Drastic improvement of surface structure and current-carrying ability in YBa2Cu3O7 films by
基于改进凸包算法的叶片型面特征参数提取

A 为Y 7 坐标等于 Y i 的点中 mn 坐标最大的点; A 为Y 8 坐标等于Y i 的点中 坐标最小的点。 mn () 2 将这些极值点按顺时针方向的顺序 , 写人数
组 A中, 即
A=『 ; ; ; 4 A5 A6 A ; 1 AlA2 A3 A ; ; ; 7 A8
是 儿的 1 0 其时间复杂度为 O n ; / , 1 ()
第二步是提取初始平面点集中的极值点生成初
S为正 时 , 表示 A、 C是 逆 时针 ; 、
5为负时 , 表示 A、 、 是顺时针。 BC () 1 如果 S , C在 LA ) >0 点 ( B 的左侧 ; () 2 如果 S , C在 L ) ; =0 点 上 () 3 如果 S , C在 L ) <0 点 的右侧。
和C MM测量法的不足 , 并且实现叶片型面的在机检 本文提出了基于主成份分析法的叶片叶身轴线 测 ,其还将成为叶片类复杂曲面型面精密检测的重 方向的提取方法 ,并以此轴线方向为叶片型截面的法 要手段。利用非接触式测量得到叶片的点云数据 , 高 矢 , 准确截取叶片型面 , 得到叶片型截面点云数据。 效快速地提取 叶片型面特征参数 ,具有重要的现实 本文改进了文献[ 的算法 , 2 】 用矩形 区域腐蚀 法 意义和实用价值。
凸包算法包括卷包裹 (a-) 、 雷厄姆 ( r a 如椭 圆形前缘可以明显改善叶片的气动性能圈 Jns法 格 i Ga m) h 。
收稿 日期 :0 1 1- 9 2 1 — 0 1 基金项 目 : 国家 自 然科学基金青年基金项 目(1015 ; 5 155 )国家 自然科学基金重点项 目(0304 。 585o ) 作者简介 : 彭志光(96 , , 17 一)男 四川广安人 , 在读研究生 , 究方 向 : 曲面精 密检测 ; 研 复杂 李文龙 (9O )男 , 18一 , 山东青 岛人 , 师 , 讲 研究方 向 : 点云拼合 。 曲面检测 。
基底和膜层-基底系统的赝布儒斯特角计算(英文)

基底和膜层-基底系统的赝布儒斯特角计算(英文)刘华松;姜玉刚;王利栓;姜承慧;季一勤【期刊名称】《光子学报》【年(卷),期】2013(0)7【摘要】对基底和膜层-基底系统的赝布儒斯特角进行了数值计算.结果显示:当基底的消光系数小于0.01时,基底的赝布儒斯特角主要是由折射率决定;当基底的消光系数大于0.1时,基底的赝布儒斯特角不仅与折射率有关,而且还与消光系数有关,随着消光系数发生后周期性变化.研究表明:单层膜-基底系统的赝布儒斯特角主要由膜层的物理厚度、折射率、基底的光学常量所决定;在HfO2-硅和HfO2-融石英基底系统中,赝布儒斯特角随着入射光波长和膜层厚度的变化呈现准周期性规律变化,可能是由入射光在膜层的干涉效应引起的.【总页数】6页(P817-822)【关键词】光学常量;折射率;消光系数;膜层-基底系统;赝布儒斯特角【作者】刘华松;姜玉刚;王利栓;姜承慧;季一勤【作者单位】天津津航技术物理研究所天津市薄膜光学重点实验室,天津300192;同济大学物理系先进微结构材料教育部重点实验室,上海200092;哈尔滨工业大学光电子技术研究所可调谐激光技术国家级重点实验室,哈尔滨150080【正文语种】中文【中图分类】O484【相关文献】1.以介孔TiO2膜为过渡层在玻璃基底上制备Cu3(BTC)2连续膜 [J], 李力成;钱祺;王磊;仇龙云;王昊翊;张所瀛;杨祝红;李小保;赵学娟2.前列腺癌发生发展中基底细胞层和基底膜的改变 [J], 杨敏;刘爱军;韦立新;郭爱桃;宋欣;陈薇3.镍改性层增强铜基底沉积金刚石膜的形核(英文) [J], 刘学璋;魏秋平;翟豪;余志明;4.硅基底上生长金刚石层细晶粒的研究(英文) [J], 何敬晖;玄真武;刘尔凯5.在n型硅基底上二次注入硼离子金刚石膜的p-n结效应(英文) [J], 孙秀平;冯克成;李超;张红霞;费允杰因版权原因,仅展示原文概要,查看原文内容请购买。
不同提取方式对金针菇菇脚蛋白性质的影响

贾明月,贵香茹,原秋艳,等. 不同提取方式对金针菇菇脚蛋白性质的影响[J]. 食品工业科技,2024,45(8):119−126. doi:10.13386/j.issn1002-0306.2023050337JIA Mingyue, GUI Xiangru, YUAN Qiuyan, et al. Effect of Different Extraction Methods on Properties of Flammulina velutipes Stembase Proteins[J]. Science and Technology of Food Industry, 2024, 45(8): 119−126. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2023050337· 研究与探讨 ·不同提取方式对金针菇菇脚蛋白性质的影响贾明月,贵香茹,原秋艳,陈美玲,简 磊,董晓博*,徐怀德*(西北农林科技大学食品科学与工程学院,陕西咸阳 712100)摘 要:以生产金针菇产生的副产物菇脚为实验原料,采用碱法、超声辅助碱法、胶体磨辅助碱法以及冻融辅助碱法提取金针菇菇脚中的蛋白质,探究不同提取方式对菇脚蛋白功能性质(持水性、持油性、起泡及起泡稳定性、乳化及乳化稳定性、溶解性)、理化性质(电位、粒径、表面疏水性、巯基)及结构性质(红外光谱、荧光光谱、二级结构)的影响,旨在为食用菌副产物合理利用提供理论依据。
结果表明,不同物理辅助方法提取的金针菇菇脚蛋白性质之间存在差异,超声辅助碱提、胶体磨辅助碱提可以显著提高菇脚蛋白的提取率(P <0.05),并能在一定程度上改善菇脚蛋白的功能性质,显著提高了乳化稳定性和起泡稳定性(P <0.05);二级结构中β-折叠含量显著(P <0.05)降低,β-转角含量显著增加(P <0.05),这些结构性质的变化与表面疏水性和稳定性等理化性质的提高密切相关。
固体力学专业英语词汇精选

三铰拱three-hinged arch
抛物线拱parabolic arch
圆拱circular arch
穹顶Dome
空间结构space structure
空间桁架space truss
雪载[荷] snow load
风载[荷] wind load
土压力earth pressure
地震载荷earthquake loading
wwwxuelixuecn塑性动力学dynamicplasticity塑性动力屈曲dynamicplasticbuckling塑性动力响应dynamicplasticresponse塑性波plasticwave运动容许场kinematicallyadmissiblefield静力容许场staticallyadmissiblefield流动法则flowrule速度间断velocitydiscontinuity滑移线sliplines滑移线场sliplinesfield移行塑性铰travellingplastichinge塑性增量理论incrementaltheoryplasticity米泽斯屈服准则misesyieldcriterion普朗特罗伊斯关系prandtlreussrelation特雷斯卡屈服准则trescayieldcriterion洛德应力参数lodestressparameterlevymisesrelation亨基应力方程henckystressequation赫艾韦斯特加德应力空间haighwestergaardstressspace洛德应变参数lodestrainparameter德鲁克公设druckerpostulate盖林格速度方程geiringervelocityequation结构力学structuralmechanics结构分析structuralanalysis大学力学论坛搜集整理http
一种非局部扩散的图像修复模型

一种非局部扩散的图像修复模型
郝岩;冯象初;许建楼
【期刊名称】《西安电子科技大学学报(自然科学版)》
【年(卷),期】2010(037)005
【摘要】利用非局部算子的定义,提出了一种新的非局部扩散的修复模型.该模型在扩散的过程中充分利用了图像的全局信息对损坏的区域进行修复,克服了偏微分方程模型在修复图像时产生的模糊和不能很好地保护图像边缘及纹理的不足. 实验结果表明,该模型是行之有效的.
