分。

10. 路由表路由表是用来记录路由器间的路由信息,用于实现数据包的转发。

11. ARP协议ARP协议用于实现IP地址与MAC地址的映射。

12. DNS解析DNS解析是将域名转化为IP地址的过程,常用的DNS服务器有ISP提供的DNS服务器、公共的DNS服务器等。

13. TCP三次握手TCP三次握手是实现可靠数据传输的基础,用于建立TCP连接。

14. TCP四次挥手TCP四次挥手用于结束TCP连接,释放资源。

15. UDP协议UDP协议是一种不可靠的传输协议,常用于实时传输。

计算机网络基础知识总结

计算机网络基础知识总结

1. 网络层次划分2. OSI七层网络模型3. IP地址4. 子网掩码及网络划分5. ARP/RARP协议6. 路由选择协议7. TCP/IP协议8. UDP协议9. DNS协议10. NAT协议11. DHCP协议12. HTTP协议13. 一个举例计算机网络学习的核心内容就是网络协议的学习;网络协议是为计算机网络中进行数据交换而建立的规则、标准或者说是约定的集合;因为不同用户的数据终端可能采取的字符集是不同的,两者需要进行通信,必须要在一定的标准上进行;一个很形象地比喻就是我们的语言,我们大天朝地广人多,地方性语言也非常丰富,而且方言之间差距巨大;A地区的方言可能B地区的人根本无法接受,所以我们要为全国人名进行沟通建立一个语言标准,这就是我们的普通话的作用;同样,放眼全球,我们与外国友人沟通的标准语言是英语,所以我们才要苦逼的学习英语;计算机网络协议同我们的语言一样,多种多样;而ARPA公司与1977年到1979年推出了一种名为ARPANET的网络协议受到了广泛的热捧,其中最主要的原因就是它推出了人尽皆知的TCP/IP标准网络协议;目前TCP/IP协议已经成为Internet中的“通用语言”,下图为不同计算机群之间利用TCP/IP进行通信的示意图;为了使不同计算机厂家生产的计算机能够相互通信,以便在更大的范围内建立计算机网络,国际标准化组织ISO在1978年提出了“开放系统互联参考模型”,即着名的OSI/RM模型Open System Interconnection/Reference Model;它将计算机网络体系结构的通信协议划分为七层,自下而上依次为:物理层Physics Layer、数据链路层Data Link Layer、网络层Network Layer、传输层Transport Layer、会话层Session Layer、表示层Presentation Layer、应用层Application Layer;其中第四层完成数据传送服务,上面三层面向用户;除了标准的OSI七层模型以外,常见的网络层次划分还有TCP/IP四层协议以及TCP/IP五层协议,它们之间的对应关系如下图所示:TCP/IP协议毫无疑问是互联网的基础协议,没有它就根本不可能上网,任何和互联网有关的操作都离不开TCP/IP协议;不管是OSI七层模型还是TCP/IP的四层、五层模型,每一层中都要自己的专属协议,完成自己相应的工作以及与上下层级之间进行沟通;由于OSI七层模型为网络的标准层次划分,所以我们以OSI七层模型为例从下向上进行一一介绍;1物理层Physical Layer激活、维持、关闭通信端点之间的机械特性、电气特性、功能特性以及过程特性;该层为上层协议提供了一个传输数据的可靠的物理媒体;简单的说,物理层确保原始的数据可在各种物理媒体上传输;物理层记住两个重要的设备名称,中继器Repeater,也叫放大器和集线器;2数据链路层Data Link Layer数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层;为达到这一目的,数据链路必须具备一系列相应的功能,主要有:如何将数据组合成数据块,在数据链路层中称这种数据块为帧frame,帧是数据链路层的传送单位;如何控制帧在物理信道上的传输,包括如何处理传输差错,如何调节发送速率以使与接收方相匹配;以及在两个网络实体之间提供数据链路通路的建立、维持和释放的管理;数据链路层在不可靠的物理介质上提供可靠的传输;该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等;有关数据链路层的重要知识点:1> 数据链路层为网络层提供可靠的数据传输;2> 