车身结构碰撞安全性设计
汽车碰撞安全CAE仿真分析

汽车碰撞安全CAE仿真分析汽车的碰撞安全性是汽车设计开发过程中必不可少的环节,车身结构是碰撞安全的基础,设计出具有良好碰撞吸能性能的安全车身是汽车设计的一个主要目标。
汽车的碰撞安全性能最终要经过实车的碰撞试验来检验,但实车试验成本高昂,在设计过程中不可能为验证某一设计的合理性而反复试验。
CAE仿真分析因其可重复性、低费用、方便性等优点成为检验某一设计是否合理的有效方法。
同捷在12年发展中设计开发了几百款车型,积累了各类型、各级别车型丰富的设计经验。
同时,由于CAE分析已成为设计中的一项不可或缺的流程,几乎每一款车型都要进行碰撞安全CAE仿真分析,也积累了丰富的标杆车和设计车分析经验和数据,完全可以根据不同需求设计出合理的安全车身结构,满足法规及C-NCAP要求。
以下从最常见的几个碰撞性能分析项介绍汽车碰撞安全CAE仿真分析的主要内容。
正面刚性墙碰撞分析根据法规和C-NCAP要求,在正面刚性墙碰撞中,汽车以50km/h的速度正面垂直撞击刚性墙。
车身主要的吸能结构为前保险杠、吸能盒、左右前纵梁等前舱结构,因此,前纵梁上各支架(如纵梁上蓄电池支架、发动机悬置支架等)的布置对碰撞过程中纵梁的吸能弯折型式有很大影响。
由于正面碰撞侧重对约束系统的考察,这就要求车身结构,特别是乘员舱的结构既要设计得比较刚强,保证乘员生存空间的完整性,又要合理的分散碰撞能量,降低传递到乘员舱的力。
利用CAE仿真分析方法,不仅可以输出碰撞过程中B柱、中央通道的加速度,前围板、踏板、方向盘的侵入量,门框变形量及各主要力传递路径结构的截面力等信息,还可以根据分析结果快速地修改主要吸能结构的材料、料厚及特征等,达到优化的目的。
40%偏置碰撞分析40%偏置碰撞与正面刚性墙碰撞最大的区别是偏置碰撞中只有一侧的纵梁结果参与变形吸能,因此,偏置碰撞更多的是对车身结构刚强程度的考察,碰撞力必须很快地通过A柱、门槛梁、车门腰线、地板、中央通道等传递分散,设计中不仅要综合考虑正面刚性墙碰撞的分析结果,还需重点关注A柱、门框及上边梁等结构的变形特点。
基于CAE模拟技术的汽车碰撞安全性研究

基于CAE模拟技术的汽车碰撞安全性研究汽车碰撞安全性一直是汽车行业的重要研究领域,而基于CAE模拟技术的汽车碰撞安全性研究则成为了近年来的热点。
CAE(Computer-Aided Engineering,计算机辅助工程)模拟技术可以通过数值计算和仿真模拟来评估汽车在碰撞中的安全性能,为汽车的设计和制造提供重要参考。
本文将对基于CAE模拟技术的汽车碰撞安全性研究进行探讨和分析。
首先,基于CAE模拟技术的汽车碰撞安全性研究的重要性不言而喻。
在过去,汽车碰撞测试主要依靠实际车辆进行,成本高昂且效率低下。
而现在,通过CAE模拟技术,可以在计算机中建立汽车的虚拟模型,通过各种仿真分析来模拟真实的碰撞情况,从而更加快速和经济地评估汽车的碰撞安全性能。
这不仅可以提高汽车的设计效率,还可以降低开发成本和生产周期。
其次,基于CAE模拟技术的汽车碰撞安全性研究可以帮助汽车制造商评估和改进车辆的结构和材料。
通过建立车辆的虚拟模型,并运用CAE软件进行碰撞仿真分析,可以得到车辆在碰撞中的受力情况、应力分布、变形变化等重要参数,从而评估车辆的结构和材料的可靠性。