【总页数】4页(P825-828)
【作者】郝岩;冯象初;许建楼
【作者单位】西安电子科技大学,数学科学系,陕西,西安,710071;西安电子科技大学,数学科学系,陕西,西安,710071;西安电子科技大学,数学科学系,陕西,西安,710071;河南科技大学,数学与统计学院,河南,洛阳,471003
【正文语种】中文
【中图分类】TP391.41
【相关文献】
1.基于对数函数的非局部总变分图像修复模型 [J], 杨文霞;张亮
2.基于非局部 CTV-L1模型的大破损彩色纹理图像修复 [J], 陆文祺;端金鸣;魏伟波;潘振宽;王国栋
3.一种基于非局部BSCB模型的图像修复方法 [J], 胡海平;刘晓振
4.关于非局部扩散模型的一种快速预处理算法 [J], 冉育红;李存吉;殷俊锋
5.一种连续性非局部变分图像修复模型 [J], 李兰;陈明举;熊兴中;杨志文;张劲松因版权原因,仅展示原文概要,查看原文内容请购买。
功能梯度材料剪切板屈曲后的自由振动

功能梯度材料剪切板屈曲后的自由振动功能梯度材料(FGM)是一种具有逐渐变化成分和性能的复合材料。
它由两种或多种不同材料按照一定比例混合而成,使得材料的性能在空间上呈现出梯度变化。
这种设计使得FGM具有独特的力学行为,其中之一就是剪切板屈曲后的自由振动。
一、功能梯度材料简介功能梯度材料是一种具有逐渐变化成分和性能的复合材料。
它可以根据需要在不同位置具有不同的力学性能,从而满足特定工程应用的要求。
FGM通常由两种或多种不同材料按照一定比例混合而成,且其成分和性能在空间上呈现出梯度变化。
二、剪切板屈曲剪切板屈曲是指在外加载荷作用下,板材发生弯曲变形。
当外加载荷达到一定程度时,板材会发生屈曲现象。
屈曲后,板材会出现自由振动。
三、功能梯度材料剪切板屈曲后的自由振动功能梯度材料在剪切板屈曲后的自由振动方面具有独特的行为。
由于FGM的成分和性能在空间上呈现出梯度变化,使得材料在屈曲后的自由振动中表现出不同频率和模态。
1. 频率变化:功能梯度材料的频率在空间上呈现出梯度变化。
这是因为不同位置的材料具有不同的刚度和密度,导致自由振动的频率也不同。
这种频率变化可以用来调节材料的声学性能或结构动力学特性。
2. 模态变化:功能梯度材料在剪切板屈曲后的自由振动中还表现出模态变化。
模态是指材料振动时产生的特定形状和振幅分布。
功能梯度材料由于成分和性能在空间上呈现出梯度变化,导致不同位置上存在不同的模态。
这种模态变化可以用来调节材料的结构强度和振动吸收性能。
四、功能梯度材料剪切板屈曲后自由振动应用功能梯度材料剪切板屈曲后自由振动具有广泛应用前景。
以下是几个应用领域的例子:1. 结构材料:功能梯度材料的剪切板屈曲后自由振动可以用于设计和制造具有特定频率和模态的结构材料。
这种材料可以用于建筑结构、航空航天器件等领域,以提高结构的稳定性和振动吸收性能。
2. 振动控制:功能梯度材料剪切板屈曲后自由振动的频率和模态变化可以用来实现振动控制。
语言的力量英文演讲稿:thepowerof language2087
语言的力量英文演讲稿:thepowerof language2087 ÓïÑÔµÄÁ?Á?Ó?ÎÄÑÝ???å?ºthe power of language????As we all know, the development of language is one of the most intuitionistic performance process. A process is a new things. People in the process of communication with other nationalities, unceasingly will pass some of the new words. These words came in, often several aspects of meaning: the surface is show new things, new knowledge. As we now here with the microphone, "the microphone" is a new thing in China, foreign things without the original, you must use this word to describe it, it defined. So in the table below, and further level, is a kind of new knowledge. People under the microphone, why speak voice so big? Now sound, light, electricity prosperity to tell people how knowledge into electromagnetic waves, etc., it is a kind of new knowledge. Further, under the new things, new knowledge, and a more profound impact level, is a kind of new thoughts, new concepts, new value system, using modern words that new discourse system, which is more important! Incidentally, "" is the earliest, microphone, then switch to" receiver ", "the microphone" has almost from our language, but now more and more people began to use "the microphone," developed "headset," "promise", etc. Similarly, the bus "is a kind of car, and have been," bus ", "van" instead, but now he's "back", "coach", "round", "battier", and has established "the city bus company". From this kind of transliterated disappear to reproduce, if have deep into the social backgroundbehind. ????For example, some new: the introduction of modern "science" and "democracy" etc, the meaning from the traditional Chinese, is completely different words. We know, for example, the word "party" in Chinese traditional Chinese also have, but that is a very negative meanings, until today that negative meanings in language also entities, as we say "remains a gentleman does not commit one party", "buddies", "etc. However, the party in the word from foreign modem, after a considerable changes in Chinese traditional Chinese "party" the meaning of words. The word "party" has become almost entirely of modernpolitical meaning of a word, in China's social influence. And if the employment, employee, the working class, labor sacred these