基本数据单位为帧;3> 主要的协议:以太网协议;4> 两个重要设备名称:网桥和交换机;3网络层Network Layer网络层的目的是实现两个端系统之间的数据透明传送,具体功能包括寻址和路由选择、连接的建立、保持和终止等;它提供的服务使传输层不需要了解网络中的数据传输和交换技术;如果您想用尽量少的词来记住网络层,那就是“路径选择、路由及逻辑寻址”;网络层中涉及众多的协议,其中包括最重要的协议,也是TCP/IP的核心协议——IP协议;IP协议非常简单,仅仅提供不可靠、无连接的传送服务;IP协议的主要功能有:无连接数据报传输、数据报路由选择和差错控制;与IP协议配套使用实现其功能的还有地址解析协议ARP、逆地址解析协议RARP、因特网报文协议ICMP、因特网组管理协议IGMP;具体的协议我们会在接下来的部分进行总结,有关网络层的重点为:1> 网络层负责对子网间的数据包进行路由选择;此外,网络层还可以实现拥塞控制、网际互连等功能;2> 基本数据单位为IP数据报;3> 包含的主要协议:IP协议Internet Protocol,因特网互联协议;ICMP协议Internet Control Message Protocol,因特网控制报文协议;ARP协议Address Resolution Protocol,地址解析协议;RARP协议Reverse Address Resolution Protocol,逆地址解析协议;4> 重要的设备:路由器;4传输层Transport Layer第一个端到端,即主机到主机的层次;传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输;此外,传输层还要处理端到端的差错控制和流量控制问题;传输层的任务是根据通信子网的特性,最佳的利用网络资源,为两个端系统的会话层之间,提供建立、维护和取消传输连接的功能,负责端到端的可靠数据传输;在这一层,信息传送的协议数据单元称为段或报文;网络层只是根据网络地址将源结点发出的数据包传送到目的结点,而传输层则负责将数据可靠地传送到相应的端口;有关网络层的重点:1> 传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输以及端到端的差错控制和流量控制问题;2> 包含的主要协议:TCP协议Transmission Control Protocol,传输控制协议、UDP协议User Datagram Protocol,用户数据报协议;3> 重要设备:网关;5会话层会话层管理主机之间的会话进程,即负责建立、管理、终止进程之间的会话;会话层还利用在数据中插入校验点来实现数据的同步;6表示层表示层对上层数据或信息进行变换以保证一个主机应用层信息可以被另一个主机的应用程序理解;表示层的数据转换包括数据的加密、压缩、格式转换等;7应用层为操作系统或网络应用程序提供访问网络服务的接口;会话层、表示层和应用层重点:1> 数据传输基本单位为报文;2> 包含的主要协议:FTP文件传送协议、Telnet远程登录协议、DNS域名解析协议、SMTP邮件传送协议,POP3协议邮局协议,HTTP协议Hyper Text Transfer Protocol;1网络地址IP地址由网络号包括子网号和主机号组成,网络地址的主机号为全0,网络地址代表着整个网络;2广播地址广播地址通常称为直接广播地址,是为了区分受限广播地址;广播地址与网络地址的主机号正好相反,广播地址中,主机号为全1;当向某个网络的广播地址发送消息时,该网络内的所有主机都能收到该广播消息;3组播地址D类地址就是组播地址;先回忆下A,B,C,D类地址吧:注:只有A,B,C有网络号和主机号之分,D类地址和E类地址没有划分网络号和主机号;注:一般的广播地址直接广播地址能够通过某些路由器当然不是所有的路由器,而受限的广播地址不能通过路由器;6回环地址7A、B、C类私有地址私有地址private