垂径定理-弦-弧-圆心角-圆周角-

合集下载

垂径定理

垂径定理

垂径定理、圆心角、圆周角一、重难点(一)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧(平分弦的直径垂直于弦,并且平分弦所对的两条弧)PS:几何语言表达①CD 是直径 ②CD ⊥AB⇒③AM=BM ④AC=BC ⑤AD=BDPS: 其中任意两个成立,其他三个都成立Eg:CD 是直径,AM=BM ,则有CD ⊥AB,AC=BC,AD=BD1.如图所示,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半径分别为a ,b 。

求证:A D B D a b·=-22A C E D BO2.如图所示,以O 为圆心,∠AOB =120°,弓形高ND =4cm ,矩形EFGH 的两顶点E 、F 在弦AB 上,H 、G 在AB ⋂上,且EF =4HE ,求HE 的长。

DH M GA BO E F N3.如图,⊙O 的两弦AB ,CD 互相垂直于H ,AH =4,BH =6,CH =3,DH =8,求⊙O 半径。

CA H BOD4.为圆O 的直径,C 在圆O 上,∠ABC 的平分线交圆O 于D ,交CA 于E ,已知BC=6,AC=8,求CD 的长。

OA BC DEC DA B M5.为圆O 的直径,割线l 交圆O 于M 、N ,AC ⊥l ,且交圆O 于E ,BD ⊥l 于D ,若AB=10,AC=7,BD=1,求OC 的长。

6.如图所示,在圆⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为7.AB 是直径,CD 是弦,AF ⊥CD 于F ,BE ⊥CD 于E(1)求证:CE=DF (2)若AF=32,BE=8,求点O 到CD 的距离。

OAC D B EF归纳总结:在圆内,关于弦的问题,常需要经过圆心作弦的垂线,利用弦心距、半径、弦长的一半构建直角三角形, 将问题转化为直角三角形的问题(二)圆心角、圆周角定理:在等圆或同圆中,等弧(同弧)所对的圆周角相等,都等于这条弧所对的圆心角一半。

《垂径定理-弧弦圆心角-圆周角》练习

《垂径定理-弧弦圆心角-圆周角》练习

1《圆》练习题(垂径定理, 弧、弦、圆心角, 圆周角)一、选择题1.已知在⊙O 中, 弦AB 的长为8厘米, 圆心O 到AB 的距离为3厘米, 则⊙O 的半径是( )A. 3厘米B. 4厘米C. 5厘米D. 8厘米2.半径等于12的圆中, 垂直平分半径的弦长为( )A. B. C. D.3.如图1, 在⊙O 中, ∠ABC=50°, 则∠AOC 等于( )A. 50°B. 80°C. 90°D. 100°4.如图2, AB 是⊙O 的直径, ∠ABC=30°, 则∠BAC =( )A. 90°B. 60°C. 45°D. 30°5.如图3, △ABC 内接于⊙O, 连结OA.OB, 若∠ABO =25°, 则∠C 的度数为( ).A. 55°B. 60°C. 65°D. 70°6.如图4, 四边形ABCD 内接于⊙O, 若它的一个外角∠DCE=70°, 则∠BOD=( )A. 35°B.70°C. 110°D.140°7、如图5, △ABC 内接于⊙O, AD ⊥BC 于点D, AD=2cm, AB=4cm, AC=3cm, 则⊙O 的直径是( )A. 2cmB. 4cmC. 6cmD. 8cm8、如图6, BD 是⊙O 的直径, 圆周角∠A = 30(, 则∠CBD 的度数是( )A. 30(B. 45(C. 60(D. 80(9、如图7, AB 为⊙O 的直径, C .D 是⊙O 上的两点, ∠BAC=30º, AD=CD, 则∠DAC 的度数是( )A. 30ºB. 60ºC. 45ºD. 75º10、圆内接四边形ABCD 中, ∠A ∶∠B ∶∠C ∶∠D 可以是( )A. 1∶2∶3∶4B. 1∶3∶2∶4C. 4∶2∶3∶1D. 4∶2∶1∶3AB O C图1 图2 O 30D B C A O D CBA 图3 图4图6图7图52二、填空题11.如图8, ∠A 是⊙O 的圆周角, ∠A=40°, 则∠OBC 的度数为_______.12.如图9, AB 是⊙O 的直径, 点D 在⊙O 上∠AOD=130°, BC ∥OD 交⊙O 于C, 则∠A= .13、如图10, ⊙O 的直径AB=8cm, C 为⊙O 上的一点, ∠BAC=300, 则BC= .14、如图,量角器外沿上有A 、B 两点,它们的读数分别是70°、40°,则∠1的度数为 .三、解答题: 15、.如图, AB 、CD 是⊙O 的两条弦, 延长AB 、CD 交于点P, 连结AD 、BC 交于点E . , , 求 的度数.16.如图所示, AB 是⊙O 的一条弦, OD ⊥AB , 垂足为C, 交⊙O 于点D , 点E 在⊙O 上。