如果在模拟分析中发现了某个部位的受力过大或变形严重,汽车制造商可以及时进行结构设计和材料选择的改进,提高车辆在碰撞中的安全性能。
此外,基于CAE模拟技术的汽车碰撞安全性研究还可以评估不同碰撞条件下的乘员保护性能。
汽车制造商可以通过虚拟仿真分析,研究不同角度、不同速度、不同碰撞类型等各种碰撞条件对乘员的影响。
通过模拟分析,可以得到乘员在碰撞过程中的受力情况、身体部位的受伤程度等信息,进而评估车辆的乘员保护性能。
这为汽车制造商改进车辆的乘员安全装置、调整车身结构等提供了重要的依据。
另外,基于CAE模拟技术的汽车碰撞安全性研究也有助于优化汽车的被动安全系统。
被动安全系统是指在发生碰撞时起到保护乘员和减轻伤害的设备和装置,如安全气囊、安全带等。
通过仿真分析,可以评估被动安全系统在碰撞中的性能表现,如安全气囊的充气时间和力度、安全带的松紧程度等,从而优化被动安全系统的设计和功能,提高乘员的安全防护水平。
正面碰撞车身设计基本思路

AUTOMOBILE DESIGN | 汽车设计正面碰撞车身设计基本思路张路 杨志刚 林祥辉极氪汽车(宁波杭州湾新区)有限公司 浙江省宁波市 315336摘 要: 本文以正面碰撞的结构设计为出发点,阐述正面碰撞设计的基本思路。
包含:由外向内逐级加强的设计,以保证生存空间的设计基本要点;整车受力传递路径的规划与截面力规划的设计要点;同时,还阐述了材质及料厚的选取、焊接质量对于碰撞安全的影响以及设计或选取的方法。
关键词:正面碰撞 耐撞性 逐级溃缩 截面力规划1 前言被动安全设计开发涉及两个主要方面:车身结构耐撞性和约束系统开发。
车身耐撞性结构设计是整车被动安全设计的基础,其中,车身结构刚度和强度这两个指标是车身耐撞性考察的重要指标。
车身刚度指的是车身的抗冲击能力或抗变形能力,指在低速碰撞过程中零部件不损坏的特性,这一点能够保证维修经济性;强度是抵抗外力的塑性变形或抵抗车身被破坏的能力。
在碰撞安全中,刚度影响低速碰、强度影响高速碰。
车身的这两个指标,主要是由车身的结构设计、材料强度、钣金料厚、焊接工艺和粘胶连接质量决定。
本文是以高速碰撞下车身结构设计为重点进行阐述。
2 生存空间与变形区域车身结构设计,首先要保证的是车内乘员的有效生存空间,也就是要将车内乘员舱设计成整个车身骨架结构中最强的区域;而乘员舱之外的部分(发舱、后备箱)主要用于碰撞变形吸能。
乘员舱内外需要共同作用、相互配合,才能在汽车发生高速碰撞时,为乘员提供安全的提前(生存空间),后由约束系统约束住乘员,确保人员低损伤或不受损伤。
高速碰撞中,决定汽车的安全因素不是车身外部钢板的厚度,而是带有逐级吸能及具有良好抗变形能力的车身结构,使乘员舱不发生形变(见图1)。
同时,良好的变形形式,是确保整车加速度曲线及曲线走势的基础,也就是整个碰撞过程都需要进行有序控制。
图1 吸能车身结构示意图事故对于正面高速碰设计,发动机舱加上仪表板区域可划分为三大块,如下图2所示。
奔驰碰撞技巧教学设计

奔驰碰撞技巧教学设计奔驰碰撞技巧教学设计一、教学目标:1. 了解奔驰车辆的碰撞安全设计原理和技术特点。
2. 掌握奔驰碰撞事故时的正确反应和应对措施。
3. 提高学员的自我保护意识和安全驾驶技能。
二、教学内容:1. 奔驰碰撞安全设计原理:a. 高强度钢结构:奔驰车辆采用高强度钢材料制作车身结构,提供更大的碰撞安全空间。