address也叫专用地址,它们不会在全球使用,只具有本地意义;随着互连网应用的不断扩大,原先的IPv4的弊端也逐渐暴露出来,即网络号占位太多,而主机号位太少,所以其能提供的主机地址也越来越稀缺,目前除了使用NAT在企业内部利用保留地址自行分配以外,通常都对一个高类别的IP地址进行再划分,以形成多个子网,提供给不同规模的用户群使用;这里主要是为了在网络分段情况下有效地利用IP地址,通过对主机号的高位部分取作为子网号,从通常的网络位界限中扩展或压缩子网掩码,用来创建某类地址的更多子网;但创建更多的子网时,在每个子网上的可用主机地址数目会比原先减少;什么是子网掩码子网掩码是标志两个IP地址是否同属于一个子网的,也是32位二进制地址,其每一个为1代表该位是网络位,为0代表主机位;它和IP地址一样也是使用点式十进制来表示的;如果两个IP地址在子网掩码的按位与的计算下所得结果相同,即表明它们共属于同一子网中;在计算子网掩码时,我们要注意IP地址中的保留地址,即“ 0”地址和广播地址,它们是指主机地址或网络地址全为“ 0”或“ 1”时的IP地址,它们代表着本网络地址和广播地址,一般是不能被计算在内的;子网掩码的计算:下面总结一下有关子网掩码和网络划分常见的面试考题:1利用子网数来计算在求子网掩码之前必须先搞清楚要划分的子网数目,以及每个子网内的所需主机数目;1 将子网数目转化为二进制来表示;2 取得该二进制的位数,为N;该二进制为五位数,N = 53 取得该IP地址的类子网掩码,将其主机地址部分的的前N位置1即得出该IP 地址划分子网的子网掩码;2利用主机数来计算1 将主机数目转化为二进制来表示;2 如果主机数小于或等于254注意去掉保留的两个IP地址,则取得该主机的二进制位数,为N,这里肯定 N<8;如果大于254,则 N>8,这就是说主机地址将占据不止8位;该二进制为十位数,N=10;3还有一种题型,要你根据每个网络的主机数量进行子网地址的规划和计算子网掩码;这也可按上述原则进行计算;比如一个子网有10台主机,那么对于这个子网需要的IP地址是:10+1+1+1=13注意:加的第一个1是指这个网络连接时所需的网关地址,接着的两个1分别是指网络地址和广播地址;地址解析协议,即ARPAddress Resolution Protocol,是根据IP地址获取物理地址的一个TCP/IP协议;主机发送信息时将包含目标IP地址的ARP请求广播到网络上的所有主机,并接收返回消息,以此确定目标的物理地址;收到返回消息后将该IP地址和物理地址存入本机ARP缓存中并保留一定时间,下次请求时直接查询ARP缓存以节约资源;地址解析协议是建立在网络中各个主机互相信任的基础上的,网络上的主机可以自主发送ARP应答消息,其他主机收到应答报文时不会检测该报文的真实性就会将其记入本机ARP缓存;由此攻击者就可以向某一主机发送伪ARP应答报文,使其发送的信息无法到达预期的主机或到达错误的主机,这就构成了一个ARP欺骗;ARP命令可用于查询本机ARP缓存中IP地址和MAC地址的对应关系、添加或删除静态对应关系等;ARP工作流程举例:3主机B确定ARP请求中的IP地址与自己的IP地址匹配,则将主机A的IP地址和MAC地址映射添加到本地ARP缓存中;4主机B将包含其MAC地址的ARP回复消息直接发送回主机A;5当主机A收到从主机B发来的ARP回复消息时,会用主机B的IP和MAC地址映射更新ARP缓存;本机缓存是有生存期的,生存期结束后,将再次重复上面的过程;主机B的MAC地址一旦确定,主机A就能向主机B发送IP通信了;逆地址解析协议,即RARP,功能和ARP协议相对,其将局域网中某个主机的物理地址转换为IP地址,比如局域网中有一台主机只知道物理地址而不知道IP地址,那么可以通过RARP协议发出征求自身IP地址的广播请求,然后由RARP服务器负责回答;RARP协议工作流程:1给主机发送一个本地的RARP广播,在此广播包中,声明自己的MAC地址并且请求任何收到此请求的RARP服务器分配一个IP地址;2本地网段上的RARP服务器收到此请求后,检查其RARP列表,查找该MAC地址对应的IP地址;3如果存在,RARP服务器就给源主机发送一个响应数据包并将此IP地址提供给对方主机使用;4如果不存在,RARP服务器对此不做任何的响应;5源主机收到从RARP服务器的响应信息,就利用得到的IP地址进行通讯;如果一直没有收到RARP服务器的响应信息,表示初始化失败;常见的路由选择协议有:RIP协议、OSPF协议;RIP协议:底层是贝尔曼福特算法,它选择路由的度量标准metric是跳数,最大跳数是15跳,如果大于15跳,它就会丢弃数据包;OSPF协议:Open Shortest Path