垂径定理、圆周角与圆心角

垂径定理、圆周角与圆心角

圆1一、知识点1、旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.2、轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.3、圆是轴对称图形,经过圆心的每一条都是它的对称轴。

(因为直径是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”或说成:“圆的对称轴是经过圆心的每一条直线”。

)4、、垂径定理:垂直于弦的直径这条弦,并且弦所对的弧。

(这里的垂径可以是直径、半径或过圆心的直线或线段,其本质是过“圆心”。

)5、推论:(1)平分弦(不是直径)的直径,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径,弦且平分弦所对的另一条弧。

推论:圆的两条平行弦所夹弧。

6、与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.7、垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.二、例题(泸州市2008年)如图1,正方形ABCD是⊙O的内接正方形,点P在劣弧CD上不同于点C得到任意一点,则∠BPC的度数是()A.45 B.60 C.75 D.902.(PA切⊙O于A,PO交⊙O于B,若PA=6,PB=4,则⊙O的半径是()`A.52B.56C.2 D.53、(南京市2008年)如图3,已知O的半径为1,AB与O 相切于点A,OB与O交于点C,OD OA⊥,垂足为D,则cos AOB∠的值等于()A.OD B.OA C.CD D.AB)4、(威海市2008年)如图,⊙O的半径为2,点A的坐标为(2,32),直线AB为⊙O的切线,B为切点.则B点的坐标为A.⎪⎪⎭⎫⎝⎛-5823,B.()13,- C.⎪⎭⎫⎝⎛-5954,D.()31,-5、(2009年潍坊)已知圆O的半径为R,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连结AC,若,则BD的长为()A.B.C.D.6、(09湖南邵阳)如图,AB是圆O的直径,AC是圆O的切线,A为切点,连结BC交圆O于点D,连结AD,若45ABC∠=°,则下列结论正确的是()A.12AD BC= B.12AD AC= C.AC AB> D.AD DC>7.如图,在⊙O中,弦BC15∶AB AB BC CD==50ACABC∆AB O60,70B C∠=∠=BOD∠AB O COA OB=O4,8AB=OB sin A A B C O//AB OC(1)求证:AC平分OAB∠.|(2)过点O作OE AB⊥于点E,交AC于点P. 若2AB=30AOE∠=︒,求PE的长.30CAB∠=°2R3R R32R~ABCO D xyO11BACBA OMBADCEC、BDOAOPBDEOBC、18、(2010湖北荆门)如图,圆O 的直径为5,在圆O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点P 在半圆弧AB 上运动(不与A 、B 两点重合),过点C 作CP 的垂线CD 交PB 的延长线于D 点. (1)求证:AC ·CD=PC ·BC ;(2)当点P 运动到AB 弧中点时,求CD 的长;(3)当点P 运动到什么位置时,△PCD 的面积最大并求出这个最大面积S 。

与圆有关的定理

与圆有关的定理

与圆有关的定理
圆的定理:1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

2、垂径定理:垂直弦的直径平分该弦,并且平分这条弦所对的两条弧。

3、切线定理:垂直
于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。

1、公切线长定理:如果两圆有两条外公切线或两条内公切线,那么这两条外公切线
长相等,两条内公切线长也相等。

如果他们相交,那么交点一定在两圆的连心线上。

2、切线短定理:从铅直一点至圆的两条切线的长成正比,那点与圆心的连线平分切
线的夹角。

4、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积
相等。

5、垂径定理:旋转轴弦的直径平分这条弦,并且平分这条弦所对的两条弧。

6、弦切角定理:弦切角等于对应的圆周角。

(弦切角就是切线与弦所夹的角)。

7、圆心角定理:在同圆或等圆中,成正比的圆心角所对弧成正比,面元的弦成正比,面元的弦的弦心距成正比。

8、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

9、平行弦定理:圆内两条弦平行,被交点分为的两条线段长的乘积成正比。

10、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

11、定理:任何正多边形都存有一个外接圆和一个内切圆,这两个圆就是同心圆。

12、定理:相交两圆的连心线垂直平分两圆的公共弦。

13、定理:把圆分为n(n≥3):。

自学初中数学资料 圆之垂径定理、圆心角、圆周角定理 (资料附答案)

自学初中数学资料 圆之垂径定理、圆心角、圆周角定理 (资料附答案)

