压力容器的设计步骤
压力容器设计基础

压力容器设计基础压力容器设计基础一、基本概念压力容器的设计,就是根据给定的性能要求、工艺参数和操作条件,确定容器的结构型式,选择合适的材料,计算容器主要受压元件的尺寸,最后给出容器及其零部件的图纸,并提出相应的技术条件。
正确完整的设计应达到保证完成工艺生产。
正确完整的设计应达到保证完成工艺生产,运行安全可靠,保证使用寿命、制造、检验、安装、操作及维修方便易行,经济合理等要求。
压力容器设计中的关键问题是力学问题,即强度、刚度及稳定性问题。
在本节中,主要讨论压力容器设计中的有关强度问题。
所谓强度,就是结构在外载荷作用下,会不会因应力过大而发生破裂或由于过度性变形而丧失其功用。
具体来讲,就是在外载荷作用下,容器结构内产生的应力不大于材料的许用应力值,即:ζ≤K〔ζ〕t (1)这个式子就是强度问题的基本表达式。
压力容器的设计计算就是围绕这一关系式而进行的。
公式(1)中的左端项是结构内的应力,它是人们最为关心的问题。
求解结构的应力状态,它们的大小,是一个十分复杂的问题,常用的方法有解法(如弹性力学法、弹型性分析法等)、试验法(如电阻应变计测量法、光弹法、云纹法等)及数值解法(如有限元法、边界元法等)。
应用这些方法可以精确或近似地求出结构的应力,然而,每一种结构的应力都有其特殊性,目前可求解的只是问题的绝大部分,仍有许多复杂结构的应力分析有等人们进一步探讨。
求出结构内任一点的应力后,所遇到的问题就是怎样处理这些应力。
一点的应力状态最多可含有6个应力分量,哪个应力起主要作用,这些应力对失效起什么作用,对它们如何控制才不致发生破坏,解决这一问题,就要选择相应的强度理论计算当量应力,以便与单向拉伸试验得到的许用应力相比较,将应力控制在许可的范围内。
公式(1)中的右端项是强度控制指标,即材料的许用应力。
它涉及到材料强度指标(如抗拉强度ζb、屈服强度ζs 等)的确定及安全系数的选用等问题。
当采用常规设计法,且只考虑静载问题时,系数K=1.0;如果考虑动载荷,或采用应力分析设计法,K≥1.0,此时设计计算将更加复杂。
压力容器的设计、制造和检验(正式版)

文件编号:TP-AR-L7601In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.(示范文本)编订:_______________审核:_______________单位:_______________压力容器的设计、制造和检验(正式版)压力容器的设计、制造和检验(正式版)使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。
材料内容可根据实际情况作相应修改,请在使用时认真阅读。
一、压力容器概述1.压力容器规范化早在19世纪末就有了对锅炉和压力容器规范化的要求。
20世纪最初的十年,发生了近一万起锅炉爆炸,造成了约一万人的死亡和约一万五千人的伤残。
这些血的教训使人们对压力容器制造和安装的规范化有了更清醒的认识。
1907年,美国Massachusetts州继1905年和1906年两次灾难性的锅炉爆炸之后,提出了世界上第一部锅炉制造和安装的法规。
循着Massachusetts州的范例,美国其他州和城市也制定出了蒸气锅炉制造、安装和检验的不同形式的法规或条例。
不同州的技术规范缺乏一致性,使得制造者无法制造出其他州可以接受的标准锅炉。
制造出的锅炉不能运出州界,一个州的有资格的锅炉检验员也得不到其他州的承认。
要求订出蒸气锅炉和压力容器制造的标准规范的呼声越来越强烈,为解决这个问题,美国机械工程师协会于1911年成立了一个专门委员会,后来被称为锅炉规范委员会。
压力容器的设计制造标准2019

(四)GB150、JB4732、 (JB/T4735.1) 的关系
1. 适用范围