words of modern China,politics, to inspire people to participate in social activities are plays very important role.????I also say the word "revolution" in "revolution", because ofthis word is represented a drastic change of Chinese modern society is a burner.????Liang qichao in 1902 specially written "interpretation", this article: he said "Revolution" of Chinese Revolution and the additional English contains two meanings: according to an additional is what some improvement, and improvement, such as British 1832 Revolution isactually additional. Revolution and the meaning is like a wheel, one thing is turned upside down, for example, the French Revolution is the 1789 Revolution. Liang qichao was in Japan, Japanese up these two wordswere translated into reform and innovation and revolution. The Japanese borrowed in Chinese, the word "revolution", but the Chinese revolutionis mentioned in the yi dynasty, to name a new dynasty overthrew an old dynasty, so not modern revolution. In 1904, liang qichao and wrote the study of history of Chinese revolution, he put the revolution, a revolution in three levels, the broad and narrow generalized three levels: the generalized revolution refers to all society intangible thing tangible of big change, whether the concept, material, or a system of fundamental changes, Revolution means the generalized times by means of violence in a new era, an era replaced, The narrow revolution refers to the special forces to overthrow the government.????Now already is a "revolution" common word, but just introducedto China, people don't understand, so what is the meaning of this word of liang qichao made many explain revolution.????Just a few examples, the introduction of new, in fact, is a kind of new things, new things contains new knowledge, new knowledge under a new concept, breeds new value system, the new system. These new ideas, new words system will lead to social changes. Now our language "party" and the traditional "party" completely different, "revolution" and "traditional", "ShangWu soup revolution" revolution "of the revolutionis totally different. Introducing new human interaction, in the process, the different language always in the mutual influence.。
材料成型及控制工程专业英语--1materials-and-their-p(共75张PPT)
第4页,共75页。
CHAPTER 1 MATERIALS AND THEIR PROPERTIES
▪ All non—metals have an ionic or a covalent bond(共价键),these
types of bond are rigid and are due to electrostatic attraction of two ions of unlike charges.
exceed a definite value.
▪ 这一现象则不会在非金属中出现。非金属不能进行塑性变形和
发生加工硬化现象。因此,一旦某处缺陷的应力超过某一定值后,
就会产生断裂。
-8-
第8页,共75页。
CHAPTER 1 MATERIALS AND THEIR PROPERTIES
▪ These facts explain why metals are reliable structural materials and can not be excelled by non—metallic materials
sentence).
第-111页1,共- 75页。
CHAPTER 1 MATERIALS AND THEIR PROPERTIES
The majority of engineering designs that require structural load support or power transmission involve ferrous alloys.
metallic bond(金属键),where positive ions (正离子)occupy
the sites of the crystal lattice (晶格)and are surrounded by
于改进凸包算法的叶片型面特征参数提取
于改进凸包算法的叶片型面特征参数提取
彭志光;李文龙
【期刊名称】《装备制造技术》
【年(卷),期】2012(000)001
【摘要】针对叶片离散测量点云数据,提出了基于改进凸包算法的叶片型面特征参数(如弦线、前后缘半径等)提取方法,并利用主成份分析法准确提取叶片截平面的法矢,开发了基于MATLAB环境的某型号航空发动机叶片特征参数提取软件模块,实现了叶片型面的快速特征提取与精密检测.
【总页数】8页(P37-43,46)
【作者】彭志光;李文龙
【作者单位】华中科技大学数字制造装备与技术国家重点实验室,湖北武汉430074;华中科技大学数字制造装备与技术国家重点实验室,湖北武汉430074【正文语种】中文
【中图分类】TP391.7
【相关文献】
1.基于改进凸包算法的肺区域分割 [J], 张圣璞
2.改进凸包插值算法结合大概率优化的演化算法 [J], 崔东;于湛麟
3.基于多尺度下凸包改进的贝叶斯模型显著性检测算法 [J], 鲁文超;段先华;徐丹;王万耀
4.改进凸包的贝叶斯模型显著性检测算法 [J], 李春华;秦云凡;刘玉坤
5.Quickhull凸包算法在人体围度确定中的应用及改进 [J], 方琦;孙光武;陈郁
因版权原因,仅展示原文概要,查看原文内容请购买。
块体表面裂纹应力强度因子有限元方法研究.