自学资料一、圆的相关定义【知识探索】1.定理:不在同一直线上的三点确定一个圆.【说明】(1)过平面上一点能作无数多个圆;(2)过平面上两点能做无数多个圆,这些圆的圆心在两点连线的垂直平分线上;(3)过平面上三点:①三点不在同一直线上,能作唯一一个圆;②三点在同一直线上,不能作圆.【错题精练】例1.下列命题正确的个数有()①过两点可以作无数个圆;②经过三点一定可以作圆;③任意一个三角形有一个外接圆,而且只有一个外接圆;④任意一个圆有且只有一个内接三角形.A. 1个B. 2个C. 3个D. 4个第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训【解答】解:①过两点可以作无数个圆,正确;②经过三点一定可以作圆,错误;③任意一个三角形有一个外接圆,而且只有一个外接圆,正确;④任意一个圆有且只有一个内接三角形,错误,正确的有2个,故选:B.【答案】B例2.有下列四个命题,其中正确的有()①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A. 4个B. 3个C. 2个D. 1个【答案】C例3.如图,在平面直角坐标系中,点A坐标为(﹣4,0),⊙O与x轴的负半轴交于B(﹣2,0).点P是⊙O上的一个动点,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于()A.B.C.D.【解答】第2页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】C例4.如图,已知△ABC.(1)尺规作图作△ABC的外接圆(保留作图痕迹,不写作法);(2)设△ABC是等腰三角形,底边BC=10,腰AB=6,求圆的半径r.【答案】解:(1)如图所示;(2)连接OB,连接OA交BC于点E,∵△ABC是等腰三角形,底边BC=10,腰AB=6,∴BE=CE=5,AE=√AB2−BE2=√11,在Rt△BOE中,r2=52+(r-√11)2∴r=18√11=18√1111.第3页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第4页 共页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【解答】【解答】解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM==4,OM的长即为OP的最小值,∴4≤OP≤5.【答案】4≤OP≤55.已知:△ABC(如图)(1)求作:△ABC的外接圆(要求:用尺规作图,保留作图痕迹,不要求写作法及证明).(2)若∠A=60°,BC=8√3,求△ABC的外接圆的半径.【答案】解:(1)如图所示:⊙O即为所求△ABC的外接圆;(2)过点O作OD⊥BC于点D,∵∠A=60°,BC=8√3,∴∠COD=60°,CD=4√3,第5页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∴CO=4√3sin60°=8,答:△ABC的外接圆的半径为8.二、圆心角、弧、弦、弦心距、圆周角之间的关系【知识探索】年份题量分值考点题型2015114圆内接四边形的性质;点与圆的位置关系选择、简答201613圆周角定理;填空2017219弧长面积;切线的性质;圆周角定理选择、填空、简答201824圆周角定理;填空2019216扇形面积;切线长定理;圆心角、圆周角、垂径定理填空、解答【错题精练】例1.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=52°,则α的度数是()A. 51.5°B. 60°C. 72°D. 76°【解答】解:连接OD.∵∠BAO=∠CBO=α,∴∠AOB=∠BOC=∠COD=∠DOE,∵∠AOE=52°,∴∠AOB=(360°-52°)÷4=77°,第6页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第7页 共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼 非学科培训∴α=(180°-77°)÷2=51.5°. 故选:A .