九年级下册北师大版数学书
北师大版九年级数学下册2.4《二次函数的应用》课件

何值时,y的最大值是多少?
H
D
B
(2).y=xb=x
﹣1225
x+24
P┐ G A
N
=﹣12
40cm
x 2+24 x =﹣12(x-25)2+300.
25
25
想一想
何时面积最大
如图,在一个直角三角形的内部作一个矩形ABCD,其中
点A和点D分别在两直角边上,BC在斜边上.
(2).设矩形的面积为ym2,当x取 M C
(1).如果设矩形的一边AD =
M
30cm xcm
xcm,那么AB边的长度如何表示? D
C
解:(1)设 AB=bcm
易得 b=﹣4 x+40 3
┐ bcm
A
B
N
40cm
想一想
何时面积最大
如图,在一个直角三角形的内部作一个矩形ABCD,其中 AB和AD分别在两直角边上.
(2).设矩形的面积为ym2,当x取
所以,顶点坐标为:(﹣1,﹣7), 对称轴为x =﹣1
想一想
何时面积最大
例1:如图,在一个直角三角形的内部作一个 矩形ABCD,其中AB和AD分别在两直角边上.
M
30cm
D
C
┐
A
B
N
40cm (1).设矩形的一边AB = xcm,那么AD边的长度如
何表示?
(2).设矩形的面积为ym2 ,当x取何值时,y的最大值
M
或用公式:
当 x=﹣ b =15 时,
2a
y最大值=
4ac-b2 4a
=300.
xcm
D
C
bcm
┐
A
B
N
北师大版九年级数学下册教材分析

北师大版九年级数学下册教材分析一、引言与课程概述北师大版九年级数学下册作为中学数学教育的重要阶段,承担着巩固和拓展学生数学基础知识的任务。
本册教材在内容上更加注重知识的系统性和深度,旨在培养学生的逻辑思维、空间想象能力和数学应用能力。
通过本册教材的学习,学生将进一步掌握代数、几何、概率统计等核心数学知识,为后续的高中数学学习奠定坚实基础。
二、重点与难点解析本册教材的重点主要包括一元二次方程、函数初步、圆和三角函数等内容。
难点则在于一元二次方程的解法、函数的图像与性质、圆的性质及其应用等方面。
教师在教学过程中需要针对这些重点和难点进行有针对性的讲解和练习,帮助学生突破难点,掌握重点。
三、教学内容与方法本册教材的教学内容涵盖了代数、几何、概率统计等多个领域。
在教学方法上,教师应注重启发式教学,引导学生主动思考、探索和实践。
同时,还应注重培养学生的数学素养和综合能力,提高他们的数学应用意识和创新能力。
四、章节结构与顺序本册教材的章节结构清晰,顺序合理。
教材按照数学知识的逻辑顺序和学生的认知规律进行编排,每个章节都围绕一个核心知识点展开,由浅入深、循序渐进。
这种编排方式有助于学生逐步掌握数学知识,形成完整的数学知识体系。
五、与前册联系与对比与前册相比,本册教材在内容上更加深入和广泛。
它以前册为基础,对已有知识点进行拓展和延伸,同时引入新的知识点和概念。
教师在教学过程中需要注重与前册的衔接和对比,帮助学生建立数学知识之间的联系和脉络。
六、实际应用案例分析本册教材在编写过程中注重实际应用的案例分析。
通过设置具有实际应用背景的例题和习题,帮助学生理解和掌握数学知识在实际生活中的应用方法和技巧。
同时,通过分析案例,还可以培养学生的数学建模能力和解决实际问题的能力。
七、习题与解题策略教材中的习题是巩固和检验学生学习成果的重要手段。
本册教材的习题设计丰富多样,包括基础题、提高题和综合题等多个层次。
教师在教学过程中需要注重解题策略的指导,帮助学生掌握解题方法和技巧,提高解题速度和准确性。
1.3 三角函数的计算(课件)-2023-2024学年九年级数学下册(北师大版)

建一条笔直的公路.
(1)求改直后的公路AB的长;
(2)问公路改直后该段路程比原来缩短了多少千米(精确到0.1)?
二、自主合作,探究新知
(1)求改直后的公路AB的长;
解:(1)过点C作CD⊥AB于点D,
∵AC=10千米,∠CAB=25°,
根据正弦的定义,得sinβ= ,即sin
∴DE=BDsin β°=200sin42°(m).
42°= ,
E
二、自主合作,探究新知
探究二:利用计算器由三角函数值求角度
想一想:为了方便行人推自行车过某天桥,市政府在10m高的天桥两端修
建了40m长的斜道(如图).这条斜道的倾斜角是多少?
