甲烷化催化剂及反应机理的研究进展
煤制天然气催化剂的研究进展

太原理工大学现代科技学院化学工程与工艺专业工程实训实践报告论文题目煤制天然气催化剂的研究进展院(系)现代科技学院专业班级化工10-1 姓名指导教师教师职称煤制天然气催化剂的研究进展摘要:概述了甲烷化反应在工业生产中的应用,重点介绍了甲烷化催化剂中活性组分、载体、助剂的种类及催化剂制备方法、条件对其催化性能的影响;分析了甲烷化催化剂失活的原因及甲烷化反应的机理,指出床层飞温和积碳是造成催化剂失活的主要因素,必须从甲烷化催化剂和工艺技术两方面予以改进;并对甲烷化催化剂研究进行了展望,提出高比表面复合载体的研制、稀土元素的添加、新型耐硫、高热稳定性甲烷化催化剂的开发及流化床甲烷化工艺技术的改进是甲烷化研究的主要方向.关键词:甲烷化;催化剂;反应机理;积碳;失活英文题目Abstract: Application of the methanation reaction in industrial production, focusing on the impact of methanation catalyst active component, carrier, additives and catalysts preparation methods, conditions on the catalytic performance; analysis of the reason why the methanation reaction and methanation catalyst deactivation, pointed out the bed fly gentle product carbon is the main factor causing catalyst deactivation, must be improved from the two aspects of methanation catalyst and process technology; and the methanation catalyst research were discussed, proposed development of rare earth elements, high specific surface composite vector addition, new high development and fluidized bed sulfur, high thermal stability of methanation catalyst of methanation process technology is the main research direction of methane. Key words: 甲烷化;催化剂;反应机理;积碳;失活文献综述1. 煤制天然气工业化现状1.1国外现状自20世纪70年代初,国外煤制天然气才开始得到真正的发展,主要源于二次能源危机,为了保障能源安全,人们开始重视以煤或石脑油为原料制取代用天然气的研究与发展,从而,甲烷化技术得到较快发展,并开始了工业化的应用。
CO_2甲烷化催化剂与反应机理研究进展

CO_2甲烷化催化剂与反应机理研究进展
赵云鹏;荆涛;田景芝;郑钟植
【期刊名称】《天然气化工:C1化学与化工》
【年(卷),期】2016(41)6
【摘要】CO_2甲烷化是有效利用二氧化碳资源的途径之一,是减少CO_2的一种比较有效实际的方法,在环境保护方面显示出较大潜力。
综述了Ni基催化剂、Ru 基催化剂、Rh基催化剂等CO_2甲烷化催化剂及其催化性能,以及催化反应机理的研究进展,展望了CO_2甲烷化催化剂未来的发展方向。
【总页数】7页(P98-104)
【关键词】二氧化碳;甲烷化;催化剂;反应机理
【作者】赵云鹏;荆涛;田景芝;郑钟植
【作者单位】齐齐哈尔大学化学与化学工程学院;浦项工科大学化学工程系
【正文语种】中文
【中图分类】O643.3;TQ426
【相关文献】
1.CO2甲烷化催化剂与反应机理研究进展 [J], 赵云鹏;荆涛;田景芝;郑钟植