【答案】A例2.如图,在△ABC 中,∠C=90°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E .(1)若∠A=25°,求BD̂的度数. (2)若BC=9,AC=12,求BD 的长.【答案】解:(1)连接CD ,如图, ∵∠ACB=90°,∴∠B=90°-∠A=90°-25°=65°,∵CB=CD ,∴∠CDB=∠B=65°, ∴∠BCD=180°-2∠B=50°, ∴BD ̂的度数为50°;(2)作CH ⊥BD ,如图,则BH=DH , 在Rt △ACB 中,AB=√92+122=15, ∵12CH•AB=12BC•AC , ∴CH=9×1215=365, 在Rt △BCH 中,BH=√92−(365)2=275,∴BD=2BH=545.̂的度数为()例3.已知如图,在⊙O中,OA⊥OB,∠A=35°,则CDA. 20°B. 25°C. 30°D. 35°【解答】解:连接OC,∵OA⊥OB,∴∠AOB=90°,∵∠A=35°,∴∠OBC=90°-35°=55°,∴OB=OC,∴∠OBC=∠OCB=55°,∴∠COB=70°,∴∠COD=90°-70°=20°,̂的度数为20°,∴CD故选:A.【答案】A例4.已知AB是⊙O的直径,点C,D是⊙O上的点,∠A=50°,∠B=70°,连接DO,CO,DC (1)如图①,求∠OCD的大小:(2)如图②,分别过点C,D作OC,OD的垂线,相交于点P,连接OP,交CD于点M已知⊙O的半径为2,求OM及OP的长.第8页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】解:(1)∵OA=OD,OB=OC,∴∠A=∠ODA=50°,∠B=∠OCB=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=180°-∠AOD-∠BOC=60°,∵OD=OC,∴△COD是等边三角形,∴∠OCD=60°;(2)∵PD⊥OD,PC⊥OC,∴∠PDO=∠PCO=90°,∴∠PDC=∠PCD=30°,∴PD=PC,∵OD=OC,∴OP垂直平分CD,∴∠DOP=30°,∵OD=2,∴OM=√32OD=√3,OP=4√33.例5.如图,AB为⊙O的直径,△ABC的边AC,BC分别与⊙O交于D,E,若E为BD̂的中点.(1)求证:DE=EC;(2)若DC=2,BC=6,求⊙O的半径【答案】解:(1)连结AE,BD,∵E为BD̂的中点,∴ED̂=BÊ,∴∠CAE=∠BAE,∵∠AEB是直径所对的圆周角,第9页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第10页 共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练 非学科培训∴∠AEB=90°, 即AE ⊥BC ,∴∠AEB=∠AEC=90°,在△AEC 和△AEB 中{∠CAE =∠BAE AE =AE ∠AEC =∠AEB ,∴△AEC ≌△AEB (ASA ), ∴CE=BE , ∴DE=CE=BE=12BC ;(2)在Rt △CBD 中,BD 2=BC 2-CD 2=32, 设半径为r ,则AB=2r , 由(1)得AC=AB=2r , AD=AC-CD=2r-2,在Rt △ABD 中AD 2+BD 2=AB 2, ∴(2r-2)2+32=(2r )2, 解得:r=4.5,∴⊙O 的半径为4.5.例6.如图,点A ,B ,C 在⊙O 上,AB ∥OC .(1)求证:∠ACB+∠BOC=90°;(2)若⊙O 的半径为5,AC=8,求BC 的长度.【答案】(1)证明:∵AB̂对的圆周角是∠ACB ,对的圆心角是∠AOB , ∴∠AOB=2∠ACB , ∵OB=OA ,∴∠ABO=∠BAO , ∵AB ∥OC ,∴∠ABO=∠BOC ,∠BAO+∠AOC=180°, ∴∠BAO+∠AOB+∠BOC=180°, 即2∠ACB+2∠BOC=180°, ∴∠ACB+∠BOC=90°;(2)延长AO 交⊙O 于D ,连接CD ,则∠ACD=90°,由勾股定理得:CD=√AD2−AC2=√(5+5)2−82=6,∵OC∥AB,∴∠BOC=∠ABO,∠COD=∠BAO,∵∠BAO=∠ABO,∴∠BOC=∠COD,在△BOC和△DOC中{OB=OD∠BOC=∠DOC OC=OC∴△BOC≌△DOC(SAS),∴BC=CD,∵CD=6,∴BC=6.