圆弧、弦、圆周角的关系
圆的确定圆心角圆周角弧弦弦心距之间的关系

儒洋教育学科教师辅导讲义(A)锐角三角形 (B)钝角三角形 (C)直角三角形 (D)等腰三角形4、已知。
0的半径为4 cm, A为线段OP的中点,当0P=6 cm时,点A及。
0的位置关系是( )A、A在。
0内B、A在©0 上C、A在。
0外D、不能确定5、如图所示,有一个破残的圆片,现要制作一个及原圆片同样大小的圆形零件。
请你根据所学知识,设计两种不同的方案确定这个圆的圆心及半径。
第二部分:圆心角、圆周角、弧、弦、弦心距之间的关系一、知识点梳理1、及圆有关的角——圆心角、圆周角圆心角:顶点在圆心的角。
圆周角:顶点在圆上,并且两边都和圆相交的角。
(1)图中的圆心角__________ ;圆周角 _____________(2)____________________________________ 如图,已知ZA0B=50度,则ZACB= 度;2、及圆有关的边一一弦、直径、弦心距、弧(1)直径是一条特殊的弦,并且是圆中最大的弦。
(2)弦心距:从圆心到弦的距离。
(3)优弧、劣弧;同弧、等弧3、圆心角及圆周角的关系.2、在同圆中,弦长为a,b的两弦所对的劣弧长分别为c,d,如果c € d,那么()A、a > bB、 a = bC、 a , bD、 a < b3•圆内接/ABC中,AB=AC,圆心到BC的距离为3cm,圆的半径为7cm,则腰长AB= ____________4、四边形ABCD内接于圆,AB,BC,CD,DA的弧长之比为5: 8: 3: 2则ZABC= __________5、如图,在中,ZB=10°,ZC=25°,则ZA二_______________6、如图,在中,AB为直径,ZACB的平分线交于D,则ZABD二______________ °(第5题)(第6题)(第7题)7、如图,已知AB为的直径,AC为弦,0D丄AC于D, OD = 2cm,求BC的长。
弧、弦、圆心角、圆周角--知识讲解(基础)

弧、弦、圆心角、圆周角--知识讲解(基础)【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
*如果它们中间有一组量不相等,那么其它各组量也分别不等。
圆周角定理

学科教师辅导讲义学员编号:年级:初三课时数:3学员姓名:辅导科目:数学学科教师:授课类型T(同步知识主题) C (专题方法主题)T (学法与能力主题)授课日期及时段教学内容弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.基本方法归纳:正确理解和使用圆心角、弧、弦三者的关系:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.注意问题归纳:这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.基本方法归纳:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.注意问题归纳:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”---圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.圆周角的概念:【例1】如图,∠BAC是圆周角的是()变式:1、如图,图中哪些角是圆周角,哪些不是圆周角?请说明理由。
圆周角定理:【例2-1】如图,AB是⊙O的直径,∠AOC=110°,则∠D等于()【例2-2】已知圆中一条弦的长度等于它的半径,求此弦所对圆周角的度数。
九年级数学圆弧、弦、圆心角间的关系圆周角定理及其推论精选例题和练习..