在Rt△ABC中,sinA=
屏幕显示结果cos 72°=0.309 016 994.
和
键.
也有的计算器是
先输入角度再按
函数名称键.
二、自主合作,探究新知
3.求 tan30°36'.
方法一: 第一步:按计算器
键,
第二步:输入角度值30,分值36 (可以使用
键),
屏幕显示答案:0.591 398 351;
方法二: 第一步:按计算器
北师大版 数学 九年级下册
第一章 直角三角形的边角关系
3
三角函数的计算
学习目标
1.学会利用计算器求三角函数值并进行相关计算.
(重点)
2.学会利用计算器根据三角函数值求锐角度数并计算.
(难点)
复习回顾
30°,45°,60°角的三角函数值:
三
角函
角α
三角函数
1.1.1 正切 课件(共28张PPT)2024-2025学年数学北师大版九年级下册.ppt

A
B
新知探究
A
5m
梯子AB和 EF哪个更 陡?你是 怎样判断
的?
E
5m
B
3m
F 1.5m
新知探究
A
5m
E
5m
B 3m
F
1.5m
当竖直高 度一样, 水平宽度 越小,梯 子越陡
新知探究
A
6m
梯子AB和 EF哪个更 陡?你是 怎样判断
的?
E
5m
B
2m
F
2m
新知探究
A E
6m 5m
B 2m
F 2m
当水平宽 度一样, 竖直高度 越大,梯 子越陡
3
(3)在Rt△ABC中∠C=90°,BC=5,tanA= 4 ,
AC=( 20 ).
3
课堂训练
2.如图,在边长为1的小正方形组成的网格中,
△ABC的三个顶点均在格点上,则tanA= ( D )
A. 3
B. 4
5
5
3
4
C. 4
D. 3
课堂训练
3. 在Rt△ABC中,∠C=90°,AC=7,BC=5,则
4m 甲
α
8m
13 m
β
5m
┌
乙
解:甲梯中,tanα=
4 8
=
1 2
.
乙梯中,tanβ=
5 132−52
=
5 12
.
∵ tanα > tanβ,∴甲梯更陡.
提示:在生活中,常 用一个锐角的正切表 示梯子的倾斜程度.
新知探究
总结:(1)倾斜程度,其本意指倾斜角的大小,一般来说, 倾斜角较大的物体,就说它放得更“陡”. (2)利用物体与地面夹角的正切值来判断物体的倾斜程度, 因为夹角的正切值越大,则夹角越大,物体放置得越 “陡”.
北师大版数学九年级下册 第1章 1 锐角三角函数

1.1 锐角三角函数(二)教学目标及制定依据:课标依据:1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.2.能够运用sinA、cosA表示直角三角形两边的比.3.能根据直角三角形中的边角关系,进行简单的计算.4.理解锐角三角函数的意义.学情分析:1.经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点.2.体会数形结合的思想,并利用它分析、解决问题,提高解决问题的能力.教材分析:1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成合作交流的意识以及独立思考的习惯.教学重点1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sinA、cosA表示直角三角形两边的比.3.能根据直角三角形的边角关系,进行简单的计算.教学难点用函数的观点理解正弦、余弦和正切.教学方法探索——交流法.教具准备多媒体演示.教学过程Ⅰ.创设情境,提出问题,引入新课[师]我们在上一节课曾讨论过用倾斜角的对边与邻边之比来刻画梯子的倾斜程度,并且得出了当倾斜角确定时,其对边与斜边之比随之确定.也就是说这一比值只与倾斜角有关,与直角三角形的大小无关.并在此基础上用直角三角形中锐角的对边与邻边之比定义了正切.现在我们提出两个问题:[问题1]当直角三角形中的锐角确定之后,其他边之间的比也确定吗?[问题2]梯子的倾斜程度与这些比有关吗?如果有,是怎样的关系?Ⅱ.讲授新课1.正弦、余弦及三角函数的定义多媒体演示如下内容:想一想:如图(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系?(2) 2112AC AC B A B A 和有什么关系? 221112B C B C B A B A和呢? (3)如果改变B 2在梯子AB 1上的位置呢?你由此可得出什么结论?(4)如果改变梯子AB 1的倾斜角的大小呢?你由此又可得出什么结论?请同学们讨论后回答.[生]∵AC 1⊥B 1C 1,AC 2⊥B 2C 2,∴B 1C 1//B 2C 2.∴Rt △B 1AC 1∽Rt △B 2AC 2.2211=AC AC B A B A221112=B C B C B A B A(相似三角形对应边成比例). 由于B 2是梯子AB 1上的任意—点,所以,如果改变B 2在梯子AB 1上的位置,上述结论仍成立.