例7.如图,AB是半圆O的直径,AC是弦,∠CAB=60∘,若AB=6cm.(1)求弦AC的长;(2)点P从点A开始,以1cm/s的速度沿AB向点B运动,到点B停止,过点P作PQ∥AC,交半圆O于点Q,设运动时间为t(s).①当t=1时,求PQ的长;②若△OPQ为等腰三角形,直接写出t(t>0)的值.【解答】(1)解:如图1中,∵OA=OC,∠CAB=60∘,∴△AOC是等边三角形,∴AC=OA=3(cm);(2)解:①如图2中,作OH⊥PQ于H,连接OQ,由题意得:AP=1,OP=2,∵PQ∥AC,∴∠OPH=∠CAB=60∘,在Rt△OPH中,∵∠POH=90∘−∠OPH=30∘,OP=2,∴PH=1OP=1,OH=√3PH=√3,2在Rt△QOH中,HQ=√OQ2−OH2=√6,∴PQ=PH+HQ=1+√6;②如图3中,∵△OPQ是等腰三角形,观察图象可知,只有OP=PQ,作PH⊥OQ于H.∵PQ∥AC,∴∠QPB=∠CAB=60∘,∵PQ=PO,PH⊥OQ,,∠POQ=∠PQO=30∘,∴OH=HQ=32∴OP=OH÷cos30∘=√3,∴AP=3+√3,∴t=3+√3秒时,△OPQ是等腰三角形.【答案】(1)3cm;(2)①1+√6;②t=3+√3.例8.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.【解答】(1)解:△ABC为等腰三角形.理由如下:连结AE,如图,∵,∴∠DAE=∠BAE,即AE平分∠BAC,∵AB为直径,∴∠AEB=90∘,∴AE⊥BC,∴△ABC为等腰三角形;(2)解:∵△ABC为等腰三角形,AE⊥BC,∴BE=CE=12BC=12×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE=√102−62=8,∵AB为直径,∴∠ADB=90∘,∴12AE⋅BC=12BD⋅AC,∴BD=8×1210=485,在Rt△ABD中,∵AB=10,BD=485,∴AD=√AB2−BD2=145,∴sin∠ABD=ADAB =14510=725.【答案】(1)略;(2)725.【举一反三】1.如图,弦AC、BD相交于点E,且AB̂=BĈ=CD̂,若∠AED=80°,则∠ACD的度数为()A. 20°B. 25°C. 30°D. 15°【解答】解:如图,设AB̂的度数为m,AD̂的度数为n,∵AB̂=BĈ=CD̂,∴BĈ、CD̂的度数都为m,∴3m+n=360°①∵∠AED=80°,∴∠C+∠D=80°,∴12m+12n=80°②,由①②组成{3m+n=360°12m+12n=80°,解得m=100°,n=60°∴∠ACD=12n=30°.故选:C.【答案】C2.已知△ABC内接于⊙O,点D平分弧BmĈ.(1)如图①,若∠BAC=2∠ABC.求证:AC=CD;(2)如图②,若BC为⊙O的直径,且BC=10,AB=6,求AC,CD的长.【答案】(1)证明:∵点D平分弧BmĈ,∴弧DC=弧DB,∵∠BAC=2∠ABC,∴弧BDC=2弧AC,∴弧CA=弧CD,∴AC=CD;(2)解:连结BD,如图②,∵BC为⊙O的直径,∴∠BAC=∠BDC=90°,在Rt △BAC 中,∵BC=10,AB=6,∴AC=√BC 2−AB 2=8;∵弧DC=弧DB ,∴DB=DC ,∴△BCD 为等腰直角三角形,∴CD=√22BC=5√2.3.如图,在⊙O 中,点C 是优弧ACB 的中点,D 、E 分别是OA 、OB 上的点,且AD=BE ,弦CM 、CN 分别过点D 、E .(1)求证:CD=CE .(2)求证:AM̂=BN ̂.【答案】(1)证明:连接OC .∵AĈ=BC ̂, ∴∠COD=∠COE ,∵OA=OB ,AD=BE ,∴OD=OE ,∵OC=OC ,∴△COD ≌△COE (SAS ),∴CD=CE .(2)分别连结OM ,ON ,∵△COD ≌△COE ,∴∠CDO=∠CEO ,∠OCD=∠OCE ,∵OC=OM=ON ,∴∠OCM=∠OMC ,∠OCN=∠ONC ,∴∠OMD=∠ONE ,∵∠ODC=∠DMO+∠MOD ,∠CEO=∠CNO+∠EON ,∴∠MOD=∠NOE ,∴AM̂=BN ̂.4.