First开放式最短路径优先,底层是迪杰斯特拉算法,是链路状态路由选择协议,它选择路由的度量标准是带宽,延迟;TCP/IP协议是Internet最基本的协议、Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP协议组成;通俗而言:TCP负责发现传输的问题,一有问题就发出信号,要求重新传输,直到所有数据安全正确地传输到目的地;而IP是给因特网的每一台联网设备规定一个地址;IP层接收由更低层网络接口层例如以太网设备驱动程序发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层;IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是否按顺序发送的或者有没有被破坏,IP数据包中含有发送它的主机的地址源地址和接收它的主机的地址目的地址;TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP是面向连接的所以只能用于端到端的通讯;TCP提供的是一种可靠的数据流服务,采用“带重传的肯定确认”技术来实现传输的可靠性;TCP还采用一种称为“滑动窗口”的方式进行流量控制,所谓窗口实际表示接收能力,用以限制发送方的发送速度;TCP报文首部格式:TCP协议的三次握手和四次挥手:注:seq:"sequance"序列号;ack:"acknowledge"确认号;SYN:"synchronize"请求同步标志;;ACK:"acknowledge"确认标志";FIN:"Finally"结束标志;TCP连接建立过程:首先Client端发送连接请求报文,Server段接受连接后回复ACK报文,并为这次连接分配资源;Client端接收到ACK报文后也向Server段发生ACK 报文,并分配资源,这样TCP连接就建立了;TCP连接断开过程:假设Client端发起中断连接请求,也就是发送FIN报文;Server端接到FIN报文后,意思是说"我Client端没有数据要发给你了",但是如果你还有数据没有发送完成,则不必急着关闭Socket,可以继续发送数据;所以你先发送ACK,"告诉Client端,你的请求我收到了,但是我还没准备好,请继续你等我的消息";这个时候Client端就进入FIN_WAIT状态,继续等待Server端的FIN报文;当Server 端确定数据已发送完成,则向Client端发送FIN报文,"告诉Client端,好了,我这边数据发完了,准备好关闭连接了";Client端收到FIN报文后,"就知道可以关闭连接了,但是他还是不相信网络,怕Server端不知道要关闭,所以发送ACK后进入TIME_WAIT 状态,如果Server端没有收到ACK则可以重传;“,Server端收到ACK后,"就知道可以断开连接了";Client端等待了2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,我Client端也可以关闭连接了;Ok,TCP连接就这样关闭了为什么要三次挥手在只有两次“握手”的情形下,假设Client想跟Server建立连接,但是却因为中途连接请求的数据报丢失了,故Client端不得不重新发送一遍;这个时候Server端仅收到一个连接请求,因此可以正常的建立连接;但是,有时候Client端重新发送请求不是因为数据报丢失了,而是有可能数据传输过程因为网络并发量很大在某结点被阻塞了,这种情形下Server端将先后收到2次请求,并持续等待两个Client请求向他发送数据...问题就在这里,Cient端实际上只有一次请求,而Server端却有2个响应,极端的情况可能由于Client端多次重新发送请求数据而导致Server端最后建立了N多个响应在等待,因而造成极大的资源浪费所以,“三次握手”很有必要为什么要四次挥手试想一下,假如现在你是客户端你想断开跟Server的所有连接该怎么做第一步,你自己先停止向Server端发送数据,并等待Server的回复;但事情还没有完,虽然你自身不往Server发送数据了,但是因为你们之前已经建立好平等的连接了,所以此时他也有主动权向你发送数据;故Server端还得终止主动向你发送数据,并等待你的确认;其实,说白了就是保证双方的一个合约的完整执行使用TCP的协议:FTP文件传输协议、Telnet远程登录协议、SMTP简单邮件传输协议、POP3和SMTP相对,用于接收邮件、HTTP协议等;UDP用户数据报协议,是面向无连接的通讯协议,UDP数据包括目的端口号和源端口号信息,由于通讯不需要连接,所以可以实现广播发送;UDP通讯时不需要接收方确认,属于不可靠的传输,可能会出现丢包现象,实际应用中要求程序员编程验证;UDP与TCP位于同一层,但它不管数据包的顺序、错误或重发;因此,UDP不被应用于那些使用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS;相对于FTP或Telnet,这些服务需要交换的信息量较小;每个UDP报文分UDP报头和UDP数据区两部分;报头由四个16位长2字节字段组成,分别说明该报文的源端口、目的端口、报文长度以及校验值;UDP报头由4个域组成,其中每个域各占用2个字节,具体如下:1源端口号;2目标端口号;3数据报长度;4校验值;使用UDP协议包括:TFTP简单文件传输协议、SNMP简单网络管理协议、DNS域名解析协议、NFS、BOOTP;TCP与UDP的区别:TCP是面向连接的,可靠的字节流服务;UDP是面向无连接的,不可靠的数据报服务;DNS是域名系统DomainNameSystem的缩写,该系统用于命名组织到域层次结构中的计算机和网络服务,可以简单地理解为将URL转换为IP地址;域名是由圆点分开一串单词或缩写组成的,每一个域名都对应一个惟一的IP地址,在Internet上域名与IP地址之间是一一对应的,DNS就是进行域名解析的服务器;DNS命名用于Internet等TCP/IP网络中,通过用户友好的名称查找计算机和服务;NAT网络地址转换Network Address Translation属接入广域网WAN技术,是一种将私有保留地址转化为合法IP地址的转换技术,它被广泛应用于各种类型Internet 接入方式和各种类型的网络中;原因很简单,NAT不仅完美地解决了lP地址不足的问题,而且还能够有效地避免来自网络外部的攻击,隐藏并保护网络内部的计算机;DHCP动态主机设置协议Dynamic Host Configuration Protocol是一个局域网的网络协议,使用UDP协议工作,主要有两个用途:给内部网络或网络服务供应商自动分配IP地址,给用户或者内部网络管理员作为对所有计算机作中央管理的手段;超文本传输协议HTTP,HyperText Transfer Protocol是互联网上应用最为广泛的一种网络协议;所有的文件都必须遵守这个标准;HTTP协议包括哪些请求GET:请求读取由URL所标志的信息;POST:给服务器添加信息如注释;PUT:在给定的URL下存储一个文档;DELETE:删除给定的URL所标志的资源;HTTP中,POST与GET的区别1Get是从服务器上获取数据,Post是向服务器传送数据;2Get是把参数数据队列加到提交表单的Action属性所指向的URL中,值和表单内各个字段一一对应,在URL中可以看到;3Get传送的数据量小,不能大于2KB;Post传送的数据量较大,一般被默认为不受限制;4根据HTTP规范,GET用于信息获取,而且应该是安全的和幂等的;I. 所谓安全的意味着该操作用于获取信息而非修改信息;换句话说,GET请求一般不应产生副作用;就是说,它仅仅是获取资源信息,就像数据库查询一样,不会修改,增加数据,不会影响资源的状态;II.幂等的意味着对同一URL的多个请求应该返回同样的结果;在浏览器中输入后执行的全部过程2在客户端的传输层,把HTTP会话请求分成报文段,添加源和目的端口,如服务器使用80端口监听客户端的请求,客户端由系统随机选择一个端口如5000,与服务器进行交换,服务器把相应的请求返回给客户端的5000端口;然后使用IP层的IP地址查找目的端;3客户端的网络层不用关系应用层或者传输层的东西,主要做的是通过查找路由表确定如何到达服务器,期间可能经过多个路由器,这些都是由路由器来完成的工作,不作过多的描述,无非就是通过查找路由表决定通过那个路径到达服务器;4客户端的链路层,包通过链路层发送到路由器,通过邻居协议查找给定IP地址的MAC地址,然后发送ARP请求查找目的地址,如果得到回应后就可以使用ARP的请求应答交换的IP数据包现在就可以传输了,然后发送IP数据包到达服务器的地址;。