第29卷第1期2009年1月北京理工大学学报TransactionsofBeijingInstituteofTechnologyVol.29 No.1Jan.2009块体表面裂纹应力强度因子有限元方法研究肖涛, 左正兴, 廖日东(北京理工大学机械与车辆工程学院,北京 100081)摘要:研究三维表面裂纹建模及其计算精度问题.采用有限元方法,对奇异单元和J 积分两种求解裂纹强度因子方法的计算精度进行研究,并进一步研究了计算精度对网格密度和网格形式的依赖程度.研究发现,对奇异单元法而言,影响计算结果准确度的主要原因是裂纹尖端区的尺寸,网格密度的影响不大;对J积分法而言,网格形式和网格密度的影响都不大,适合处理复杂结构的应力强度因子计算.关键词:应力强度因子;1/4奇异单元法;J积分法;有限元法中图分类号:O346 1 文献标识码: 文章编号:1001 0645(2009)01 0009 05 FiniteElementAnalysisMethodfortheStressIntensityFactorofSurfaceCracksXIAOTao, ZUOZheng xing, LIAORi dong (SchoolofMechanicalandVehicularEngineering,BeijingInstituteofTechnology,Beijing10 0081,China)Abstract:Investigatesthemodelingmethodsforthreedimensionalsurfacecrackproblems.Ba sedonfiniteelementmethod,1/4 pointdisplacementmethodandJ integralmethodareusedtocalculatethestressintensityfactorsalongtheentirecrackfront.Seve ralmeshingcasesarestudied.Itisshownthat,whenusing1/4 pointdisplacementmethod,thestressintensityfactorresultsaresensitivetothecrackfrontregio nsizeandnon sensitivetothemeshsize.ForJ integralmethod,theresultsarenon sensitivetoboththemeshsizeandmeshstyle,andsuitabletocalculatethestressintensityfactoro fcomplexstructures.Keywords:stressintensityfactor(SIF);1/4 pointdisplacementmethod;J integralmethod; finiteelementmethod三维表面裂纹是内燃机、飞机、压力容器结构中的常见缺陷方式,也是最危险的裂纹之一,对含裂纹构件进行准确的应力分析是保证结构安全可靠的关键.从断裂力学角度出发,一切断裂强度的评估都离不开裂纹尖端应力强度因子的求解,但是由于三维问题本身的复杂性,很难得到有限体三维裂纹问题的准确解,研究者们均借助数值方法来求解,其中最普遍的就是有限元法.Newman Raju利用有限元法详细讨论了拉伸载荷作用下有限体表面裂纹的应力强度因子,并在计算结果的基础上,推导出相应的公式;此后,很[1]多学者都在探讨利用有限元法对各种各样的裂纹问题进行研究,其中包括裂纹尖端应力应变的模拟[2]、裂纹扩展过程的模拟,以及裂纹闭合现象的模拟[3],所有这些都是建立在精确的网格处理的基础之上.为此,很多学者探讨了裂纹尖端网格的划分方法.Barry等对二维裂纹的建模方法进行了研究,得出了比较理想的结果,Lin[5]等介绍了利用有限元法进行有限大体中三维椭圆裂纹的建模方法,Courtin等指出了利用J积分方法计算SIF的准确性和优越性,但是以上所有的研究都只是针对单元的类型,而没有对网格划分方法进行研究.[6][4]收稿日期:2008 03 27基金项目:国家部委预研项目(40402010105)( ),女,,E michelle.xt@com;左正兴( 男,教授,.10北京理工大学学报第29卷实际上,在对裂纹尖端进行处理时,网格的划分方法对计算结果的精度影响很大,处理不当将会导致计算结果的分散性很大,可信度降低.奇异单元法和J积分方法是应力强度因子计算最常用的两种方法,作者利用商业软件ABAQUS,详细讨论奇异单元法和J积分方法的网格划分方法,并对网格密度对计算精度的影响进行分析,从而提高断裂建模问题的一次成功率.2 半椭圆表面裂纹计算以有限大体中的表面裂纹为对象,分别采用奇异单元法和J积分计算SIF,并对计算过程和计算结果进行比较.模型如图1所示,有限块体两端受到拉伸应力的作用,在垂直于力的平面上存在一个半椭圆表面裂纹,裂纹面示意图如图1(b)所示.图中,a为裂纹前缘最深点A处的深度;a,b为半椭圆裂纹的两轴;t为块体横截面的宽度;w为块体横截面的长度.块体的几何尺寸可以用量纲-参数#=t/w(块体横截面长宽比)表示,裂纹的几何尺寸可以用量纲-参数∃=a/b(半椭圆裂纹的形状比)和%=a/t(裂纹前缘A点的相对深度)表示.1 数值计算方法1 1 奇异单元法裂纹尖端的应力场具有奇异性,靠近裂纹尖端的各应力分量都与r-1/2成正比,r为所求应力点与裂纹尖端的距离.当r 0时,应力急剧增长,在常规的有限元法中,用多项式表示单元内部应力和位移,在奇异点附近不能很好地反映应力的变化.Barsoum[7]证明,将20,节点等参单元的中间节点移到裂纹尖端的1/4处,可以模拟裂纹尖端的应力应变奇异性.这样,在求得裂纹尖端应力应变解后,取裂尖处1/4角点处裂纹张开位移,采用位移计算公式直接求得应力强度因子为K!=z(1/4)4(1- )(1/4).(1)式中:K!为!型裂纹应力强度因子(SIF);r(1/4)为1/4角点到裂尖的距离;sz(1/4)为1/4角点处裂纹的张开位移;E为弹性模量; 为材料的泊松比.Lin和Smith[5]指出,应用奇异单元法时,裂纹的附近一定区域的网格需要细化.但是在实际的处理过程中,却很难把握.本文中将对此种方法的裂纹划分方法和网格密度要求进行分析研究.1 2 J积分法J积分法是一种能量方法,是Rice[8]于1968年首次提出,积分路径从裂纹下表面任一点出发,沿任意路径绕过裂纹尖端,最后终止于上表面任意一点,由此可以得到裂纹扩展的应变能为Wdy-!ds.J=lim(2) 0 式中: 为积分路径;W为应变能密度;!为积分路图1 有限大体椭圆裂纹示意图Fig.1 Surfacecrackinafinitethicknessplate计算采用的有限块体模型尺寸为∃=0 50,#=0 25,裂纹的相对深度为%=0 25,0 50,分别采用奇异单元法和J积分方法计算.计算结果以量纲-SIF的形式进行比较,即K*!=!F!(4)式中:K*!为!型量纲-SIF;!F为名义拉伸应力.2 1 奇异单元法的网格划分方法利用奇异单元法对SIF进行计算时,采用文献中常用的网格划分方法,将裂纹构件划分为包含裂纹的裂纹区和非裂纹区.划分网格时,只对裂纹区进行特殊的网格处理即可,如图2所示.图2(a)中的方体为从有限大体中取出的裂纹,,径边界上的应力矢量;ds为积分路径上的位移;x,y为裂纹的局部坐标轴;u为位移矢量.在弹性情况下,J积分与SIF有如下关系KI=.-(3)第1期肖涛等:块体表面裂纹应力强度因子有限元方法研究11端区(区域3)和裂纹附近区(区域1和区域2).裂纹尖端区半圆形横截面划分形式如图2(b)所示.裂纹尖端的网格为楔形单元,周围为六面体单元,这样就在裂纹前缘构建了多圈单元.在利用1/4单元法计算SIF时,常常因为建模精度达不到要求而使计算的SIF远远偏离实际的SIF.所以,需要讨论影响SIF计算精度的关键因素.本文中主要讨论以下3种因素对计算结果的影响:裂纹尖端区半径、裂纹尖端区网格密度(即裂纹尖端网格的圈数)及裂纹附近区网格密度.man Raju计算结果最接近,最大误差为2 2%.其余各种情况下,误差都很大,最大达到10 2%.图3 不同裂纹尖端区尺寸下SIF的计算结果Fig.3 SIFdistributionalongthecrackfrontfordifferentsizesintheregion3图2 奇异单元法的网格划分示意图Fig.2 Atypicalfiniteelementmeshforthecrackedplate由以上分析可知,裂纹尖端区的尺寸对计算结果的影响很大.随着裂纹尖端区半径的增大,SIF值逐渐收敛.为了进一步描述收敛趋势,图4给出了%=0 05,0 25,0 50三种情况下,随着裂纹尖端区尺寸的增大,裂纹应力强度因子的收敛曲线.2.1 1 裂纹尖端区尺寸对SIF的影响讨论裂纹尖端区的尺寸对SIF计算值的影响.为了消除单位的影响,取规格化裂纹区尺寸&=R/a进行讨论,其中,R为裂纹尖端区的半径.针对%=0 25,0 50的模型,采用4种裂纹尖端区尺寸,即&分别为0 05,0 15,0 20,0 30,计算中,保证裂纹附近区的尺寸和网格数量不变.计算结果如图3所示,图中横坐标依次为裂纹前缘从表面点B到最深点A的网格节点.由图3(a)可知,随着裂纹尖端区尺寸的增大,计算结果是逐渐收敛的,在&=0 05时计算结果与其它计算值的差值比较大,为11 3%,其余3种情况的计算结果相差不大,最大计算误差为0 5%.图中也列出了Newman Raju公式的计算结果,两者的最大误差为3 8%.由图3(b)可知,随着裂纹尖端区尺寸的增大,,[1]图4 裂纹尖端区尺寸对计算结果的影响Fig.4 Effectofdifferentsizesoftheregion3ontheresults由图4可以看出,当&>0 30时,应力强度因子的计算值趋于一条直线.2.1 2 裂纹尖端区的网格密度对SIF的影响裂纹尖端区域的网格是由包含裂纹尖端的许,可以的层改12北京理工大学学报第29卷变裂纹的疏密.