GB150
压力(MPa) 0.1≤P≤35
温度(℃) -253至700
介质 不限
JB4732
NB/T47003.1 (JB/T4735.1)
0.1≤P<100 P<0.1
约<475 低于材料的蠕变温度
>-20至350
不限
压力容器设计制造标准
内容简介
一、压力容器标准体系及状况 二、GB150-2019 总 论 三、材 料 四、GB150-2019 设计计算 五、制造、检验与验收 六、GB151-2019 管壳式换热器
一、压力容器标准体系及状况
(一)标准体系
1. 标准层次 (1)国家标准(GB) (2)行业标准(JB、HG 、SH等) (3)企业标准(QB)
钢制压力容器—分析设计标准 (2019年版)
(14)JB/T4736-2019 补强圈
(15)JB/T4740-2019 空冷式换热器型式与基本参数
(16) JB4744-2000 钢制压力容器产品焊接试板的力学性能检验
(17)JB/T4746-2019 钢制压力容器用封头
(18)JB/T4747-2019 压力容器用钢焊条订货技术条件
4. 厚度 (1)厚度附加量
厚度附加量C=C1+C2 设计容器受压元件时所必须考虑的附加厚度,包括钢板 (或钢管)厚度附加量的厚度。 a. 材料厚度负偏差 c1
钢板
GB/T709-2019 热轧钢板和钢带的尺寸、外形、重量及允许偏差
GB713-2019
锅炉和压力容器用钢板
GB3531-2019
低温压力容器用低合金钢钢板
固定式压力容器(设计)

➢ 99版容规中设计说明书的提法不明确,改为强度计算书或者 应力分析报告;
➢ 关于强度计算书或者应力分析报告的内容,属过细要求(也 规定不全),不再具体规定;
➢ 应当在合同中注明的内容不属于法规的强制性规定,不在此 条列出。
➢ 安装、使用说明书修订为设计单位认为必要时提供,责任由 设计单位承担;
➢ 99版容规规定,“对移动式压力容器、高压压力容器、第三
荷)、介质(组分)、腐蚀裕量、焊接接头系数、自然条件等,对储存液 化气体的储罐应当注明装量系数,对有应力腐蚀倾向的储存容器应当注明 腐蚀介质的限定含量; (4)主要受压元件材料牌号与标准; (5)主要特性参数(如压力容器容积、换热器换热面积与程数等); (6)压力容器设计使用年限(疲劳容器标明循环次数); (7)特殊制造要求; (8)热处理要求; (9)无损检测要求; (10)耐压试验和泄漏试验要求; (11)预防腐蚀的要求; (12)安全附件的规格和订购特殊要求(工艺系统已考虑的除外); (13)压力容器铭牌的位置; (14)包装、运输、现场组焊和安装要求。
主要变化:(99版容规第28、29条) ➢ 设计资格印章改为许可印章; ➢ 取消蓝图规定; ➢ 取消“经压力容器设计单位批准机构指定的图样”的试设计
方式。
2020/7/19
4
《容规》宣贯——第3章 设 计
3.3 设计条件 压力容器的设计委托方应当以正式书面形式向设计单位提出压
力容器设计条件。设计条件至少包含以下内容: (1)操作参数(包括工作压力、工作温度范围、液位高度、接管
(2)装设安全阀、爆破片装置的压力容器,设计文件还应当包括 压力容器安全泄放量、安全阀排量和爆破片泄放面积的计算 书;无法计算时,设计单位应当会同设计委托单位或者使用 单位,协商选用超压泄放装置。
压力容器的常规设计和分析设计

科 技 圈 向导
21年第 2 期 02 l
压力容器的常规设计和分析设计
高 峰 f 矿 煤 化 工 程有 限公 司 山东 兖
【 摘
兖州
22 O ) 7 1 0
要】 当前 , 分析设计 目前 已成为压 力容 器的重要设计方 法。 文首先 阐述 了压力容器分析设计与常规设计的不同。 本 然后 分析设 计中应