b. 安全气囊系统:针对不同碰撞方向设计多个安全气囊,并配备碰撞传感器,实现灵敏的气囊触发。
c. 主动安全技术:奔驰车辆配备多种主动安全技术,如刹车辅助系统、防抱死刹车系统等,提高车辆在紧急情况下的稳定性和制动效果。
d. 电子稳定程序(ESP):通过感知车辆的方向和横向加速度,ESP系统能够自动对车辆进行制动,保持车辆稳定和方向控制。
2. 碰撞事故时的正确反应和应对措施:a. 首先保持镇定,尽量减小事故的危害。
b. 如果是追尾事故,在发现前方车辆突然停车时,要迅速踩下刹车以保持安全距离,并尽量避免碰撞。
c. 如果是侧面碰撞事故,要时刻注意左右两侧的交通情况,避免被突然冲出来的车辆撞击。
d. 无论何种碰撞事故,及时拨打紧急电话报警,同时向后方车辆示意减速以避免连环事故的发生。
e. 在车辆停稳后,尽量呆在车内,等待救援人员的到来。
三、教学方法:1. 讲授与讨论:通过讲解奔驰车辆的碰撞安全设计原理,引导学员了解奔驰车辆的安全性能,并与学员进行相关问题的讨论,提高学员的分析问题和解决问题的能力。
2. 视频展示:播放奔驰车辆在各种碰撞测试中的情况,展示车辆在碰撞时的保护措施和效果,增加学员对奔驰碰撞安全设计的认知和信心。
3. 模拟实践:使用驾驶模拟器进行模拟碰撞情景的实践,让学员亲自体验碰撞发生时的反应和应对措施,提高学员的应急反应和驾驶技能。
四、教学评估:1. 通过课堂讨论和问答,检查学员对奔驰碰撞安全设计原理的理解程度。
2. 对学员在模拟实践中的驾驶表现进行评估,检查其在碰撞发生时的反应和应对措施是否正确。
2024版电动汽车碰撞后安全要求

2024版电动汽车碰撞后安全要求随着电动汽车的快速发展,碰撞后的安全问题日益受到人们的关注。
为了保障乘客在碰撞事故发生后的安全,制定了2024版电动汽车碰撞后安全要求,具体要求如下:一、结构合理性要求1. 在车身结构方面,电动汽车应采用合理布局的车身框架和加强材料,确保在碰撞中能够有效承受冲击力,并保护乘客的生命安全。
2. 牵引电池系统应具备优良的结构安全性,以防止碰撞中对电池系统产生严重影响。
二、被动安全要求1. 座椅和安全带的设计应符合人体工程学原理,提供良好的支撑和保护,减轻碰撞时的冲击力和伤害。
2. 气囊系统应覆盖乘员的重要部位,能够在碰撞发生时及时充气,并在适当时机缓解冲击力,保护乘客免受严重伤害。
三、主动安全要求1. 电动汽车应配备先进的安全辅助系统,如碰撞预警系统、自动制动系统等,能够在碰撞事件发生前及时预警,并采取相应措施避免碰撞。
2. 车辆应配备完善的智能驾驶辅助系统,提供准确的行驶信息和反馈,有效减少驾驶员的疲劳和操作失误,降低碰撞风险。
四、维修和救援要求1. 电动汽车碰撞后的维修和救援应由专业人员进行,确保车辆能够及时修复,并保障乘客的安全。
2. 维修和救援人员应受过专业培训,并熟悉电动汽车碰撞后的处理流程,以避免二次伤害的发生。
五、评估和监测要求1. 制定科学的碰撞安全评估标准,定期对电动汽车的碰撞安全性进行评估和监测,及时发现问题并加以改进。
2. 对电动汽车碰撞事故进行深入调查和分析,总结经验教训,并加以应用,提高电动汽车的碰撞后安全性水平。
以上就是2024版电动汽车碰撞后安全要求的主要内容。
通过采取合理的车身结构设计、优化的被动安全装置、先进的主动安全系统以及专业的维修和救援措施,我们将能够不断提高电动汽车碰撞后的安全性能,确保乘客的生命安全。