分别取4,8,16层单元分析裂纹尖端区的网格密度对SIF计算值的影响.计算中,保证裂纹尖端区的尺寸大小不变.计算结果对比见图5.裂纹附近区的网格疏密将会对结果产生较大影响.2 2 J积分的网格相关性采用J积分方法计算SIF时,无须将中间节点移动至1/4单元处.在ABAQUS中,软件自动搜索裂纹周围的每圈单元计算J积分值.J积分具有与路径无关的特点,因此由各圈积分路径所得的积分值应该是相同的.2.2 1 网格形式对J积分的影响为了检验J积分计算结果与网格形式的相关性,对裂纹面采用两种网格划分方法,如图7(a),7(b)所示,其中,方法1来源于文献[8].图中标出了两种网格划分方法的前4圈积分路径,在计算结果的处理上,选择第2~4圈积分值取平均.计算结果与奇异单元法的比较见图7(c).图5 不同裂纹尖端区网格密度下SIF计算值的比较Fig.5 ComparisonofSIFdistributionalongthecrackfrontfordifferentelementsizes由图5可知,裂纹尖端区内网格密度对计算结果的影响很小,对于同一尺寸,随着层数的增多,SIF的计算值有增大的趋势,但增大的幅度很小,例如从4层增加到16层时,计算值的最大误差只有0 4%.因此,裂纹尖端区内的网格层数不是关键的考虑因素.2.1 3 裂纹附近区网格密度对SIF的影响通过改变裂纹附近区单元的长度讨论裂纹附近区域的网格密度对计算结果的影响.采用量纲-参数∋=l/a(单元尺寸l与裂纹最深点A的深度之比)描述网格的疏密.取%=0 25,0 50,也考虑3种网格长度即∋=0 05,0 10,0 20,计算结果对比如图6所示.图6 裂纹附近区不同网格密度下量纲-SIF比较Fig.6 ComparisonofSIFdistributionalongthecrackfrontfor differentelementsizeintheregion1and2图7 两种裂纹面的划分方法及计算结果比较Fig.7 Twomethodsofthemeshandtheirresults由图6可见,整体上裂纹附近区网格疏密对SIF的影响不大,裂纹密度增大,计算值有收敛的趋势.需要指出的是,本次计算采用的模型是裂纹尖由图7(c)可知,两种网格划分方法得出的结果一致,网格形式对计算结果的影响不大,图7(c)中也列出了采用奇异单元法的计算结果,3种方法计K*!0 %.第1期肖涛等:块体表面裂纹应力强度因子有限元方法研究参考文献:132.2 2 网格密度对J积分的影响同样采用量纲-参数∋考察网格密度对于积分的影响.%=0 25时,取∋=0 2,0 5,1 0;%=0 50时,取∋=0 1,0 3,0 5,计算结果如图8所示.[1]NewmanJJ,RajuIS.Anempiricalstressintensity factorequationforthesurfacecrack[J].EngineeringFractureMechanics,1981,15:185 192.[2]ZhangB,GuoWL.Three dimensionalstressstatearoundquarter ellipticalcornercracksinelasticplatessubjectedtouniformtensionloading[J].EngineeringFr actureMechanics,2007,74:386 398.[3]MatosDP,NowellD.Ontheaccurateassessmentof crackopeningandclosingstressesinplasticity inducedfatiguecrackclosureproblems[J].EngineeringFrac tureMechanics,2007,74:1579 1601.[4]BarryDF,KevinZT.Anevaluationoffracturemechanicsquarter pointdisplacementtechniquesusedforcomputingstressintensityfactors[J].Structures,1999, 21:406 415.[5]LinXB,SmithRA.Finiteelementmodelingoffatiguecrackgrowthofsurfacecrackedplates,partI:thenumericaltechnique[J].EngineeringFractureMechanics,1999,63:503 522.[6]CourtinS,GardinC.AdvantagesoftheJ integralap proachforcalculatingstressintensityfactorswhenu singthecommercialfiniteelementsoftwareABAQUS[J].EngineeringFractureMechanics,2 005,72:2174 2185.[7]BarsoumRS.Ontheuseofisoparametricfiniteele mentsinlinearfracturemechanics[J].InternationalJournalforNumericalMethodsinEnginee ring,1976,10:25 37.[8]RiceJR.Apathindependentintegralandtheapproxi mateanalysisofstrainconcentrationsbynotchesandcracks[J].JournalofAppliedMechanic,1 968,35:376 386.Engineering图8 不同网格密度下SIF计算结果比较Fig.8 ComparisonofSIFdistributionalongthecrackfrontfordifferentelementsizes由图8可知,两种情况下网格密度对计算结果的影响不大,%=0 50时,计算值的最大误差在最深点,为2 5%;%=0 25时,计算值的最大误差在表面点与最深点之间,为3 0%.因此在计算中,单元的数量不是影响计算精度的主要原因.3 结论对于奇异单元法而言,裂纹尖端区的尺寸是影响SIF计算精度的关键,过小的裂纹尖端区将导致错误的计算结果.通过对计算收敛性分析,给出可信的裂纹尖端区尺寸&=R/a#0 3.而网格密度,包括裂纹尖端区和裂纹附近区,对计算结果的影响不大. J积分方法对网格形式的依赖性比较小,对网格密度的要求不高,采用密度较大的网格可以得到精确的计算结果.(责任编辑:匡梅)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :c o n d -m a t /0606306v 1 [c o n d -m a t .s u p r -c o n ] 13 J u n 2006Appl.Phys.Lett.88,June (2006),in press.Drastic improvement of surface structure and current-carrying ability in YBa 2Cu 3O 7films by introducing multilayered structureAlexey V.Pan,∗Serhiy Pysarenko,and Shi X.DouInstitute for Superconducting and Electronic Materials,University of Wollongong,Northfields Avenue,Wollongong,NSW 2522,Australia(Dated:November 19,2005)Much smoother surfaces and significantly improved superconducting properties of relatively thick YBa 2Cu 3O 7(YBCO)films have been achieved by introducing a multilayered structure with alter-nating main YBCO and additional NdBCO layers.The surface of thick (1µm)multilayers has almost no holes compared to YBCO films.Critical current density (J c )have been drastically in-creased up to a factor >3in 1µm multilayered structures compared to YBCO films over entire temperature and applied magnetic filed range.Moreover,J c values measured in thick multilayers are even larger than in much thinner YBCO films.The J c and surface improvement have been analysed and attributed to growth conditions and corresponding structural peculiarities.PACS numbers:74.78.Bz,74.78.FkI.INTRODUCTIONVarious superconducting applications demand differ-ent forms of the high temperature superconducting (HTS)films in terms of thickness,composition (e.g.multilayers),properties and performance.To