如图,已知△ABC中,AB=AC,以AB为直径的⊙O与边BC相交于点D,过点D作⊙O的切线与AC交于点E.(1)求BDBC的值.(2)判断DE与AC的位置关系,并证明你的结论.(3)已知BC:AB=2:3,DE=4√2,求⊙O的直径.【解答】(1)解:如图,连接AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC,∴BDBC =12;(2)解:DE⊥AC;连接OD,∵DE是⊙O的切线,∴DE⊥OD,∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠ODB=∠C,∴AC∥OD,∴DE⊥AC;(3)解:∵BDBC =12且BC:AB=2:3,∴AB:CD=3,∵∠ADB =∠DEC =90∘,∠B =∠C ,∴△ABD ∽△DCE ,∴DC AB =CE BD =13,设CE =a ,则BD =CD =3a ,AB =9a ,在Rt△DEC 中,由勾股定理得:DE =2a √2=4√2,∴a =2,∴AB =18.【答案】(1)12;(2)DE ⊥AC ;(3)18.5.已知直径CD ⊥弦BF 于 E ,AB 为ʘO 的直径.(1)求证:FD̂=AC ̂; (2)若∠DAB=∠B ,求∠B 的度数.【答案】(1)证明:∵直径CD ⊥弦BF ,∴FD̂=BD ̂, ∵∠AOC=∠BOD ,∴BD̂=AC ̂, ∴FD̂=AC ̂; (2)解:由圆周角定理得,∠BOD=2∠DAB ,∵∠DAB=∠B ,∴∠BOD=2∠B ,∵CD ⊥BF ,∴∠B=30°.6.如图,⊙O 的半径为2,弦BC =2√3,点A 是优弧BC 上一动点(不包括端点),△ABC 的高BD 、CE 相交于点F ,连结ED .下列四个结论:①∠A 始终为60°;②当∠ABC =45∘时,AE =EF ;③当△ABC 为锐角三角形时,ED =√3;④线段ED 的垂直平分线必平分弦BC .其中正确的结论是 .(把你认为正确结论的序号都填上)【答案】①②③④.7.圆O的直径为10cm,A是圆O内一点,且OA=3cm,则圆O中过点A的最短弦长=__________cm【答案】88.如图,在圆O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=__________°【答案】501.如图,AB圆O的直径,点C在圆O上,若∠OCA=50°,AB=4,则弧BC的长为()πA. 103B. 109π C. 59πD. 518π【答案】B2.如图,将钢珠放在一个边长AB=8mm 的正方形的方槽内,测得钢珠顶端离零件表面的距离为8mm ,则这个钢珠的直径为______mm .【答案】103.如图,AB 是半圆的直径,E 是弦AC 上一点,过点E 作EF ⊥EB ,交AB 于点F ,过点A 作AD ∥EF ,交半圆于点D .若C 是BD ̂的中点,AF AE =√54,则EFAD 的值为 .【解答】解:延长BE 交AD 于A',∵AD ∥EF ,EF ⊥BE ,∴AA'⊥BA',∴∠AA'B=90°,∵AB 为⊙O 的直径,∴∠ADB=90°,∴D 与A'重合,∵AFAE =√54,∴设AF=√5a,AE=4a,过F作FG⊥AE于G,∵C是BD̂的中点,∴CD̂=BĈ,∴∠DAC=∠BAC,∵AD∥EF,∴∠BFE=∠DAB=2∠BAC=∠BAC+∠AEF,∴∠BAC=∠AEF,∴AF=EF,∴AG=EG=2a,由勾股定理得:FG=a,∵∠DAE=∠GAF,∠ADE=∠AGF=90°,∴△ADE∽△AGF,∴ADAE =AGAF,∴AD4a =2a√5a,AD=8a√5,∴EFAD =√5a8a√5=58,故答案为:58.【答案】584.在⊙O的内接△ABC中,AD⊥BC于D,(1)①图1中,若作直径AP,求证:AB.AC=AD.AP;②已知AB+AC=12,AD=3,设⊙O的半径为y,AB的长为x.求y与x的函数关系式及自变量x的取值范围;(2)图2中,点E为⊙O上一点,且弧AE=弧AB,求证:CE+CD=BD.【答案】5.在⊙O的内接△ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设⊙O的半径为y,AB的长为x。