2.甲烷化催化剂及反应机理的研究进展 [J], 孔乔建;
3.甲烷氧化偶联制C2烃催化剂及催化反应机理研究进展 [J], 颜其洁
4.甲烷化催化剂及反应机理的研究进展 [J], 陈玉春
5.在Ni-MgO-La_2O_3-Al_2O_3催化剂上CO_2、CO加氢甲烷化反应动力学研究 [J], 周世忠;林守如;方一明;李素贤;俞提升
因版权原因,仅展示原文概要,查看原文内容请购买。
煤基合成气制甲烷工艺流程、技术及催化剂研究进展趋势分析

煤基合成气制甲烷工艺流程、技术及催化剂研究进展趋势分析宋孝勇【摘要】随着社会经济的发展,工业生产、日常生活对于天然气等能源类的需求越来越大。
提高煤制天然气的生产效率,有利于缓解我国能源需求量增大与生产效率过低之间的矛盾,符合国家发展“能源节约型”和“环境友好型”社会的战略目标。
煤制天然气是煤炭高效清洁利用的重要途径,甲烷化是煤制天然气的关键反应。
推行煤基合成气制甲烷工艺创新,可以显著提高甲烷工艺的制备效率。
针对甲烷化反应的特点,对催化剂使用技术进行优化。
本文根据煤基合成气制甲烷工艺的技术细节展开讨论,提出几点优化制备流程的可行性建议。
%As social economic develops, the requirement for natural gas was more and more in industry and daily life. Improving production efficiency of coal gas could eased the problems of requirements is much higher than production efficiency. Coal gas is the main path of efficient cleaning and utilization. Methanation isthe key reaction for coal gas. Innovation of methane technique by coal based gas can raise preparation efficiency. The cat-alyst use was optimized according to the characters of methane reaction. Some advices were given for optimizing the preparation process.【期刊名称】《化学工程师》【年(卷),期】2016(000)004【总页数】3页(P44-45,43)【关键词】制烷流程;催化剂;煤基合成;模拟研究【作者】宋孝勇【作者单位】盐城工学院,江苏盐城 224001【正文语种】中文【中图分类】TQ546.61.1 甲烷化工艺从煤基合成气制甲烷工艺的工艺流程来看,首先要对煤备料进行初期拣洗工作,将粗制煤炭中的杂质去除,然后在反应器中加入H2,使用加温设备将H2加热,等待产品混合气冷却之后,析出HCl,NH3和脱酸性气体H2S等,使用低温分离的方法将重质芳烃和轻质芳烃析出。
甲烷化催化剂

甲烷化催化剂的综述院系:专业班级:学号:姓名:指导老师:关于甲烷化催化剂的一些探讨概念:1、甲烷化:2、甲烷化工艺的发展目的:这次任务我主要找关于甲烷化的文献,通过对这些文献的查看来研究关于甲烷化催化剂的发展,研究方向的重点以及它对人类的发展所起到的作用。
这次自己找了十几篇文章来谈论一下。
主题:1、低温甲烷化催化剂的工业应用低温催化剂较高温催化剂性能, 反应空速大、床层温度低、开车时间短、蒸汽消耗量大幅降低,并且安全性能更好。
该催化剂的使用提高了乙烯装置的安全性和稳定性。
由原用的高温催化剂改为低温催化剂时, 只需更换催化剂即可, 无需改动反应器和管线。
2、第二金属组分对CO2 甲烷化沉淀型镍基催化剂的影响用并流共沉淀法制备了一系列镍基双金属催化剂,在微型固定床流动反应装置上进行了二氧化碳和氢气生成甲烷的催化反应,考察了在不同反应条件下第二金属组分Fe、Co 、Cr 、Mn、Cu、Zn 等对镍基催化剂活性的影响。