establish a technology for growth of high quality YBa 2Cu 3O 7(YBCO)films with a single-crystal structure,an enor-mous effort has been made.However,a clear solution to some important problems has not been found.For example,properties of thick YBCO films for coated con-ductors significantly degrade as the thickness of the films is increased over about 400nm;considerable surface roughness of YBCO films and their growth problems over large-angle boundaries on bicrystals obstruct the devel-opment of reproducible Josephson junctions (JJs)of dif-ferent types.In this work,we show that films with relatively large thicknesses ∼1µm can exhibit electromagnetic and structural properties,which outperform thinner films with “optimal”thicknesses if a multilayered structure is introduced.It is well known that superconducting films generally exhibit the inverse dependency of the critical current den-sity (J c )on their thickness (d p ):J c ∝1/d p [1,2,3,4].This dependence is usually valid starting from a certain optimal thickness.At thicknesses smaller than the op-timal one,J c drops much more rapidly than at larger thicknesses (Fig.1).This J c -d p relation is slightly tech-nique dependent.For example,in the case of pulsed laser deposition (PLD)the optimal thickness may vary ap-proximately from 50to 400nm,depending on a certain set of deposition parameters (e.g.deposition rate)[4].In any case,the J c (d p )dependence usually has a maximum at the optimal thickness.Hence,for coated conductors,it is desirable to grow thicker films,preserving J c ofthe2by introducing alternating layered structure.Therefore, we have prepared a series of YBCO/NdBCO multilayers with the resultant thickness equal to1µm thick YBCO film.The multilayered structure considered in this work is as follows.A300nm thick YBCO layer is deposited directly on the substrate,then a50nm thick NdBCO film is deposited,followed by a300nm YBCO layer,a 50nm NdBCO,and a300nm YBCO layers.By scanning electron microscopy(SEM),it is possible to see both Nd-BCO layersin the image with the highest magnification shown in Fig.2(d).The optimal deposition temperature for monolayer Nd-BCOfilms was established to be about50◦C higher than that for YBCOfilms.Therefore,we have varied the de-position temperature of the multilayer tofind its optimal growth conditions.It turned out that the optimal deposi-tion temperature for the multilayers is nearly the same asfor pure YBCOfilms.Moreover,the temperature range for obtaining high quality multilayers is wider than for pure YBCOfilms[4].The critical temperature(T c)for both YBCOfilms and the multilayers varies slightly from 89.3K to91.7K with the transition width of<0.5K measured by AC susceptibility.The surface morphology of thefilms have been ob-served at small angles(∼10◦to20◦)to the plane of the surface with the help of SEM.Electromagnetic prop-erties of thefilms have been investigated by magnetiza-tion measurements over a wide appliedfield(|B a|≤5T) and temperature(5K≤T≤95K)ranges.DC mag-neticfields have been applied perpendicular to thefilm plane.J c(B a,T)dependences have been obtained from the width of the magnetization loops,using the critical state model:J c=2∆M/[w p(1−w p/3l p)]in A/m2,where ∆M=|M+|+|M−|taken from magnetization loops measured at different temperatures versus the applied field,w p and l p are respectively the width and length of thefilms measured.III.RESULTS AND DISCUSSIONSIn Fig.2,we show a typical surface of a1µm thick YBCO/NdBCO multilayer at different scales (Fig.2(d),(e),(f)),as well as YBCOfilms having thick-nesses of0.1µm,0.4µm and1µm(Fig.2(a),(b),(c), respectively).Strikingly,the multilayer exhibits an ex-tremely smooth surface(Fig.2(e))with only few hole-like features,very few droplets(or outgrowths),and no sign of even slight“bumpiness”,which is observed for the 0.1µmfilm(Fig.2(a)).In contrast to the multilayer, the YBCOfilm with the same thickness1µm(Fig.2(c)) has numerous holes,which are characteristic for the spi-ral growth of this composition.The holes(∼0.2µm diameter on the surface)and corresponding structural inhomogeneities extend throughout the entire thickness of thefilm.In addition,some droplets(outgrowths)up to1µm large can be found on the surface of the thick-estfilm.The resultant surface