由此我们可得出结论:只要梯子的倾斜角确定,倾斜角的对边.与斜边的比值,倾斜角的邻边与斜边的比值随之确定.也就是说,这一比值只与倾斜角有关,而与直角三角形大小无关.[生]如果改变梯子AB 1的倾斜角的大小,如虚线的位置,倾斜角的对边与斜边的比值,邻边与斜边的比值随之改变.[师]我们会发现这是一个变化的过程.对边与斜边的比值、邻边与斜边的比值都随着倾斜角的改变而改变,同时,如果给定一个倾斜角的值,它的对边与斜边的比值,邻边与斜边的比值是唯一确定的.这是一种什么关系呢?[生]函数关系.[师]很好!上面我们有了和定义正切相同的基础,接着我们类比正切还可以有如下定义:(用多媒体演示)在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之确定.如图,∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即sinA =斜边的对边A ∠ ∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即cosA=斜边的邻边A ∠ 锐角A 的正弦、余弦和正切都是∠A 的三角函数(trigonometricfunction).[师]你能用自己的语言解释一下你是如何理解“sinA 、cosA 、tanA 都是之A 的三角函数”呢?[生]我们在前面已讨论过,当直角三角形中的锐角A 确定时.∠A 的对边与斜边的比值,∠A 的邻边与斜边的比值,∠A 的对边与邻边的比值也都唯一确定.在“∠A 的三角函数”概念中,∠A 是自变量,其取值范围是0°<A<90°;三个比值是因变量.当∠A 变化时,三个比值也分别有唯一确定的值与之对应.2.梯子的倾斜程度与sinA 和cosA 的关系[师]我们上一节知道了梯子的倾斜程度与tanA 有关系:tanA 的值越大,梯子越陡.由此我们想到梯子的倾斜程度是否也和sinA 、cosA 有关系呢?如果有关系,是怎样的关系?[生]如图所示,AB =A 1B 1,在Rt △ABC 中,sinA=ABBC ,在Rt △A 1B 1C 中,sinA 1=111B A C B . ∵AB BC <111B A C B , 即sinA<sinA 1,而梯子A 1B 1比梯子AB 陡,所以梯子的倾斜程度与sinA 有关系.sinA 的值越大,梯子越陡.正弦值也能反映梯子的倾斜程度.[生]同样道理cosA=ABAC cosA 1=111B A C A , ∵AB=A 1B 1 ABAC >111B A C A 即cosA>cosA 1, 所以梯子的倾斜程度与cosA 也有关系.cosA 的值越小,梯子越陡.[师]同学们分析得很棒,能够结合图形分析就更为妙哉!从理论上讲正弦和余弦都可以刻画梯子的倾斜程度,但实际中通常使用正切.3.例题讲解多媒体演示.[例1]如图,在Rt △ABC中,∠B=90°,AC =200.sinA =0.6,求BC 的长.分析:sinA 不是“sin”与“A”的乘积,sinA 表示∠A 所在直角三角形它的对边与斜边的比值,已知sinA =0.6,ACBC =0.6. 解:在Rt △ABC 中,∠B =90°,AC =200.sinA =0.6,即ACBC =0.6,BC =AC×0.6=200×0.6=120. 思考:(1)cosA =?(2)sinC =? cosC =?(3)由上面计算,你能猜想出什么结论?解:根据勾股定理,得AB=2222120200-=-BCAC=160.在Rt△ABC中,CB=90°.cosA=54200160==ACAB=0.8,sinC=54200160==ACAB=0.8,cosC=53200120==ACBC=0.6,由上面的计算可知sinA=cosC=O.6,cosA=sinC=0.8.因为∠A+∠C=90°,所以,结论为“一个锐角的正弦等于它余角的余弦”“一个锐角的余弦等于它余角的正弦”.[例2]做一做:如图,在Rt△ABC中,∠C=90°,cosA=1312,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达.分析:这是正弦、余弦定义的进一步应用,同时进一步渗透sin(90°-A)=cosA,cos(90°-A)=sinA.解:在Rt△ABC中,∠C=90°,AC=10,cosA=1312,cosA=ABAC,∴AB=1013651012cos12613ACA==⨯=,sinB=12cos13ACAAB==根据勾股定理,得BC2=AB2-AC2=(665)2-102=2222625366065=-∴BC =625. ∴cosB =1356525665625===AB BC , sinA =135=AB BC 可以得出同例1一样的结论.∵∠A+∠B=90°,∴sinA :cosB=cos(90-A),即sinA =cos(90°-A);cosA =sinB =sin(90°-A),即cosA =sin(90°-A).