采用程序升温还原( TPR) 、X 射线衍射(XRD) 等手段对催化剂进行表征。
结果表明,第二组分的添加会改变镍催化剂的表面结构以及活性组分的分散度,有些会产生电子效应。
其中,锰的添加使催化剂活性大大提高,原因是Mn ( Ⅳ) Ni2O4 的生成不仅有利于催化剂还原,而且有利于产生电子效应。
3、二氧化碳甲烷化催化剂制备方法的研究采用浸渍法和并流共沉淀法制备含Ni 量不同的Ni/ ZrO2 催化剂, 研究了它们在二氧化碳甲烷化反应中的催化性能. 结果表明, 共沉淀法制备的高Ni 催化剂具有良好的催化性能. 在较温和的条件( T = 573 K, P = 0. 1 MPa, GHSV =12000 h- 1) 下, CO2 的转化率达99. 7%, CH4 的选择性达100% . Ni 与ZrO2 的相互作用对催化活性有很强的影响. Ni 的含量和CO2 吸附程度决定了甲烷化反应活性.催化剂作用下活化能的大小与活性变化规律相符.与浸渍法相比, 共沉淀法制备出的催化剂具有如下特点:( 1) 产率高;( 2) 性能稳定;( 3) 抗积碳性好;( 4) 反应温度及活化能更低;( 5) 产物成分单一.利用共沉淀法制备二氧化碳甲烷化催化剂具有很高的研究、应用和开发价值. 4、反应条件对焦炉气甲烷化催化剂性能的影响近年来, 中国天然气市场需求急剧增加, 制取合成天然气的工业投资项目增多, 对于合成甲烷反应过程的研究逐渐得到重视。
甲烷无氧芳构化研究进展及其工业应用前景

甲烷无氧芳构化研究进展及其工业应用前景引言•甲烷是一种重要的天然气体,由于其丰富性和廉价性质,在能源领域有着广泛的应用。
然而,甲烷的化学惰性限制了其在化学领域的应用。
无氧芳构化作为一种有效的方法,可将甲烷转化为芳烃,从而拓展了甲烷的化学利用途径。
•本文将全面、详细、完整地探讨甲烷无氧芳构化的研究进展,并讨论其在工业上的应用前景。
甲烷无氧芳构化研究进展催化剂的开发1.传统的催化剂,如铂、钯等贵金属,具有较高的活性和选择性,但成本高,并且易于中毒。
2.近年来,通过合成新型催化剂来提高反应活性成为研究的热点。
3.金属掺杂的氧化物催化剂具有良好的催化性能,可实现甲烷在低温下的无氧芳构化。
反应机理研究1.甲烷无氧芳构化的反应机理复杂,目前尚无统一的解释。
2.普遍接受的观点是,甲烷首先通过C-H活化生成甲基自由基,然后在催化剂表面经历一系列的反应步骤最终生成芳烃。
3.进一步研究了反应过程中反应物与催化剂之间的相互作用,以及反应中的副产物的生成机理。
反应条件的优化1.温度、压力和反应物比例等反应条件的选择对反应效果有着重要影响。
2.高温和高压会导致反应副产物的生成增加,降低产物选择性。
3.优化反应条件可以提高芳烃产率和选择性。
反应产物的控制1.芳烃的分布对于甲烷无氧芳构化的应用具有重要意义。
2.通过控制反应条件或调整催化剂结构,可以实现特定芳烃的选择转化。
3.合理设计反应体系,可以提高目标芳烃的产率和选择性。
甲烷无氧芳构化的工业应用前景替代石油化工1.甲烷无氧芳构化可以将甲烷转化为芳烃,从而实现对石油化工产品的替代。
2.芳烃广泛应用于涂料、塑料、合成纤维等领域,具有巨大的市场需求。
3.推动甲烷的无害化利用,减少对化石能源的依赖,有利于可持续发展。
温室气体减排1.甲烷是温室气体的重要成分之一,对气候变化有着较大影响。
2.甲烷无氧芳构化可将甲烷转化为芳烃,减少其对温室效应的贡献。
3.在工业应用中推广甲烷无氧芳构化,有助于减少温室气体的排放,保护环境。
甲烷干重整镍催化剂研究进展

甲烷干重整镍催化剂研究进展甲烷干重整反应是一种重要的合成气生产方法,其制气过程中的催化剂起到了非常重要的作用。
其中,镍基催化剂是最常见的一类催化剂之一,具有价格低廉、性能稳定等优点,在甲烷干重整反应中得到了广泛应用。
一、甲烷干重整反应机理甲烷干重整反应是一种将甲烷和水蒸气在高温下催化重整生成一氧化碳和氢气的反应。
该反应的机理主要包括以下几个步骤:1. CH4 + steam → CO + 3H2 (反应1)这两个反应的化学式分别用反应1和反应2表示。
在催化剂作用下,反应1中的甲烷分子首先分解为活性碳物种,再与水蒸气反应生成一氧化碳和氢气;反应2中的一氧化碳与水蒸气反应生成二氧化碳和氢气。