appears to be very rough.CriticalcurrentdensityJc(11A/m2)Thickness dp(nm)FIG.1:J c dependence on thefilm thickness(d p)at10K (a)and at77K(b)in differentfields.The dotted lines show J c∝d−1pfits.The asterisks show J c values for the multilayers in the correspondingfields.Smoother surfaces are obtained for0.1and0.4µm thick YBCOfilms(Fig.2(a)and(b),respectively).Notably, the holes are also visible on the surface of the thinnest (0.1µm)sample presented(Fig.2(a)),being of a much smaller diameter than for thickerfilms(the arrows in Fig.2(d)).Importantly,the surface structure presented for the multilayer is independent of the deposition temperature range presented in this work.This indicates that the im-proved smoothness results not from different(improved) growth conditions,but from the relaxed strains in the crystal lattice of YBCO by multilayering it with Nd-BCO.The crystal lattice strain relaxation is achieved through the creation of additional edge dislocations at the interfaces between YBCO and NdBCO layers due to the mismatch between their crystal lattices.Indeed, the ratios between crystal lattice parameters are quite similar for the YBCO/STO interface(for parameter a: 3.821˚A/3.905˚A=0.9785,for b: 3.885˚A/3.905˚A =0.9949)and for YBCO/NdBCO interfaces(for a: 3.821˚A/3.865˚A=0.9886,for b: 3.885˚A/3.9163˚A =0.992),which assume that all interfaces act in a simi-lar way with a slightly larger number of edge dislocations [10]to be expected from STO/YBCO interface than from YBCO/NdBCO ones.In fact,not only NdBCO posi-tively influences on YBCO structure formation,but also underlaying YBCO layers promote the simplified growth of the NdBCO layers.The YBCO layers act as seed lay-FIG.2:SEM micrographs of the surface morphology of dif-ferent YBCOfilms being(a)0.1µm,(b)0.4µm and(c) 1µm thick(the scale bar valid for all images in the left col-umn is provided at the bottom of(c)),as well as one of the YBCO/NdBCO multilayers at different magnifications(d), (e),(f),so that(e)has the same magnification as(a),(b), and(c)for comparision.At the highest magnification for the multilayer shown in(d),three thick YBCO layers separated by two thin NdBCO layers(shown by the arrows)can be observed.The dotted line in(d)indicates the STO/YBCO interface.The holes are clearly seen in(b)and(c),whereas in(a)some of the holes positions are shown by the arrows. ersfor NdBCO growth in a similar way as described in Ref.[9].As a result,the relaxed,“seeded”crystal lat-tice experiences improved growth conditions for achiev-ing high quality multilayers with large thicknesses,as evident from a wider temperature range for deposition. The J c(B a)dependences for some above-discussed samples are provided in Fig.3.Two YBCOfilms:one of nearly optimal thickness(0.4µm)and the other being 1µm thick are presented for comparison.The0.4µm thick YBCOfilm shows J c(0)=3.2×1010A/m2in zero field at T=77K.Strikingly,the multilayers outper-form both YBCOfilms in the nearly entirefield range. The only exception,where J c of the0.4µm thickfilm is slightly larger than that for the1µm multilayerfilm,is for B a<0.3T at T=77K.The J c enhancement of1µm thick multilayer compared to the mono-layerfilm of the same thickness is by a factor of≃2at zerofield and by a factor of>3at1T over the entire measured temperature range.As can be seen in Fig.3,different deposition tem-peratures shown result in slightly different J c(B a)curves for the multilayers.This indicates variation of defect structure formation with changing temperature and cor-responding pinning properties.We suggest that the effect of the drastic J c enhance-ment in the multilayers over entirefield range is twofold.CriticalcurrentdensityJc(11A/m2)Applied magnetic field Ba(T)FIG.3:Critical current density as a function of applied mag-neticfield in(a)semi-logarithmic and(b)double-logarithmic scales.The0.4and1µm thick YBCO mono-layerfilms,as well as YBCO/NdBCO multilayers grown at different tem-peratures are shown for comparison.On one hand,thefilling factor determined from SEM ob-servation is about10to18%larger than for YBCOfilms, which produces the higher J c especially at lowfields due to a larger effective cross-section for supercurrents.On the other hand,due to different ionic radii of Y and Nd, YBCO and NdBCO systems