形 而破坏 。一次应力又分总体薄膜应力 、 一次弯 曲应力 和局部 薄膜应 力 例如承受内压圆筒 的器壁 中的环 向应力 即为 总体薄膜应力: 平封 头或 顶盖 中央部分在 内压作用下产生 的应力 即为 一次弯曲应力: 壳体 在 固定支座或接管处 由外载荷和力矩产生的应力为局部薄膜应力 : 二 是二次应力 。 二次应力是 由于容器部件的 自身约束或相邻部件 的约束 而产 生的正应 力或剪应力。它 的基本特点具有 “ 自限性 ” , 即局部屈服 和小量变形 就会使约束缓 和 、 变形协调 . 只要不反复加载 , 二次应力不 会引起容器结构破坏 : 三是峰值应力 峰值应力是 因局部结构不连续 1常规设计与分析设计 . 它具有最高 的应力值 它的基本特 过去压力容器及其部件 的设计基本上属于常规设计 . 我国现在执 或形状 突变 引起 的局部应力集 中。 自限性” 局部性”峰值 应力不会 引起容器 明显 的变形 和“ , 行 的相应的设计规范是《 钢制压力容器) i S — 9 1 常规设计的特 点具有“ ) n 0 ( G 8。 3常 规设 计 和 分 析 设 计 比较 . 点是: 简体及其部件 的应 力不 允许超过弹性范围 内的某一许用 值 如 果达到这一要求 . 为筒体或部件就是 比较可靠 的 这样做 比较简 即认 常规设计是一种简单易行的传统设计方法. 而分析设计则不 同. 它 单. 以现成 的设 计公 式及 曲线为依 据 . 多年来 一直按这样 的方 法进行 需要详尽 的应力分析报告为依据 需要近代 的分析计算 工具和实验技 设 计。 然而 , 这种方法 比较粗糙 . 许多重要因素都 未考虑进去 。以内压 术为手段, 因而提供 了充分的强度数 据对 新工艺 、 新材料 、 新结构 和新 圆筒为例 , 常规设计 时只考虑薄膜应力 , 在 至于 温差应力 、 边缘应力以 工况更具科 学性 和可靠性 分析设计提高 了许用应力. 降低了安全系 及 交变应 力引起 的疲劳等 问题均未考虑 所 以在规范 中 . 为了保证容 数 3 多年来 的实际运行表 明: O 采用分析设计的容器安全 可靠. 且具有 器 的安全可靠在设 计中就采用 了较高 的安全 系数 。最早 的安 全系数 经济 胜; 与常规设 计相 比, 可节省材料 2 %~ 0 在一定程 度上有效减 0 3 %. n 5 4 年代末改为 n 4 这样做实 际上是企 图以高 的安全系数来包罗 少制造加工量 、 : .0 =。 降低运输费用 但对 于选 材 、 制造 、 检验和验收规定 了 各 种因素 的影 响. 存在一些 问题 比常规设计更为严格的要求 下面是 常规设计与分析设计的对比 近年来 , 由于锅 炉、 石油 、 化工 等行 业 的发展 , 压力容器设计 参数 ① 比较项 目: 设计准则。 常规设计 : 弹性失效 : 只允许存在弹性变 提高. 使用条件也越来 越苛刻 . 如果 单纯依靠提高 安全系数 的办法来 分析设计 : 弹性失效 ' 塑性失效 ; j 单 允许 出现 局部 的、 可控制 的塑性变 保 证强度 . 导致设计变得不合理 。 会 为了防止这种现象 的发生 . 我们在 形 (. 1 极限载荷( 一次加载 2安定 载荷反复加载) . 。 结构型式 与材料方 面采取相应措施外 . 还必须从设计观 点和设 计方法 ② 比较项 目: 载荷 。 常规设计 : 静载荷 。 分析设计 : 静载荷 、 交变载 上加以改进和发展 目前世 界上一些先进 的国家都在运用应力分析方 荷 。 法 . 国也 于 19 年颁 布 了f 我 95 钢制压 力容器一一 分析设计 标准) B 7 ( 4 J ③ 比较项 目: 分析方法。 常规设计 : 薄膜理论 、 材料力学方法 、 简化 犯 一 9 ) 要求把零部件 中的应力较为准确地设计 出来或用应 力测试 公式加经验 系数 。分析设计 : 5. 弹性或塑性力学分析f 理论方 法、 数值方 法 测定 出来 。