完整版网络体系结构知识点总结

完整版网络体系结构知识点总结

完整版网络体系结构知识点总结网络体系结构是指计算机网络中各个层次之间的关系和相互作用。

它决定了计算机网络中的数据传输方式和协议。

下面是对网络体系结构的完整版知识点总结:1.OSI参考模型:- OSI模型是Open Systems Interconnection(开放系统互联)的缩写,由国际标准化组织(ISO)于1984年提出。

-OSI参考模型将网络通信的过程分解为七个不同的层次,每个层次都有一个特定的功能,并通过接口与相邻的层次进行通信。

-七个层次分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。

2.TCP/IP参考模型:- TCP/IP模型是Transmission Control Protocol/Internet Protocol(传输控制协议/网际协议)的缩写,是互联网最常用的体系结构模型。

-TCP/IP参考模型将网络通信的过程分为四个层次,分别是网络接口层、互联网层、传输层和应用层。

-网络接口层提供与硬件设备(如网卡)之间的接口,互联网层负责寻址和路由,传输层提供可靠的数据传输服务,应用层则负责应用程序的通信。

3.物理层:-物理层是最底层的层次,负责将比特流转换为信号发送到物理介质上,以及将接收到的信号转换为比特流。

-物理层的主要功能包括定义物理接口标准、传输速率、传输模式和物理连接标准等。

4.数据链路层:-数据链路层位于物理层之上,负责将比特流划分为帧,并提供可靠的数据传输服务。

-数据链路层的主要功能是进行物理寻址、帧同步、流量控制和错误检测与纠正等。

5.网络层:-网络层负责在计算机网络中寻址和路由,以实现不同计算机之间的通信。

-网络层的主要功能是确定数据包的路径和转发,实现逻辑寻址和分组交换等。

6.传输层:-传输层位于网络层之上,为应用程序提供端到端的可靠数据传输服务。

-传输层的主要功能包括面向连接的传输和无连接的传输,以及流量控制和拥塞控制等。

7.会话层:-会话层负责建立、管理和结束应用程序之间的会话。

职高计算机网络知识点

职高计算机网络知识点

职高计算机网络知识点1. 网络基础知识- 网络:由多个计算机互相连接而成的系统,可以实现信息的传输和共享。

- 网络拓扑:描述网络中各计算机和设备之间的连接方式,常见的拓扑结构有星型、环形、总线型等。

- IP地址:每个连接到网络上的设备都被分配一个唯一的IP地址,用于标识设备在网络中的位置。

- 子网掩码:用于划分IP地址的网络部分和主机部分。

- 路由器:网络设备,用于在不同网络之间转发数据包。

- 网关:连接不同网络的设备,用于转发数据包。

2. 网络协议- TCP/IP协议:用于互联网通信的一组协议,包括IP、TCP、UDP等。

- IP协议:负责将数据包从源地址传输到目标地址。

- TCP协议:提供可靠的数据传输,保证数据的准确性和完整性。

- UDP协议:提供不可靠的数据传输,适用于实时性要求较高的应用。

- DNS协议:域名系统,将域名转换为IP地址。

- FTP协议:文件传输协议,用于在网络上传输文件。

- SMTP协议:简单邮件传输协议,用于发送电子邮件。

3. 网络安全- 防火墙:网络安全设备,用于监控和控制网络流量,保护网络免受攻击。

- VPN:虚拟专用网络,通过加密和隧道技术来实现远程安全连接。

- 加密算法:用于保护数据的安全性,常见的加密算法有DES、AES等。

- 安全漏洞:指系统或应用程序中存在的安全隐患,可能导致数据泄露或被黑客攻击。

- 威胁分析:对系统进行全面评估,确定系统可能面临的威胁和风险,并采取相应的安全措施。

以上是职高计算机网络的一些基础知识点,希望可以帮到您!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. .. 2物理层 2.1基本概念 物理层的主要任务——确定与传输媒体接口的一些特性 四个特性:机械特性——指明接口所用接线器的形状和尺寸、引线的数目和排列、固定的所 锁定装置等 电气特性——指明接口电缆各条线上出现的电压范围 功能特性——指明某条线上出现的某条电平的电压表示何种意义 过程特性——指明对于不同功能的各种可能事件的出现顺序 2.2数据通信的基础知识 数据通信系统的三大部分——源系统、传输系统、目的系统 数据——运送消息的实体 信号——数据的电气或电磁表现 模拟的——表示消息的参数的取值是连续的 数字的——表示消息的参数的取值是离散的 码元——在使用时间域的波形表示数字信号时,代表不同离散数值表示的基本波形 单工通信(单向通信)——只能有一个方向的通信不允许反方向的交互 半双工通信(双向交替通信)——通信的双方都可以发送消息,不允许同时发送或接收 全双工通信(双向同时通信)——通信双方可以同时发送接收消息 基带信号——来自源的信号 调制——基带信号含有信道不能传输的低频分量或直流分量,必须对基带信号进行调制 基带调制(编码)——仅仅变换波形,变换后仍是基带信号 带通调制——使用载波调制,把信号的频率范围搬到较高频段,并转换为模拟信号 带通信号——经过载波调制后的信号(仅在一段频率范围内能通过信道) 基本带通调制方法——调幅(AM)、调频(FM)、调相(PM) 码间串扰——在接收端收到的信号波形失去了码元之间的清晰界限的现象 奈式准则——在任何信道中,码元的传输速率是有上限的,传输速率超过此上限就会出现严 重的码间串扰,使接收端对码元的判决成为不可能 数据的传输速率(比特率)——每秒传输的比特数即二进制数字(0或1),单位bit/s、b/s、bps 码元传输率(波特率)——每秒信道传输的码元个数,单位B