Ⅲ.随堂练习多媒体演示1.在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.分析:要求sinB ,cosB ,tanB ,先要构造∠B 所在的直角三角形.根据等腰三角形“三线合一”的性质,可过A 作AD ⊥BC ,D 为垂足.解:过A 作AD ⊥BC ,D 为垂足.∴AB=AC ,∴BD=DC=21BC=3. 在Rt △ABD 中,AB =5,BD=3,∴AD =4.sinB =54=AB AD cosB =53=AB BD , tanB=34=BD AD . 2.在△ABC 中,∠C =90°,sinA =54,BC=20,求△ABC 的周长和面积. 解:sinA=AB BC ,∵sinA=54,BC =20,∴AB =5420sin =A BC ==25. 在Rt △BC 中,AC =222025-=15,∴ABC 的周长=AB+AC+BC =25+15+20=60,△ABC 的面积:21AC×BC=21×15×20=150. 3. (补充练习)在△ABC 中.∠C=90°,若tanA=21, 则sinA= .解:如图,tanA=AC BC =21. 设BC=x ,AC=2x ,根据勾股定理,得 AB=x x x 5)2(22=+.∴sinA=55515===x x AB BC . Ⅳ.课时小结本节课我们类比正切得出了正弦和余弦的概念,用函数的观念认识了三种三角函数,即在锐角A 的三角函数概念中,∠A 是自变量,其取值范围是0°<∠A<90°;三个比值是因变量.当∠A 确定时,三个比值分别唯一确定;当∠A 变化时,三个比值也分别有唯一确定的值与之对应.类比前一节课的内容,我们又进一步思考了正弦和余弦的值与梯子倾斜程度之间的关系以及用正弦和余弦的定义来解决实际问题.Ⅴ.课后作业习题1.2第1、3、4、5题Ⅵ.活动与探究已知:如图,CD 是Rt △ABC 的斜边AB 上的高,求证:BC 2=AB·BD.(用正弦、余弦函数的定义证明)A[过程]根据正弦和余弦的定义,在不同的直角三角形中,只要角度相同,其正弦值(或余弦值)就相等,不必只局限于某一个直角三角形中,在Rt △ABC 中,CD ⊥AB.所以图中含有三个直角三角形.例如∠B 既在Rt △BDC 中,又在Rt △ABC 中,涉及线段BC 、BD 、AB ,由正弦、余弦的定义得cosB =AB BC ,cosB= BCBD . [结果]在Rt △ABC 中,cosB =AB BC 又∵CD ⊥AB.∴在Rt △CDB 中,cosB =BC BD ∴AB BC =BCBD BC 2=AB·BD. 板书设计1.1 锐角三角函数(二)1.正弦、余弦的定义在Rt △ABC 中,如果锐角A 确定.sinA =斜边的对边A ∠ cosA =斜边的对边A ∠ 2.梯子的倾斜程度与sinA 和cosA 有关吗?sinA 的值越大,梯子越陡cosA 的值越小,梯子越陡3.例题讲解4.随堂练习。
北师大版九年级数学下册教学课件二次函数

(2)当x=3cm时,S=225-4×32=189(cm2).
D B
y=-2x2+12x-16
-2
12
-16
2
10.如图所示,矩形的长为4cm,宽为3cm,如果矩形的长与宽 都增加xcm,那么面积增加ycm2.
(1)写出y关于x的函数关系式,并指出自变量x的取值范围; (2)当矩形的长与宽都分别增加2cm、3cm时,矩形的面积各 增加多少? (3)要使矩形的面积增加为18cm2,长和宽 都增加多少米?
观察函数关系式①和②,并思考以下问题: y=-2x2+20x(0<x<10)……………① y=-100x2+100x+200(0≤x≤2)……②
(1)函数关系式①和②的自变量各有几个?(各有1个) (2)多项式-2x2+20x和-100x2+100x+200分别是几 次多项式? (分别是二次项式) (3)函数关系式①和②有什么共同特点?
[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。 [y=(10-8-x)(100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0<x<10)化为: y=-2x2+20x(0<x<10)………………(1)
将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+200(0≤x≤2)………………(2)
1.商品的利润与售价、进价以及销售量之间有什么关系? [利润=(售价-进价)×销售量] 2.如果不降低售价,该商品每件利润是多少元?一天总的利 润是多少元?
[10-8=2(元),(10-8)×100=200(元)] 3.若每件商品降价x元,则每件商品的利润是多少元?一天 可销售约多少件商品?