其次是引入 了极 限分析与安定性分析 的概念 , 对求得的 法 、 实验方法)板壳理论 。 、 应力 加以分类和加 以限制 ④ 比较项 目: 应力评定。 常规设计 : 应力不分类 、 同一 的许用应力 、 分析设计和常规设计 的主要 区别如下: 用第一强度理论 、 基本安全系数较大 。分析设计 : 力分类 、 应 用应力强 用第 基本安全系数较小。 ①分 析设计 比常规设 计在选材 、 结构 、 设计 、 制造 、 检脸和使 用等 度对各类应力进行评定 、 三强度理论 、 方 面都提 出了较高 的要求和较多的限击峰件。 ⑤ 比较项 目: 材料。 常规要求 。 分析设计 : 质、 优 延性好 、 性能稳定 ②分析设计考虑容器低循环疲劳失效 。 而常规设计并未包 括疲劳 ⑥ 比较项 目: 制造 、 检验。 常规设计 : 常规要求。 分析设计 : 整体 陛、 连续性 、 相贯处光滑过渡 、 全焊透、0 % 10 探伤 。 分 析。 ③分 析设计考虑疲劳分析时要求详细计算温差应力 . 而常规设计 分析设计方法虽然合 理而先进- 却需要进行大量 复杂的分析计 f 旦 除个 别元件外一般无此要求 算. 需要计算机 才能完成, 因而提高 了设计 费用 和时间, 以。 所 只有当设 ④ 分析设计采用最 大剪应 力理论 . 而常规设计 . 最大主应 力 计高参数 、 采用 重要的容器时才 采用这种方法 。但有些容器必须采用分析 理论 。 设计而无其 它选 择 对 一般的常规容器. 长期的实践证 明采用传 统的 ⑤ 分析设计原则上要 求对容器元 件各个部位 的应力进行详 细计 常规设计方法完全可以满足容器 的安全性。 如采用 分析设 计方法. 虽然 算 . 根据各种应力对 元件失效所起不 同的作用予 以分类 . 并 然后对 不 节省部分钢材, 却提高了设计 、 制造 费用, 实际上是不合算的。 因而美国 同类别 的应力采用不同的应力校核条件加以限制。 而常规设甘一般不 A M S E规范 同时规定 了上述两种设计准则 ’ 我国也颁 布了 G 10 19 B5— 98 计算 某些 局部应力 . 针对具体结构 引人 不 同的结构 系数 . 仅 也不对应 《 钢制压 力容器》 J 4 3 — 5 钢制压力容 器—— 分析设计标准 》 和 B 729 《 , 根 力进行分类 。 据不 同情况进行不同选择 分析设计是一个整体。 计准则的不 同. 设 要 求与之配套 的一 系列规 范和措 施也不同, 包括材料选用 、 制造工艺 、 检 2分 析 设计 中应 力分 类 及 其 应 用 . 分析设 计涉 及了各种可能失效模式 中一些 主要 的失效模式 , 计 验要求 、 程序 、 制造资格 等方面 ; 常规设计 方法 简单易行, 设 计算 设计 而 具 但 根据 所考虑 的失效模 式 比较详 细地 计算 了容器及受 压元件 的各 种应 有丰 富的使用经 验, 有时却无法解释压力容器 出现 的一些事 故 所 设计者应 根据实践 经验, 经济 通过 力 . 根据各种应力本身 的性质及对失效模 式所起的不同作用予 以分 以 常规设 计和分析设 计不能混用 , 并
压力容器零部件设计---法兰设计

②凹凸型
优点:便于对中,垫圈 放在凹面不易挤出,密 封面窄比压大。
缺点:加工量大
适用:压力稍高
③榫槽型
优点:密封面窄,不与 介质接触,
缺点:拆卸难,垫圈不 易清理
适用:压力更高,密封 要求严
④梯形槽:
与椭圆型或八角型金 属垫圈配用。
特点:槽的锥面与垫 圈成线(或窄面)接 触密封。
法兰的类型
1)压力容器法兰:连接筒体与封头、筒体与筒体、 法兰与管板。
2)管法兰:管道之间连接。
思考:两类法兰作用相同,外形相同,能互换吗? 为什么?
思考:两类法兰作用相同,外形相同,能互换吗? 为什么?