传信率(比特率)与传码率(波特率)的关系——(N为码元的进制数) 比特率=n*波特率(n为每个码元的比特,二进制时带1比特,三进制时带2比特,八进制带3bit) 信噪比——信号的平均功率和噪声的平均功率之比,记为S/N,单位分贝(dB) 信噪比(dB)=10log10(S/N)(dB) 如当S/N为10时信噪比10,S/N为1000为30 香农公式——信道极限信息传输率C = W log2(1+S/N) b/s W信道带宽(单位Hz)、S信道内所传信号的平均功率、N为高斯噪声功率 奈氏准则公式——C=2WRb=2WRBlog2N 即每赫带宽理想低通信道的最高码元传输率是每秒2个码元 2.4通道复用技术 频分复用(FDM)——用户在分配到一定频带后,在通信过程中自始至终都占用这个频带 频分复用的所有用户在同样的时间占用不同的频率带宽 时分复用(TDM)——将时间划分为一段段等长的时分复用帧(TDM帧),每一个时分复用用户 在每一个TDM帧中占用固定序号的间隙。(信道利用率不高) 统计时分复用(STDM)——前提是假定各用户都是间歇地工作,每个时隙要有用户地址信息 . .. 波分复用(WDM)——光的频分复用,因光载波频率很高,习惯上用波长表示使用的光载波 8路2.5Gb/s光载波经光的调制,在一根光纤上的总速率为20Gb/s 100根2.5Gb/s光纤的光缆,采用16倍密集波分复用,得一根4Tb/s\ 码分复用CDM —— 将每一个比特时间划分为m个短的码片 (码分地址CDMA) 给每个站点分配码片序列,不同站点的码片序列正交 当发送码片1时就发送该站点码片序列,比特0时发送反码 当S站点向T站点发送数据时,T站点接收的是所有站点发送的序列和 T站点用S站点的码片序列与接收的序列和做内积运算 非S站点的序列得0,,S站发送的比特0得-1、比特1得1 规格化内积公式——各项相乘之和除以项数量 脉冲调制PCM体制——北美24路PCM标准T1速率为1.544Mb/s 欧洲30路PCM标准E1速率为2.048Mb/s 同步光纤网SONET—第一级同步传送信号STS-1传输速率51.84Mb/s(第一级光载波OC-1) 同步数字系列SDH——基本速率(第一级同步传递模块STM-1)为155.52Mb/s(OC-3) 3数据链路层 数据链路层使用的信道主要有两种类型: 点对点信道——使用一对一的点对点通信方式 广播通信——使用一对多的广播通信方式 链路——是从一个结点到相邻结点的一段物理线路,中间没有其他交换结点。 链路只是一条路径的组成部分 数据链路——除了这些物理线路,还必须有通信协议来控制数据的传输,如果把实现这些协 议的硬件和软件加到链路上,就构成了数据链路 帧——数据链路层协议数据单元 IP数据报——网络层协议数据单元 数据链路层三个基本问题:封装成帧、透明传输、差错检验 封装成帧——在一段数据的前后分别添加首部和尾部,这样就构成了一个帧 帧定界——首部和尾部的一个重要作用 最大传送单元(MTU)——链路层协议规定的所能传送的帧的数据部分长度上限 帧定界符——当数据是由可打印的ASCII码组成的文本文件时,帧定界可使用帧定界符 SOH——帧开始符,十六进制编码01,二进制编码00000001,Start Of Header EOT——帧结束符,十六进制编码04,二进制编码00000100,End Of Transmission .