二、镍催化剂的构成和制备镍催化剂的构成和制备方法对反应的催化效率和稳定性具有极大的影响。
目前,制备镍催化剂的方法主要包括:1. 沉积-沉淀法沉积-沉淀法是在载体表面沉积物种后通过沉淀法生成催化剂的方法。
该方法具有制备温度低、催化剂成分易于调控等优点。
但也存在制备难度大、催化剂粗糙等问题。
2. 辅助还原法辅助还原法是将镍盐与还原剂在载体上还原生成镍颗粒。
该方法具有制备过程简单、催化剂成分均匀等优点。
但也存在还原剂使用量大、制备温度高等问题。
三、催化剂的性能与表征催化剂的性能及其表征方法对其催化效率和稳定性具有重要影响。
1. 活性催化剂的活性表现出反应速率和反应选择性。
反应速率由催化剂中的活性金属颗粒尺寸、载体性质、制备方法等因素决定。
反应选择性由催化剂中的主要组分、立体和表面相互作用、活性金属的形式等因素决定。
2. 稳定性催化剂的稳定性表现为反应失活率和寿命。
反应失活率主要由催化剂表面和与反应物分子的相互作用、饱和和氧化等因素决定。
寿命主要受到催化剂与杂质的中毒、热膨胀和毒物积累等因素的影响。
3. 表征表征催化剂的方法包括X射线衍射、透射电镜、傅里叶红外光谱等。
X射线衍射用于确定催化剂的晶体结构;透射电镜用于确定催化剂的颗粒尺寸;傅里叶红外光谱用于确定各种化学键的存在和结构。
煤制合成天然气工艺中甲烷化合成技术

煤制合成天然气工艺中甲烷化合成技术摘要:天然气是一种重要的一次能源,在发电、工业燃料、化工原料、汽车能源、居民燃气等方面具有广泛用途。
虽然我国每年天然气产量呈逐年增长的趋势,但仍远远落后于市场需求的增长,天然气供不应求的局面将长期存在。
而我国的能源结构特点是“富煤、少油、缺气”,根据国内的能源结构特点,在富煤地区适度发展煤制天然气,既可清洁加工利用煤炭资源,也可有效补充天然气资源的供给,缓解国内天然气供求矛盾。
关键词:煤制合成天然气;甲烷化合成技术引言:煤制天然气工艺主要包括煤气化和合成气甲烷化两个过程。
综述了煤制天然气工艺中合成气甲烷化催化剂的研究进展,从活性组分、载体和助剂等方面介绍了国内外甲烷化催化剂的研究现状,并分析了甲烷化催化剂的失活原因。
合成气甲烷化催化剂的发展方向是使催化剂具有更好的催化活性和热稳定性,以期开发出性能优异的具有自主知识产权的合成气甲烷化催化剂及配套技术。
1.中国煤制天然气技术至今为止,中国还没有经过工业化验证的煤制天然气技术。
中国的CO甲烷化技术主要应用于富氢体系中微量CO的去除以及城市煤气的部分甲烷化。
开发的水煤气甲烷化工艺,其原料气首先进行脱硫操作,在0.05MPa、350℃下进行加氢反应。
该工艺经过1000h稳定性实验,催化剂催化活性稳定,且起始温度低,寿命可达1a之久,但催化剂不耐硫。
在空速1500h-1时,该工艺的CO转化率高达95%,CH4选择性可以达到65%。
由中科院大连物化所研发的常压耐高温煤气直接甲烷化工艺采用自行研发的M348-2A型催化剂,以水煤气为原料气,经脱水、脱硫、脱氧等工序后进入甲烷化反应器。
反应产物经降温、除水、压缩等工序后进入煤气输配管道系统。
由于M348-2A型催化剂为非耐硫型催化剂,因此原料气再进入甲烷化反应器前必须经过脱硫与脱氧。
该工艺的产品热值大于14000kJ/m3,CO体积分数小于10%,完全满足城市煤气的质量标准。
该催化剂的性能稳定,活性、选择性高,CO转化率可达80%~90%,甲烷选择性为60%~70%,催化剂寿命在0.5~1a,但该工艺的脱硫成本较高。
煤基合成气制甲烷工艺与催化剂研究进展