答:不能。 因为: 压力容器法兰的公称直径通常是与其连接的筒体的
适用:温度、压力有 波动,介质渗透性
密封面的选用原则
首先必须保证密封可靠, 然后力求加工容易,装配方便、成本低。
垫圈(垫片)
垫圈是法兰连接的核心,密封效果的好坏主 要取决于垫圈的密封性能。
垫圈材料的要求:
耐介质腐蚀、不与操作介质发生化学反应, 不污染产品和环境, 具有良好的弹性, 有一定的机械强度和适当的柔软性, 在工作温度和压力下不易变质(硬化、老化、软化)。
法兰设计的重要概念
1、预紧密封比压:
预紧时(无内压),迫使 垫片变形与压紧面密合, 形成初始密封条件。此时 在垫片单位面积上的压紧 力。(也称最小压紧应力 MPa)
法兰设计的重要概念
2、工作密封比压:操
作时(有内压),压紧力 减小,垫片具有足够的回 弹能力,回复的变形能够 补偿螺栓和密封面的变形, 此时预紧密封比压下降到 正常工作的最小值 。 (MPa)
压力容器常见结构的设计计算方法

压力容器常见结构的设计计算方法一、静态强度计算方法:静态强度计算方法主要针对压力容器在正常工作状态下的静载荷进行计算,其主要目标是确保容器在最大工作压力下不发生破坏。
静态强度计算方法一般包括以下几个步骤:1.基本假设和假设条件:在进行静态强度计算时,需要基于一定的假设和假设条件来简化实际工作状态,如假设容器时刚体、内外压力均匀分布、材料具有均匀强度等。
2.最大应力计算:通过应力分析计算出压力容器各部位的最大应力。
一般情况下,最大应力发生在容器支座、法兰连接处、沟槽和焊接缺陷等处。
3.材料强度计算:根据容器所使用的材料及其强度参数,计算出材料的强度。
根据所处环境不同,一般会对容器进行分析、判断和选择不同材料。
4.安全裕度计算:根据最大应力和材料强度的计算结果,计算出安全裕度。
安全裕度可以通过破坏条件下材料的强度与容器内外压力之比来衡量。
二、疲劳强度计算方法:疲劳强度计算方法主要用于疲劳载荷下的压力容器设计。
工作过程中,容器可能会受到频繁的循环应力作用,从而导致疲劳破坏。
疲劳强度计算方法的主要步骤如下:1.循环载荷分析:通过实测数据或估算,分析容器在工作循环过程中所受到的应力载荷情况。
考虑到载荷的方向、大小、频率和载荷历史等因素。
2.应力集中分析:针对容器中的主要应力集中部位进行应力集中分析,计算出特定位置的应力集中系数。
3.疲劳寿命计算:基于极限疲劳荷载下的循环应力进行计算。
通过应力循环次数和材料疲劳寿命曲线,计算出容器的疲劳寿命。
4.安全裕度计算:根据疲劳寿命与容器使用寿命的比值,得出安全裕度的计算结果。
三、稳定性计算方法:稳定性计算方法用于分析压力容器在压力作用下的稳定性问题,即容器是否会发生屈曲或侧翻。
稳定性计算方法的主要步骤如下:1.稳定性分析模型:根据压力容器的几何形状和支撑方式,构建相应的稳定性模型。
常见的模型有圆筒形、球形、圆锥形等。
2.屈曲载荷计算:通过对应力分析,计算出容器发生屈曲时的承载力。
压力容器的设计、制造和检验

压力容器的设计、制造和检验一、压力容器概述1.压力容器规范化早在19世纪末就有了对锅炉和压力容器规范化的要求。
20世纪最初的十年,发生了近一万起锅炉爆炸,造成了约一万人的死亡和约一万五千人的伤残。
这些血的教训使人们对压力容器制造和安装的规范化有了更清醒的认识。
1907年,美国Massachusetts州继1905年和1906年两次灾难性的锅炉爆炸之后,提出了世界上第一部锅炉制造和安装的法规。
循着Massachusetts州的范例,美国其他州和城市也制定出了蒸气锅炉制造、安装和检验的不同形式的法规或条例。
不同州的技术规范缺乏一致性,使得制造者无法制造出其他州可以接受的标准锅炉。
制造出的锅炉不能运出州界,一个州的有资格的锅炉检验员也得不到其他州的承认。
要求订出蒸气锅炉和压力容器制造的标准规范的呼声越来越强烈,为解决这个问题,美国机械工程师协会于1911年成立了一个专门委员会,后来被称为锅炉规范委员会。