have a mismatch between crystal lattice parameters.This results in additional lo-cal stress near the YBCO/NdBCO interfaces,leading to formation of additional pinning sites in the form of out-of-plane edge dislocations.These extended defects are known to be one of the strongest pinning sites in YBCO films[11].Therefore,the formation of additional defects at the interfaces is likely to lead to the J c enhancement observed,in particular at largefields(as best seen in Fig.3(a)).The strongest pinning of the edge disloca-tions is achieved at low temperatures where the radius of a vortex coreξ(T)=ξ(0)(1−T/T c)−1/2is nearly equal to the radius of the dislocation core[11]:ξ(10K)≃1.59nm. At T=77K,ξ≃4.01nm,which is more than a factor of two larger than the dislocation core,which implies weaker pinning.However,dislocations can still pin the vortices at higher temperatures since the superconducting order parameter is reduced around the dislocations due to elas-tic strains developed by the dislocations.Experimentally, a reduced J c enhancement for the multilayer is observed for77K compared to10K results(Fig.1),indicating that the dislocations are likely to be responsible for the enhancement.Furthermore,the results obtained for the multilayers in which the thickness of the YBCO layers has been varied from100to400nm did not show any sig-nificant difference in terms of their J c(B a)dependence, as should be expected for the out-of-plane dislocations, extending throughout the entire layer thickness.The effect of larger surface supercurrent contribution to the total J c compared to the bulk supercurrents,pro-ducing larger overall J c in thinnerfilms at lowfields[12] is expected to be stronger at lower temperatures where the demagnetising effect is the most pronounced.This contradicts to our observations(Fig.3),the0.4µm thick film shows the larger J c than the thicker multilayer at lowfields only at77K.Therefore,the surface supercur-rent contribution influence is ruled out in our work.The J c behavior at lowfields is more likely to be governed by the structural peculiarities.IV.CONCLUSIONIn summary,the YBCO/NdBCO multilayers have been shown to have two dramatic improvements com-pared to similar monolayer YBCOfilms.(i)The1µm thick YBCO/NdBCO multilayers with NdBCO layers comprising only10%of the entirefilm have been shown to outperform YBCO monolayerfilms with any thickness ≤1µm in terms of J c(B a)dependence.Possible rea-sons for the observed performance are considered to be a largerfilling factor(less holes,smooth surface)and addi-tional extended defects created in the multilayers at the YBCO/NdBCO interfaces as a result of crystal lattice mismatch between YBCO and NdBCO.(ii)The other important result obtained is the significantly improved smoothness of thefilm surface,which is also likely to be the result of the defect formation and corresponding strain release of the entire crystal structure in the multi-layers.AcknowledgmentsThis work isfinancially supported by the Australian Research Council.[1]C.J.Van der Beek,M.Konczykowski,A.Abal’oshev,I.Abal’osheva,P.Gierlowski,S.J.Lewandowski,M.V.Indenbom,and S.Barbanera,Phys.Rev.B66,024523 (2002).[2]V.A.Khokhlov,A.I.Kosse,Yu.E.Kuzovlev,G.G.Levchenko,Yu.V.Medvedev, A.Yu.Prokhorov,P.Mikheenko,R.Chakalov,and C.M.Muirhead,Super-cond.Sci.Technol.17,S520(2004).[3]S.R.Foltyn,Q.X.Jia,P.N.Arendt,L.Kinder,and J.F.Smith,Appl.Phys.Lett.75,3692(1999).[4]A.V.Pan,unpublished.[5]C.C.Chang,X.D.Wu,R.Ramesh,X.X.Xi,T.S.Ravi,T.Venkatesan,D.M.Hwang,R.E.Muenchausen,and N.S.Nogar,Appl.Phys.Lett.bf57,1814(1990). [6]G.Hammerl,A.Schmehl,R.R.Schulz,B.Goetz,H.Bielefeldt, C.W.Schneider,H.Hilgenkamp,and J.Mannhart,Nature407,162(2000).[7]C.Cai,B.Holzapfel,J.H¨a nisch,and L.Schultz,Phys.Rev.B70,064504(2004).[8]Q.X.Jia,S.R.Foltyn,P.N.Arendt,and J.F.Smith,Appl.Phys.Lett.80,1601(2002).[9]Q.X.Jia,S.R.Foltyn,P.N.Arendt,H,Wang,J.L.MacManus-Driscoll,Y.Coulter,Y.Li,M.P.Maley,and M.Hawley,Appl.Phys.Lett.83,1388(2003).[10]V.Svetchnikov,V.Pan,Ch.Traeholt,and H.Zandber-gen,IEEE Trans.Appl.Supercond.7,1396(1997). [11]V.Pan,Yu.Cherpak,V.Komashko,S.Pozigun,C.Tre-tiatchenko,A.Semenov,E.Pashitskii,and A.V.Pan, Phys.Rev.B73,054508(2006)and references therein.[12]Q.Li,M.Suenaga,Z.Ye,S.R.Foltyn,and H.Wang,Appl.Phys.Lett.84,3528(2004).。