圆的各种定理

圆的各种定理

圆的各种定理一、垂径定理1. 定理内容- 垂直于弦的直径平分弦且平分这条弦所对的两条弧。

- 用符号语言表示:设圆O中,直径CD⊥弦AB于点E,则AE = BE,widehat{AD}=widehat{BD},widehat{AC}=widehat{BC}。

2. 推论- 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

- 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

- 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

二、弧、弦、圆心角定理1. 定理内容- 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

- 符号语言:在⊙ O中,若∠ AOB=∠ COD,则widehat{AB}=widehat{CD},AB = CD。

2. 推论- 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。

- 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优弧和劣弧分别相等。

三、圆周角定理1. 定理内容- 一条弧所对的圆周角等于它所对的圆心角的一半。

- 符号语言:在⊙ O中,∠ BAC是widehat{BC}所对的圆周角,∠ BOC是widehat{BC}所对的圆心角,则∠ BAC=(1)/(2)∠ BOC。

2. 推论- 同弧或等弧所对的圆周角相等。

- 半圆(或直径)所对的圆周角是直角,90^∘的圆周角所对的弦是直径。

- 圆内接四边形的对角互补。

即四边形ABCD内接于⊙ O,则∠ A+∠ C = 180^∘,∠ B+∠ D=180^∘。

四、切线的性质定理1. 定理内容- 圆的切线垂直于经过切点的半径。

- 符号语言:直线l是⊙ O的切线,切点为A,则OA⊥ l。

五、切线的判定定理1. 定理内容- 经过半径的外端并且垂直于这条半径的直线是圆的切线。

- 符号语言:点A在⊙ O上,OA是半径,直线l⊥ OA于点A,则直线l是⊙O的切线。

六、切线长定理1. 定理内容- 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

垂径定理

垂径定理

A O B D C
图① 第(22)题
A O B l D E
图②
F
l
2013 年广东省梅州市初中毕业生学业考试数学试卷(圆) 11. (3 分)如图,在△ABC 中,AB=2,AC= 切,则∠BAC 的度数是 度. ,以 A 为圆心,1 为半径的圆与边 BC 相
(2012•贵港)如图,MN 为⊙O 的直径,A、B 是⊙O 上的两点,过 A 作 AC⊥MN 于点 C, 过 B 作 BD⊥MN 于点 D,P 为 DC 上的任意一点,若 MN=20,AC=8,BD=6,则 PA+PB 的最小值是 _________ .
启示一:点与圆的位置关系 例 6、点 P 到圆 O 的最大距离为 6,最小距离为 2,求圆 O 的半径
启示二:点与弦的位置关系 例 7、 ABC 三个顶点都在圆 O 上, OD BC 于点 D,且 BOD 48 ,求 BAC
启示三:弦所对的圆周角 例 8、半径为 1 的圆中有一条长为 3 的弦,求弦所对圆周角的度数。

1 2
四、弧、弦、圆心角的关系 在同圆或等圆中,弧、弦、圆心角只要有一组量相等 其他两组量就都相等, 五、拓展内容(与相似三角形综合) 1、圆的内接四边形的一个外角等于与它相邻的内角的对角
2、相交弦定理: AE BE CE DE
3、割线定理 PA PB PC PD
例 1:
圆 垂径定理 要点 1、垂径定理及推论 2、圆周角定理及推论 3、圆周角、圆心角、弧的度数 4、弧、弦、圆心角的关系 5、补充内容 一、垂径定理: 1、垂径定理:垂直于弦的直径平分弦,并平分弦所对的两条弧。 2、推论:①直径(过圆心的线段)②垂直于弦 ③平分弦 ④平分弦所对的优弧
⑤平分弦所对的劣弧,以其中的两个为条件,一定能得到其他三个结论, 即”知二推三” 二、圆周角定理 1、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等 2、推论1:半圆或直径所对的圆周角为 90 3、推论2:圆的内接四边形对角互补 三、圆周角、圆心角、弧的度数 1、弧的度数就是它所对圆心角的度数 2、弧的度数和它所对的圆心角度数相等 3、同弧所对的圆周角的度数,为它所对圆心角的度数的

2018年下学期九年级数学辅导讲义01——弧、弦、圆心角、圆周角、垂径定理

2018年下学期九年级数学辅导讲义01——弧、弦、圆心角、圆周角、垂径定理

2018年下学期九年级数学辅导讲义第01讲弧、弦、圆心角、圆周角、垂径定理【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

*如果它们中间有一组量不相等,那么其它各组量也分别不等。

【典型例题】类型一、圆心角、弧、弦之间的关系及应用例1. 如图,在⊙O中,,求∠A的度数.【变式】如图所示,中弦AB=CD,求证:AD=BC.类型二、圆周角定理及应用例2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?例3. 如图所示,AB为⊙O的直径,动点P在⊙O的下半圆,定点Q在⊙O的上半圆,设∠POA=x°,∠PQB=y°,当P点在下半圆移动时,试求y与x之间的函数关系式.例4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【变式】如图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°,的度数为100°,则∠AEC 等于( )A. 60°B. 100°C. 80°D. 130°【巩固练习】 一、选择题1. 如图,在⊙O 中,若圆心角∠AOB=100°,C 是上一点,则∠ACB 等于( ). A .80° B .100° C .130° D .140°2.已知,如图, AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =45°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的对称性,圆周角
1. 圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

2. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:
①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

3. 定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。

推论: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它
们所对应的其余各组量都分别相等.
圆周角和圆心角的关系:
1. 圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.
2. 圆周角定理; 一条弧所对的圆周角等于它所对的圆心角的一半.
推论1: 同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等; 推论2: 半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;
1、如图,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,•错误的是(
A 、CE=DE
B 、B
C B
D = C 、∠BAC=∠BAD D 、AC >AD
2、如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM
的长为3,则弦AB 的长是(A 、4 B 、6 C 、7 D 、8
3、某居民小区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图所示,污水水面宽度为60cm ,水面到管道顶部距离为10cm
,则修理人员应准备_________cm 内径的管道(内径指内部直径). 4、如图,一条公路的转弯处是一段圆弦(即图中CD ,点O 是CD 的圆心,•其中CD=600m ,E 为CD 上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.
5、如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.
6、如图,已知AB 是⊙O 的直径,AC 为弦,D 是AC 的中点,6BC cm =,求OD 的长.
7. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么?
第4题
C
E O A D B 8. 等腰三角形ABC 中,B 、C 为定点,且AC=AB ,D 为BC 中点,以BC 为直径作圆D 。