北师大版九年级数学下册全套课件

学习目标
掌握二次函数、一元 二次方程、相似三角 形等核心概念和性质 。
了解数学在日常生活 和科技领域中的应用 ,提高数学素养。
学会运用数学知识解 决实际问题,培养数 学思维和解决问题的 能力。
02
第一章:二次函数
二次函数的基本概念
二次函数定义
一般形式为$y=ax^2+bx+c$,其中 $a$、$b$、$c$为常数,且$a neq 0$。
北师大版九年级数学下册全 套课件
汇报人: 202X-12-30
目 录
• 引言 • 第一章:二次函数 • 第二章:相似图形 • 第三章:解直角三角形 • 第四章:概率初步知识 • 第五章:投影与视图
01
引言
课程简介
课程名称:北师大版九年级数学下册
适用对象:九年级学生
课程目标:通过学习本册内容,学生将掌握初中数学的核心知识和技能,为进一步 学习高中数学打下基础。
THANKS
感谢观看
03
如一次函数、反比例函数等,可以结合图像进行比较和性质分
析。
03
第二章:相似图形
相似图形的概念和性质
01
02
03
相似图形的定义
两个图形如果形状相同, 大小可以不同,则称这两 个图形相似。
相似图形的性质
相似图形对应边的长度成 比例,对应角的大小相等 。
相似图形的分类
根据相似比的大小,相似 图形可分为相似多边形、 相似三角形等。
航海问题
在航海中,需要利用解直 角三角形的方法来确定船 只的位置和航向。
工程问题
在桥梁、建筑等工程领域 ,解直角三角形可以帮助 设计师进行精确的计算和 设计。
05
第四章:概率初步知识
新北师大版九年级下册初中数学 1 圆 教学课件

∴ ∴点ORR=在⊙RDO2内.OD=2 3cm2<5 cm=r.
第二十三页,共二十八页。
新课讲解
练一练
小明和小华正在练习投铅球,铅球场地分为五个区域:4m以内,
4〜5m,5〜6m,6〜7m,7m以 外. 小明投了 5.2 m,小华投了 6.7 m,他们投的 球分别落在哪个区
域内?
解:小明投的球落在5~6 m的区域内
第十五页,共二十八页。
新课讲解
弦与弧之间的关系:
• 弦是圆上两点间的线 段,有无数条;弧是
圆上两点间的部分, 弧是曲线,弧也有无 数条. • 每条弧对一条弦;而每条
弦所对的弧有两条:优弧、 劣弧或两个半圆.
弦与直径间的关系:
直径是过圆心的弦,因此 直径是弦,但弦不一定是 直径;在提到“弦”时, 如果没有特别说明,不要 忘记直径这种特殊的弦.
大小关系刻画它们的位置特征吗?
第十九页,共二十八页。
新课讲解
设⊙O的半径为r,点P到圆心的距离OP=d,则有:
点P在圆外 d>r;
点P在圆上 d=r;
点P在圆内 d<r.
符号“ ”读作“等价于”,
它表示从符号“ ”的左
端可以推出右端,从右
端也可以推出左端.
第二十页,共二十八页。
新课讲解
点与圆的位置关系有三种: 点在圆外、点在圆上、点在圆内.
第二十一页,共二十八页。
新课讲解
典例分析
例 已知⊙ O 的半径r=5 cm,圆心O 到直线l 的距离d=OD= 3 cm, 在直线l 上有P,Q,R 三点, 且有PD=4 cm,QD=5 cm,RD=3 cm,那么P,Q,R 三点与⊙ O 的位置关系各是怎样的?
第二十二页,共二十八页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下册北师大版数学书
《北师大版九年级下册数学》是北师大教育出版社出版发行的专为初三学生编
写的数学教材。
全书共有八个单元,讲解包括几何、代数、概率和数列在内的全科基础学习内容,同时还有适宜趣味性的拓展任务,使学习数学更加有趣。
此外,《北师大版九年级下册数学》还采用了分步讲解的学习方式,使学生明
白其中的每一个知识点,扎实掌握知识点,并通过不断的练习及深入理解,提升学生的解题能力。
除此之外,针对教师在教学中可能遇到的困难给出有效解决思路,避免传统教学在固定性阶段布置学习计划时师生双方可能出现的问题和误解,给教师提供有用的教学参考。
《北师大版九年级下册数学》为初三学生提供了个性化的学习环境,同时改善
了教与学的关系,以更全面的指导教学。
同时,全书整体篇幅较短,内容充实精炼,使学生能够掌握概念,快速解题,有效提升学习成绩。
总之,《北师大版九年级下册数学》是凝练丰富、系统清晰的一本数学课本,
有助于加深学生对数学的认识,提升学习效果,是少年儿童学习数学的不二选择。