同时,定期评估和监测将为我们提供改进的方向,为电动汽车行业的可持续发展提供有力支持。
乘用车车身结构安全要求及评价方法

乘用车车身结构安全要求及评价方法
乘用车车身结构的安全要求主要包括以下几个方面:
1. 车身结构强度:车身结构应具有足够的强度,能够承受来自各个方向的碰撞力,以保护车内乘员的安全。
2. 车身结构刚度:车身结构应具有足够的刚度,能够在受到外力作用时保持形状稳定,防止乘员因车身变形而受伤。
3. 碰撞能量吸收:车身结构应设计有能量吸收区,以在发生碰撞时吸收部分碰撞能量,减少碰撞对乘员的冲击。
4. 乘员保护:车身结构应能有效保护乘员,包括提供足够的生存空间、减少乘员受伤的可能性等。
评价方法主要包括以下几个方面:
1. 碰撞试验:通过进行实车碰撞试验,模拟不同情况下的碰撞场景,评估车身结构的安全性能。
2. 有限元分析:利用计算机仿真技术,对车身结构进行有限元分析,预测车身在不同碰撞场景下的变形和受力情况。
3. 安全性评价:根据碰撞试验和有限元分析的结果,对车身结构的安全性进行评价,包括乘员保护性能、能量吸收性能等。
4. 国际标准对比:将评价结果与国际上的相关安全标准进行对比,以评估车身结构的安全性能是否达到国际水平。
需要注意的是,乘用车车身结构的安全性能是一个综合指标,需要考虑多个方面的因素。
因此,在评价车身结构的安全性时,需要采用多种方法和技术手段,以确保评价的准确性和可靠性。
(完整版)汽车碰撞安全

制动 信号 视野 电子辅助 车身耐撞性 乘员约束系统
汽车碰撞过程
• 汽车发生碰撞时,汽车与汽车或汽车与障碍物之间的碰撞 一次碰撞
• 一次碰撞后,汽车速度迅速降低,乘员因惯性向前运动, 二次碰撞 并与车内的方向盘、挡风玻璃或仪表台等物件发生碰撞
• 人体软组织器官和骨骼的撞击 三次碰撞
人体伤害主要发生在二次碰撞
结构耐撞不是汽车撞不坏,而是车辆结构逐步变形吸收能量,车毁人不亡
结构耐撞性与约束系统不是相互独立作用,汽车结构吸能必须叠加在约束系 统上才能取得保护乘员的作用
结构耐撞性
• 汽车结构产生塑性变形吸能,提供合理的减速过程, 并保持足够的乘员生存空间
乘员约束
• 座椅、安全带、气囊,通过约束乘员降低乘员与内 饰碰撞的速度
行人碰撞保护设计要点: ➢ 下肢:保险杠刚度,保险杠与防撞
梁之间的吸能空间 ➢ 头部:发动机罩刚度,发动机罩盖
下方吸能空间(与发动机、电池等 的间隙) ➢ 髋部:发动机罩盖、格栅下方吸能 空间
行人碰撞保护设计
常见的网络评论
——汽车撞不过自行车? ——汽车前保险杠一般是塑料材质,是为了在低速碰撞事故中保护行人和非机动车而设计 的,在中低速碰撞中肯定撞不过自行车。
目录
一、汽车碰撞安全基础 二、汽车碰撞安全设计 三、汽车约束系统 四、汽车碰撞安全测试 五、汽车轻量化与碰撞安全
约束系统
约束系统
安全带 儿童座椅 安全气囊 座椅 方向盘
安全带
两点式 三点式 四点式
2014年法规乘用车已不能再使用 最常使用,保护性能优良 乘员保护性能最好,但实用性方面还存在一定问题
AIS简明创伤分级标准
轻度创伤
中度 重度,可痊愈,伴随可逆转损伤(骨折)
基于结构耐撞性的汽车车身轻量化设计

料提升到一定等级的高强度钢材料 ,同时降低料 厚, 达到不降低 l能指标 而减重的 目的 。 生
43 结构 优化 结果 .