美国机械工程师协会非燃火压力容器规范对压力容器没有给出定义。
压力容器一般是指装有加压流体用于完成某项过程的封闭容器,例如贮罐、热交换器、蒸发器和反应器等。
规范规定压力容器的范围还包括容器外的管线,终止于管线端焊连接的第一条焊缝、螺栓连接的第一个法兰面、或类似连接的第一个有连接迹象的点或面。
美国非燃火压力容器规范的短评U-1列出了超出规范权限的一些例外。
这些例外是必须的还是已被解除,不同地区有很大的不同。
有关这方面的细节,需要查阅“锅炉和压力容器的法规和条例说明书”,或向有管辖权的地方管理机构咨询。
非规范压力容器是指不能满足设计、制造、检验和鉴定规范的最低要求的容器。
这些容器不打印规范代号,除非有特殊的裁定,不得在接受美国机械工程师协会规范的区域安装。
目前,许多国家都设置了压力容器规范的立法和管理机构,颁布了各自的压力容器规范。
在我国,原国家劳动总局1979年颁布了《气瓶安全监察规程》;1980年颁布了《蒸汽锅炉安全监察规程》;1981年颁布了《压力容器安全监察规程》。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
储气罐——压力容器的设计步骤1.确定压力容器设备的各项参数:压力,介质,温度最高工作压力为1.5MPa,工作温度为常温20C,工作介质为压缩空气,容积为2m3确定压力容器的类型容器类别的划分在国家质量技术监督局所颁发的《压力容器安全技术监察规程》(以下简称容规)第一章中有详细的规定,主要是根据工作压力的大小、介质的危害性和容器破坏时的危害性来划分。
储气罐为低压(<1.6MPa)且介质无毒不易燃,应为第I类容器。
2.确定设计参数(1)确定设计压力容器的最高工作压力为1.5MPa,设计压力取值为最高工作压力的1.05〜1.10倍。
取1.05还是取1.10,取决于介质的危害性和容器所附带的安全装置。
介质无害或装有安全阀等就可以取下限1.05,否则上限1.10。
介质为压缩空气,管路中有泄压装置,符合取下限的条件,则得到设计压力为Pc=1.05x1.4(2)确定设计温度一般是在用户提供的工作温度的基础上,再考虑容器环境温度而得。
如在室外在工作,无保温,容器工作温度为30 C,冬季环境温度最低可到-20 C, 则设计温度就应该按容器可能达到的最恶劣的温度确定为- 20C。
《容规》提供了一些设计所需的气象资料供参考。
假定在容器在室内工作,取常温为设计温度。
(3)确定几何容积按结构设计完成后的实际容积填写。
(4)确定腐蚀裕量根据受压元件的材质、介质对受压元件的腐蚀率、容器使用环境和容器的使用寿命来确定。
先选定受压元件的材质,再确定腐蚀裕量。
《容规》对一些常见介质的腐蚀裕量进行了一些规定。
工作介质对受压元件的腐蚀率主要按实测数据和经验来确定,受使用环境影响很大,变数很多,目前无现成的数据。
介质无腐蚀的容器,其腐蚀裕量取1〜2mm即可满足使用寿命的要求。
取腐蚀裕量为2mm。
(5)确定焊缝系数焊缝系数的标准叫法叫焊接接头系数,GB150 对其取值与焊缝检测百分比进行了规定。
具体取值,可以按《容规》所规定的种情况选择:其焊缝系数取1,即焊接接头应进行100%的无损检测,其他情况一般选焊缝系数为0.85。
本例选焊缝系数为0.85。
(6)主要受压元件材质的确定材质的确定在满足安全和使用条件的前提下,还要考虑工艺性和经济性。
GB150对材料的使用有规定。
比较常用的材料有Q235, 16MnR和0Cr18Ni9这几种材料。
1.0Cr18Ni9 —般用于低于一20C的低温容器和对介质有洁净要求的容器,如低温分离器、氟利昂蒸发器等;2.16MnR 一般用于对安全性要求较高、使用Q235-B 时壁厚较大的容器,如油、天然气等。
3.Q235-B使用最广也最经济,GB150第9页对其使用条件作了详细规定:规定设计压力w 1.6MPa;钢板使用温度0°C ~350C;用于壳体时厚度不得大于20mm,且不得用于高度危害的介质。