(1)顶角A 等于多少度时,A 在圆D 上? (2)顶角A 等于多少度时,A 在圆D 内部?
(3)顶角A 等于多少度时,A 在圆D 外部?
9. 如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。

已知:AB cm 24=,CD cm 8=。

(1)求作此残片所在的圆(不写作法,保留作图痕迹); (2)求(1)中所作圆的半径。

10. 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,求弦AB 与CD 之间的距离。

11、P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______. 12.已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( ) A .1个 B .2个 C .3个 D .4个
13. 如图所示,在圆O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,若AC=2cm ,则圆O 的半径为____________cm 。

14. 如图所示,已知O 是∠EPF 的平分线上的一点,以O 为圆心的圆心角的两边分别交于点A 、B 、C 、D
求证:PB=PD ,若角的顶点P 在圆上或圆内,上述还成立吗?请说明。

15、如图,AB 是⊙O 的直径,BC CD DE ==,∠COD=35°,求∠AOE 的度数.
16、如图,在⊙O 中,AB=AC ,∠ACB=60°,求证∠AOB=∠BOC=∠AOC.
O
C
B
A
17、在同圆中,下列四个命题:(1)圆心角是顶点在圆心的角;(2)两个圆心角相等,它们所
对的弦也相等;(3)两条弦相等,它们所对的弧也相等;(4)等弧所对的圆心角相等.其中真命题有( )
18、如图,已知AB 和CD 是⊙O 的两条弦,AD BC =,求证:AB=CD.
19、如图,已知O ⊙的半径6OA =,90AOB ∠=°,则AOB ∠所对的弧AB 的长为( ) A 、2π B 、3π C 、6π D 、12π 20、如图,点A B C ,,都在O 上,若34C =∠,则AOB ∠的度数为( )
A 、34
B 、56
C 、60
D 、68
21、如图,
AB 是O 的直径,点C D ,是圆上两点,100AOC ∠=,则D ∠=_______. 22、如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?
23、如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧CD ⌒上不同于点C 的任意一点,则∠BPC 的度数是( )
A 、45°
B 、60°
C 、75°
D 、90°
25题图
24.、如图,ABC △内接于O AD ,是O 的直径,30ABC ∠=,则CAD ∠=______.
25、如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,求圆心O 到弦AD 的距离.
26.如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为半径
的圆与AB 交于点D ,则AD 的长为
A. 95
B. 245
C. 185
D. 52
27.如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与
O 相切与点D ,则下列结论
中不一定正确的是【】
(A )AG BG = (B )AB ∥EF (C )AD ∥BC (D )ABC ADC ∠=∠
B
A
24题图 B
A
C
O D
B
28、如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,
直线y=kx ﹣3k+4与⊙O 交于B 、C 两点,则弦BC 的长的最小值为 30.如图,点P 是等边三角形ABC 外接圆⊙O 上的点,在以下判断中,不正确...的是( ) A 、当弦PB 最长时,ΔAPC 是等腰三角形。

B 、当ΔAPC 是等腰三角形时,PO ⊥AC 。

C 、当PO ⊥AC 时,∠ACP=300.
D 、当∠ACP=300
,ΔPBC 是直角三角形。

31.如图,AE 是半圆O 的直径,弦AB=BC=4,弦CD=DE=4,连结
OB ,OD ,则图中两个阴影部分的面积和为 .
32. 如图所示,四边形ABCD 内接于圆O ,∠BCD=120°,则∠BOD=____________度。

33. 若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于( ) A. 45° B. 90° C. 135° D. 270°
34. 如图所示,A 、B 、C 三点在圆O 上,∠AOC=100°,则∠ABC 等于( ) A. 140° B. 110° C. 120° D. 130°
(32图) (34题图) (35题图) 35.如图,点A 、B 、C 、D 在⊙O 上,OB ⊥AC ,若∠BOC=56°,则∠ADB= 度.
36.如图AB 是⊙O 的直径,∠BAC=42°,点D 是弦AC 的中点,则∠DOC 的度数是 度. (35题图) (36题图) (37题图)
37、如图,OC 是⊙O 的半径,AB 是弦,且OC ⊥AB ,点P 在⊙O 上,∠APC=26°,则∠BOC=
度. 3
8
、如图,
AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E
、F 分别是AC 、BC 的中点,直线EF 与⊙O
交于G 、H 两点,若⊙O 的半径为7,则GE+FH 的最大值为 . 39、如图,平面直角坐标系中,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为—
38题图
二.。

解答题
1、如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;
(2)若BC=3,sin∠P=3
5
,求⊙O的直径.。

相关文档
最新文档