减重环节的高强度钢可以降低大部分料厚大 于 1m . m的零件 ,通过使用更高等级的高强度钢 0
材料 可 以降低料 厚 02 m 04 .m . mm。 把 以上 可接受 的方 案结 合在 一起 ,将 未被 列 入 敏感 表 的零 件考 虑其 他要 求及 工艺 实现 。仿 真 分 析最 终 方 案 包 括 全 宽正 碰 、0 4 %侧 面 碰撞 和侧
问题 。
关键 词 : 强度 钢 高
轻量 化
结构 耐撞 性
1 引 言
汽 车 的安 全性 能 和节 能环保 是 目前 汽 车结 构 设计 面 临 的两大 问题 ,这 些 问题 与 汽车 的轻 量 化 问题 密切 相关 。据统 计 , 车总重 量每 减轻 1% , 汽 0
轿车车身结构安全性设计的基本思路是 : 利 用 车身 的可变 形 区域有 效 吸收撞击 能 量 ,以确 保
结果 的基 础上 对工 字 梁结构进行 了改进 。
关键 词 : B U 前桥 A AQ S
工 字梁
强度
1 前 言
工 字 梁 是前 桥 总 成结 构 中 最重 要 的 承载 件 , 传递着车架与路面之间的全部作用力 ,在汽车制
动 时承受 巨大的 载荷 ,因此 对极 限制动 工况 下 工 字梁 的强度分 析 十分必要 。本 文利 用有 限元 软件
2 轿 车车身结构设计过程
1 技 术纵横 8
轻 型汽 车技 术
21 ( ) 27 02 9 总 7
A A U B Q S在前桥工字梁结构改进中的应用
何 润华 沈 磊
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2 车身结构碰撞安全性设计
【案例】承载式轿车三种碰撞形式载荷传递分析
➢ 当轿车发生后面碰撞时,第一条路径由后保险杠、后纵梁传递给门槛梁; ➢ 第二条由后车轮后部结构经后车轮传递给门槛梁。通常将后部结构设计得软一些,
以实现缓冲撞击,这种措施与正面碰撞类似。
第6章 车身结构碰撞安全性
6.2 车身结构碰撞安全性设计
② 车身结构刚性设计 对轿车来说,当受到侧面碰撞时,几乎没有可以利用的缓冲吸能空间,所以,侧面结 构必须有足够的刚度,也就是将车门、B柱、门槛梁、车顶横梁等设计得刚度大一些, 如设置防侧撞梁,防止车门或立柱发生较大变形,侵入乘员室而伤及乘员。
第6章 车身结构碰撞安全性
6.2 车身结构碰撞安全性设计
考虑到碰撞相容性的相对较软的车身前部刚度
考虑人体生理特性的受力优化的安全带
考虑侧撞安全性的侧面气囊或气帘
为提高强度及刚度而采用先进成型方法的前柱
考虑轻量化的碰撞承载结构优化设计
考虑正面碰撞而改进前围板与转向柱的连接
承受速度为64km/h的碰撞,乘员无伤害
增添顶盖内保护头部的安全气囊
燃油系统采用密封性和阻燃性良好的材料
4. 刚性设计的具体措施
1)车门 车门内外板除具有足够高的刚度外,车门内板上应焊接防撞梁;例如速腾轿车车门防撞 梁设计成Y形,可进一步提高抗侧撞性。
第6章 车身结构碰撞安全性
6.2 车身结构碰撞安全性设计
2) B柱 为防止B柱向车内发生弯曲变形,必须具有足够的弯曲刚度。
实际上,当B柱受撞击时, B柱各部位的 受到的弯矩是不同的,因此, B柱的截面 形状很复杂,以抵抗不同截面受到的不同 弯矩。
同时B柱各部位受力分布要合理,以防止 发生撞击时B柱会产生受弯失稳。否则, B柱抵抗侧向撞击的能力会急剧下降。
通常B柱中段受到的弯矩较大,为防止局 部产生塑性变形,通常采取加强措施,图 为B柱的加强结构。
第6章 车身结构碰撞安全性
6.2 车身结构碰撞安全性设计
3)接头 接头是车身结构中两个以上承载构件相互交叉连接的部位。汽车发生侧面碰撞时产
有安全带等保护装置 高强度的乘坐舱
车身前后部有大的碰撞变形区域 地板及车门具有碰撞承载结构
车身前部有高强度的横向连接件 车门有极坚固的防撞梁 顶盖有加强结构