煤基合成气制甲烷工艺与催化剂研究进展宗弘元;余强;刘仲能【摘要】The production of synthetic natural gas( SNG)is an important route of the highly efficient and clean utilization of coal. The key reactionof coal to SNG is methanation,which is strong exothermic, reversible and reduced volume after the reaction. In order to get high methane yield,the measures of multistage adiabatic cycle to dilute CO and shift/purificationof syngas was adopted. The existing traditional process of methanationand their characteristics were summarized. On this basis,the methanation processes were compared,and the development of novel sulfur-tolerant methanation process for coal to SNG was proposed and discussed. The hydrothermal stability of conventional Mo-based sulfur-tolerant methanation catalysts needs to be improved because of low space velocity and conversion of raw materials. The future research trend of coal to SNGis the development of multistage sulfur-tolerant methanation processes and their corresponding catalysts with high performance.%煤制天然气是煤炭高效清洁利用的重要途径,甲烷化是煤制天然气的关键反应,具有强放热、可逆和体积缩小的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲烷化催化剂及反应机理的研究进展
甲烷化是一种重要的催化反应,可将甲烷转化为高附加值的化学品。
在甲烷化反应中,催化剂起着关键作用,可以提高反应的选择性和活性。
目前,已经有许多催化剂用于甲烷
化反应,并且对催化剂的设计和优化也取得了很大的进展。
本文将介绍甲烷化催化剂及反
应机理的研究进展。
甲烷化的催化剂可以分为两类:氧化物基催化剂和金属基催化剂。
氧化物基催化剂通
常由杂多酸、氧化物或过渡金属化合物构成,如钛、钼、钻、钨等。
这些催化剂具有良好
的催化性能,但是活性较低,需要高温和高压条件下进行反应。
金属基催化剂主要包括过
渡金属、贵金属和过渡金属氧化物等,这些催化剂具有高催化活性和选择性,但是易于失活。
甲烷化反应的机理复杂多样,主要包括催化剂表面活性物种的形成和反应物的活化两
个步骤。
在催化剂表面,活性物种主要有金属活性位和氧化物活性位。
金属活性位能够吸
附并活化气体分子,而氧化物活性位则参与气体分子的结合和反应。
在甲烷化反应中,甲
烷分子首先被吸附在金属活性位上,并发生氢化反应生成甲酮。
然后甲酮与氧化物活性位
上的氧进行反应,生成甲酸和水。
甲酸再经过脱水反应生成甲醇。
近年来,研究人员还发现了一些新型的催化剂,如负载型催化剂、金属-有机框架催
化剂和纳米催化剂等。
负载型催化剂是将金属或氧化物负载在惰性载体上制备而成的,具
有高分散性和较高的催化活性。
金属-有机框架催化剂则是通过将金属离子与有机配体相
结合形成催化剂,在甲烷化反应中具有较高的催化活性和选择性。
纳米催化剂则是通过控
制催化剂的形貌和尺寸效应来提高催化性能,具有较高的催化活性和稳定性。
还有一些其他的研究方向,如催化剂的制备和表征、反应条件的优化、反应机理的理
论计算等。
制备和表征研究主要包括催化剂的制备工艺和催化剂表面结构的表征方法。
反
应条件的优化研究则是通过调节反应条件,如温度、压力、反应物比例等,来提高甲烷化
反应的催化性能。
反应机理的理论计算研究则是利用密度泛函理论等计算方法对甲烷化反
应的机理进行模拟和分析,以了解反应中各个步骤的能垒和动力学参数。