.. 透明传输——无论什么样的比特组合的数据都能通过这个数据链路层 字节填充——发送端的数据链路层在数据中出现控制字符前插入一个转义字符“ESC” 在接收端的数据链路层把数据送往网络层之前删除插入的转义字符 ESC——转义字符,十六进制编码1B,二进制编码00011011,Byte Stuffing

差错检测: 比特差错——比特在传输过程中可能会发生差错:1变成0,0变成1 误码率BER——在一段时间内,传输错误的比特占所传输比特总数的比例,Bit Error Rate 信噪比越大,误码率越小 循环冗余检验CRC——把数据分为每组k个比特 在待传送的一组数据M后添加n位冗余码 冗余码的计算方法——在M后加上n个0得到(2^n)M 除以事先选定好的(n+1)位除数P得到商Q和n位余数R (用竖式做除法,商右移补0至位数与除数相等,相异得1,相同得0) 余数R作为冗余码接在M后发送出去 循环冗余检验CRC——把收到的每一帧除以P,检查得到的余数R’ 若R’=0,则判定这个帧没有差错,就接受 若R’!=0,则判定有差错,就丢弃 帧件检验序列FCS——在数据后面添加冗余码,Frame Check Sequence 而CRC是一种常见的检错方法 FCS可以用CRC这种方法得出,但CRC并非获得FCS的唯一方法 在数据链路层使用CRC检验,能实现无比特差错传输,但这还不是可靠传输,只能做到无差错接收,要做到可靠传输,必须加上确认和重传机制。 点对点协议PPP——用户计算机和ISP进行通信时使用的链路层协议(只支持全双工链路) PPP协议应满足的需求——简单——这是首要的要求 封装成帧 透明性 多种网络层协议 多种类型链路 差错检测 检测连接状态 最大传送单元 网络层地址协商 数据压缩协商 PPP协议不需要的功能——纠错 流量控制 序号 多点线路 半双工或单工链路 PPP协议三个组成部分——一个将IP数据报封装到串行链路的方法 链路控制协议LPC(Link Control Protocol) 网络控制协议NPC(Network Control Protocol) PPP用同步传输链路,采用硬件完成比特填充;异步传输时使用字符填充法P75 零比特填充——PPP协议在使用SONET/SDH链路时,是使用同步传输的,此时采用零比特 填充实现透明传输;发送端:5个连续1填一个0,接收端删除。 . .. 媒体共享技术——静态划分信道:频分复用、时分复用、波分复用、码分复用 动态媒体接入控制:随机接入、受控接入 世界第一个局域网产品(以太网)规约——DIX Ethernet V2 IEEE的802.3标准——与DIX Ethernet V2差别很小,可以简称为“以太网” 局域网数据链路层的两个子层——逻辑链路控制LLC子层 媒体接入控制MAC子层 局域网的主要优点——具有广播功能,从一个站点可很方便的访问全网 便于系统的扩展和演变,各设备的位置可灵活调整和改变 提高了系统的可靠性、可用性和生存性 适配器——连接计算机与外部局域网,嵌在计算机主板上 适配器的主要功能——进行串行/并行转换 对数据进行缓存 在计算机的操作系统安装设备驱动程序 实现以太网协议 计算机硬件地址在适配器的ROM中,计算机软件地址—IP地址在计算机的存储器中 以太网采取的两种措施——无连接的工作方式,尽最大努力交付,即不可靠交付 发送的数据都使用曼彻斯特编码的信号 CSMA/CD协议——载波监听多点接入/碰撞检测(只能进行半双工通信) 多点接入——总线型网络,许多计算机以多点接入方式连接在一根总线上 载波监听——在发送数据前检测总线上是否有其他计算机子在发送数据 碰撞检测——计算机边发送数据边检测信道

电磁波在1km电缆的传播时延——5μs 争用期2τ——以太网端到端往返时延,具体争用期时间为51.2μs 对于10Mb/s的以太网,在争用期可发送512bit,即64字节 退避算法——确定基本退避时间,一般取争用期2τ 定义重传次数k=Min[已经重传的次数,10] 从[0,1,...,2^k-1]中随机抽取数r 重传推后时间为r倍争用期 重传达16次仍不成功,抛弃该帧 最短有效帧长——争用期是512比特时间时,发生冲突一定在前64字节内 以太网规定了最短有效帧长为64字节,小于64字节的都是无效帧 强化碰撞——当发现碰撞时,停止发送数据,再继续发送若干比特人为干扰信号 帧间最小间隔——9.6μs,即96比特时间 CSMA/CD——从网络层获得一个分组,加上首尾组成以太帧,放入适配器缓存准备发送 检测到信道96比特时间内保持空闲,就发送这个帧 若检测到碰撞,则中止数据的发送,并发送人为干扰信号 发送完干扰信号后适配器执行退避算法,等待r倍512比特时间,返回步骤2

相关文档
最新文档