乘座舱内构件表面光滑及柔软 纵向结构从前至后变形阻力逐大 碰撞后起火燃烧的可能性最小 承受速度为50km/h的碰撞,乘员无伤害 雨刮器应几乎完全被发动机罩遮盖
第6章 车身结构碰撞安全性
6.2 车身结构碰撞安全性设计
车身抗撞性设计必须满足两点要求:
车身结构必须具有缓冲变形功能,以吸收碰撞能量,降低碰撞加速度和撞击力。 应为乘员提供生存空间,即车身的整体刚度应合理分配且能够控制,以保证乘员室
被撞击时的完整性。
实际上,不论是承载式车身还是非承 载式车身,车身结构的能量吸收特性 和乘员室的结构刚度都取决于车身主 要结构件的设计。
第6章 车身结构碰撞安全性
《汽车车身结构与设计》
6.2 车身结构碰撞安全性设计
车身抗撞性
是指车身结构在碰撞过程中保证乘员免受伤害和碰撞之后安全逃逸的能力。这正是对车身抗撞性的 设计要求。
1. 与抗撞性相关的车身结构特点
➢ 车身结构由结构件、板壳零件及其接头组成,构成一个承受和传递载荷的基本系统。车身结构设 计决定载荷的传递路径。
➢ 研究表明,车身结构抗撞性主要由薄壁梁结构和接头组成的框架结构决定,在碰撞过程中吸收大 部分碰撞能量,为乘员舱提供大部分刚性。
第6章 车身结构碰撞安全性
6.2 车身结构碰撞安全性设计
2. 车身抗撞性设计要求
基于传统安全理念的典型轿车的抗碰撞设计——满足碰撞安全法规 考虑乘客最优化的碰撞保护的安全性设计基本要求
生的内力将通过接头传递,在传力过程中,接头的变形会影响整个车身的变形。 研究表明,车身接头刚度对整个车身刚度的影响可达50%~70%。为提高接头的刚
车身刚度合理分级 白车身外的零件修理价格合宜
第6章 车身结构碰撞安全性
6.2 车身结构碰撞安全性设计
基于现代安全性理念的典型轿车的抗碰撞设计——集设计经验、汽车碰撞、计算机模 拟及试验和生理力学等方面分析,使乘客有最优的保护并顾及车外交通参与者的安全
考虑乘客最优化的碰撞保护的安全性设计进一步要求
第6章 车身结构碰撞安全性
6.2 车身结构碰撞安全性设计
3. 车身抗撞性设计内容
其核心内容就是合理组织车身结构各部分的刚度。主要内容分三个方面:
① 车身结构刚度组织(仅分析被动安全性) 车身结构刚度组织是从各种碰撞形式中乘员保护的角度出发,考虑到车身结构的特点, 合理布置车身的主要承载结构,并合理配置它们的刚度。 根据车身抗撞性设计的基本原则,车身结构刚度组织主要包括两方面内容 : a)合理组织结构的吸能,将吸能要求合理分解为对相应吸能部件的要 求。 b)合理组织碰撞载荷的传递,即合理设计碰撞载荷的传递路径。
第6章 车身结构碰撞安全性
6.2 车身结构碰撞安全性设计
【案例】承载式轿车三种碰撞形式载荷传递分析
➢ 当轿车发生正面碰撞时,一条路径是从汽车前端向后传递的纵向力经前纵梁、门槛 梁和乘员室底部纵梁向后传递,这条路径承受纵向力的能力最大。大部分碰撞能量 在传递的过程中被前纵梁所吸收。
➢ 另一条路径是纵向力经前指梁、铰链柱、A柱、车门及其防撞梁和门槛梁向后传递, 为防止车门被撞后开启困难,该路径前部结构的吸能能力通常较小。
第6章 车身结构碰撞安全性
6.2 车身结构碰撞安全性设计
车身结构设计一般分为碰撞安全区和缓冲吸能区 :
A区为乘坐安全区
乘坐室应有足够的刚度,不允许发生大的碰撞变形,如碰撞后车门仍能正常开启,以保证乘员有足 够的生存空间。
B区为缓冲吸能区
即车身前部结构和后部结构,在前后碰撞时允许有较大的变形,以便合理地吸收一次碰撞时的撞击 能量,使得二次碰撞时,作用于乘员身体上的力和加速度不超过规定的人的忍耐极限。
第6章式轿车三种碰撞形式载荷传递分析
当轿车发生侧面碰撞时,车门将产生向车内运动的趋势。 ➢ 一方面车门框受到的侧向力将通过防撞梁、B柱、顶盖横梁向非撞击侧传递; ➢ 另一方面,门槛梁受到的侧向力通过车身底部的横向结构向另一侧传递。
第6章 车身结构碰撞安全性