储气罐使用压力、温度和介质都符合Q235-B 的条件,厚度还未知,若超过了20mm,能使用16MnR。
暂定使用Q235-B。
3.确定设备基本尺寸(1)确定容器直径首先要确定容器直径。
如果是圆筒型压力容器,一般取长径比为2〜5,很多情况下取2〜3 就可以了。
本例要求容器的几何容积为2m3 。
先设定直径,再根据此直径和容积求出筒体高度,验算其长径比。
设定的直径应符合封头的规格。
有了容器直径,可按照GB150公式计算出厚度。
此厚度即为计算厚度,其名义厚度为计算厚度与腐蚀裕量之和,再向上圆整到钢板的商品厚度。
如果腐蚀裕量为2mm,与计算厚度之和为10.30mm,与之最接近的钢板商品厚度为12mm,故确定容器厚度为12mm,并且此值符合Q235-B对厚度不超过20mm 的要求。
另外本例若选择腐蚀裕量为1mm经济性会好得多,可以思考一下为什么?至此,得到容器外形。
(2)按照工艺要求确定配置各管口的法兰和接管。
容器上开孔要符合GB150的规定,要进行补强计算,如满足GB150不需补强的条件,可不必再计算补强。
应尽量满足GB15条件,安全性和经济性都最好,避免增加补强圈。
法兰及其密封面型式法兰及其密封面型式是设计协议书中要求的,1.压力等级必须高于设计压力;2.其材质一般与筒体相同;3.确定管口在壳体上的位置时,在空间较为紧张的情况下,一般也应保持焊缝与焊缝间的距离不小于50mm,以避免焊接热影响区的相互叠加。
检查孔除了用户要求的管口外,《容规》第45条(p26)还对检查孔的设置进行了规定。
本例直径为1000mm,按规定必须开设一个人孔。
查《回转盖平焊法兰人孔》标准JB580-79压力容器与化工设备实用手册p614,选择压力1.6MPa级、公称直径450的人孔,密封型式为A型,其接管为© 480x10。
因人孔开孔较大,所以人孔一定要使用补强圈补强,查《补强圈》标准JB/T4736,补强圈外径为760,厚度一般等同于筒体。
人孔的位置以方便出入人孔为原则,应尽量靠近下封头。
本例选定人孔中心距下封头环焊缝500。
立式容器的支座一般选用支承式支座JB/T4724(压力容器与化工设备实用手册(3)技术要求的书写1本设备按GB150-佃98《钢制制压力容器》进行制造、试验和验收,并接受国家质量技术监督局颁发的《压力容器安全技术监察规程》的监督。
2 焊接采用电弧焊,焊条牌号:焊接采用J422。
3焊接接头型式和尺寸除图中注明外,按HG20583的规定进行施焊:A类和B 类焊接接头型式为DU3;接管与筒体、封头的焊接接头型式见接管表;未注角焊缝的焊角尺寸为较薄件的厚度;法兰的焊接按相应法兰标准的规定。
4 容器上的A 类和B 类焊接接头应进行射线探伤检查,探伤长度不小于每条焊缝长度的20%,其结果应以符合JB4730规定中的川级为合格。
4.进行强度计算校核压力容器的制造工艺压力容器,储气罐,规格①1000 X 2418 X 10,设计压力1.78MPa,设计温度40C, 属二类压力容器。
通过该压力容器的试制,对压力容器的制造工艺流程有了更深的了解。
工艺流程:下料——>成型——>焊接——>无损检测——>组对、焊接——>无损检测——>热处理——>耐压实验一、选材及下料(一)压力容器的选材原理1 .具有足够的强度,塑性,韧性和稳定性。
2.具有良好的冷热加工性和焊接性能。
3.在有腐蚀性介质的设备必须有良好的耐蚀性和抗氢性。
4.在高温状态使用的设备要有良好的热稳定性。
5.在低温状态下使用的设备要考虑有良好的韧性。
(二)压力容器材料的种类1 .碳钢,低合金钢2.不锈钢3 •特殊材料:①复合材料(16MnR+316L )②刚镍合金③超级双向不锈钢④哈氏合金(NiMo:78% 20%合金)(三)常用材料常用复合材料:16MnR+0Gr18Ni9A:按形状分:钢板、棒料、管状、铸件、锻件B:按成分分:碳素钢:20 号钢20R Q235低合金钢:16MnR 、16MnDR 、09MnNiDR 、15CrMoR 、16Mn 锻件、20MnMo 锻件高合金钢:0Cr13、0Cr18Ni9 、0Cr18Ni10Ti尿素级材料:X2CrNiMo18.143mol (尿素合成塔中使用,有较高耐腐蚀性)二、下料工具与下料要求(一)下料工具及试用范围:1、气割:碳钢2、等离子切割:合金钢、不锈钢3、剪扳机:&W 8伽L<2500伽切边为直边4、锯管机:接管5、滚板机:三辊(二)椭圆度要求:(三)错边量要求:见下表(四)直线度要求:三、焊接(一)焊前准备与焊接环境1、焊条、焊剂及其他焊接材料的贮存库应保持干燥,相对湿度不得大于60% 。
2、当施焊环境出现下列任一情况,且无有效防护措施时,禁止施焊:A)手工焊时风速大于10m/sB)气体保护焊时风速大于2m/sC)相对湿度大于90%D)雨、雪环境(二)焊接工艺1、容器施焊前的焊接工艺评定,按JB4708进行2、A、B类焊接焊缝的余高不得超过GB150的有关规定3、焊缝表面不得有裂纹、气孔、弧坑和飞溅物(三)焊缝返修1 、焊逢的同一部位的返修次数不宜超过两次。
如超过两次,返修前均应经制造单位技术总负责人批准,返修次数、部位和返修情况应记入容器的质量证明书。
2、要求焊后热处理的容器,一般应在热处理前进行返修。
如在热处理后返修时,补焊后应做必要的热处理四、无损探伤(一)理论1.定义:借用于现今的手段和一起在不损坏和破坏材料机器及其结构的情况下对它们的化学性质、机械性能以及内部结构进行检测。
2.目的:①确保工件和设备的质量,保证设备的正常运行。
射线:RT 超声波UT (焊缝、锻件)磁粉MT (检查铁磁性表面)透PT (表面开口缺陷)②改善制造工艺③降低成本④提高设备的可靠性3.应用特点:①无损检测要与破坏性试验相结合。
②正确的选用最适当的无损检测。
③正确使用无损检测的时机④综合应用各种无损检测方法4.应用范围:①组合件的内部结构或内部组成的检查,不破坏对象,利用射线检查内部情况。
②材料,铸、锻件和焊缝间检查。
③材料和机械的质量检测。
④表面测厚5■焊缝缺陷:①裂纹:有冶金因素和应力因素或者是由组织因素和致脆因素、氢等的综合作用所引起的局部断裂。
②气孔:焊接过程中溶入液体金属的气体在金属凝固结晶时来不及逸出而留在焊缝内形成的空纹。
③夹渣:焊接过程中,溶池内冶金反应所生成的非金属夹杂物,由于各种原因来不及浮出表面而留在焊缝内。
④未焊透:是焊缝金属与母材或焊缝金属之间未被热源熔化而留下来的局部空隙。
⑤夹钨(二)射线照相探伤法1.X 射线2■丫射线Ir192 74 天v 100mmCo60 5.3 年v 200mm射线性质:①都是电磁波②具有两重性:波动性、粒子性射线特性:①不可见②直线传播,有衍射,绕射能穿透物质,使物质电离,能使胶片感光,也能使增感材料产生荧光,伤害有生命的细胞。
防护学:①时间②距离③躲避(三)超声波探伤法利用超声波在组件中的传播,经反射接收后根回波判断是否有缺陷的方法。
(四)MT 磁粉探伤:①操作简单,直观。
②铁磁性材料(表面和内表面)首先MT③检测缺陷位置和表面长度而不能确定深度。
特点:检查静表面缺陷(五)PT 渗透涂上渗透液—进入毛细管—清洗—回渗检测:开口缺陷,表面光洁度五、压力容器的热处理:(一)正火①目的:细化晶粒,提高母材及常化处理焊缝的综合机械性能,消除冷作硬化,便于切削加工。
②方法:把要正火的零件放入加热炉中加热到一定温度按每毫米 1.5分〜2.5分保温出炉空冷,风冷或雾冷。
③应用:16MnR高温保温时间过长,使奥氏体晶粒大(正火)35#锻件(正火)封头,筒体(正火)(二)调质处理:①目的:提高零件的综合机械性能。
②方法:淬火+高温回火(500T以上)。
得到索氏体。
③应用:封头,筒体,法兰,管板等。
20MnMo 20MnMoNb 13MnNiMoNb 900r〜950r 2分〜3.5分/mm 水冷+空冷。