圆周角定理及其推论一、知识点总结1.圆心角:顶点在圆心的角.注意:圆心角的底数等于它所对弧的度数.2.在同圆或等圆中,圆心角、弧、弦、弦心距中,只要有一组量相等,那么另外三组量也分别相等考点一:圆心角,弧,弦的位置关系二、弧、弦、圆心角、弦心距间的关系举例例1 如图,AB 为⊙O 的弦,点C 、D 为弦AB 上两点,且OC=OD ,延长OC 、OD 分别交⊙O 于点E 、F ,试证明弧AE=弧BF . 分析:“弧AE=弧BF”←“∠______=∠______” 把证弧相等转化为证________________. 证明:例2 如图,点O 是∠BPD 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B 和C 、D .求证:AB=CD . 分析:把证明弦相等转化为证明_弦心距_相等.例3如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E ,连接AC 、 OC 、BC .(1)求证:∠ACO=∠BCD .(2)若EB=8cm ,CD=24cm ,求⊙O 的直径. 分析: (1)∠ACO=∠______, 而∠______=∠______. (2)在Rt ⊿______中,利用勾股定理列方程求例4 已知,如图,在⊿ABC 中,AD ,BD 分别平分∠BAC 和∠ABC ,延长AD 交⊿ABC 的外接圆于E ,连接BE .求证:BE=DE . 分析:把证BE=DE 转化为证∠____=∠____. CDBF E ONMDCB AOEAO DC DA1.如图1,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()2.如图2,BE是半径为6的圆D的14圆周,C点是BE上的任意一点,△ABD 是等边三角形,则四边形ABCD的周长P的取值范围是()2、已知AB^、CD^是同圆的两段弧,且AB^=2CD^,则弦AB与2CD之间的关系为()A、AB=2CDB、AB<2CDC、AB>2CDD、不能确定4、下列语句中正确的是()A、相等的圆心角所对的弧相等B、平分弦的直径垂直于弦C、长度相等的两条弧是等弧D、经过圆心的每一条直线都是圆的对称轴5、在一扇形统计图中,有一扇形的圆心角为60°,则此扇形占整个圆的()6、有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有()7、如图3,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣孤DE的2倍;⑤AE=BC.其中正确结论的序号是()图1图2图38.如图所示,⊙O半径为2,弦,A为弧BD的中点,E为弦AC的中点,且在BD上,则四边形ABCD的面积为9.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD^上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.1.如图1,∠A 是⊙O 的圆周角,且∠A =35°,则∠OBC=_____.2.如图2,圆心角∠AOB=100°,则∠ACB= .3:如图3,AB 是⊙O 的直径,点C D E ,,都在⊙O 上,若C D E ==∠∠∠,则A B +=∠∠ º. 4:如图4,⊙O 的直径CD 过弦EF 的中点G ,40EOD ∠=,则DCF ∠= .图2 图14.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.注:有直径时,常添加辅助线,构造直径所对的圆周角,由此转化为直角三角形的问题.考点2:圆周角定理1、如图,△ABC 中,∠A=60°,BC 为定长,以BC 为直径的⊙O 分别交AB ,AC 于点D ,E .连接DE ,已知DE=EC .下列结论:①BC=2DE ;②BD+CE=2DE .其中一定正确的有( )2.一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角∠ACB=45°,则这个人工湖的直径AD 为( )3.如图AB 是⊙O 的直径, AC^所对的圆心角为60°, BE^所对的圆心角为20°,且∠AFC=∠BFD ,∠AGD=∠BGE ,则∠FDG 的度数为( )4. 如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠C=40°,则∠ABD 的度数为( )1题图 2题 3题4题5:已知:如图,AD•是⊙O•的直径,∠ABC=•30•°,则∠CAD=_______.CBO A O AB C 图3 B C D E O EF C DG O 图46:已知⊙O 中,30C ∠=,2cm AB =,则⊙O 的半径为cm .7.已知:如图等边ABC △内接于⊙O ,点P 是劣弧BC ⋂上的一点(端点除外),延长BP 至D ,使BD AP =,连结CD .(1)若AP 过圆心O ,如图①,请你判断PDC △是什么三角形?并说明理由. (2)若AP 不过圆心O ,如图②,PDC △又是什么三角形?为什么?8.如图AB 是圆O 的直径,C 是圆O 上的一点,若AC=8㎝,AB=10㎝,OD ⊥BC 于点D ,求BD 的长9.如图,在⊙O 中,直径AB 与弦CD 相交于点P ,∠CAB=40°,∠APD=65°. (1)求∠B 的大小;(2)已知圆心0到BD 的距离为3,求AD 的长._D_B _A_O OAA O C PB 图① AOC PB 图②10.11.如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是12.如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD 于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.(1)求⊙O的半径;(2)求证:CE=BE.13.5.圆内接多边形:一个多边形的顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆6.圆内接四边形:圆内接四边形的对角互补如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC等于()A. 140°B. 110°C. 120°D. 130°7.确定圆的条件:不在同一直线上的三个点确定一个圆.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图5所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块 C.第③块D.第④块8.三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.这个三角形叫做圆的内接三角形。
【教案】 圆周角与圆心角、弧的关系

圆周角与圆心角、弧的关系一、知识讲解:1.圆周角与圆心角的的概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2.在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。
3.一条弧所对的圆周角等于这条弧所对的圆心角的一半。
4.直径所对的圆周角是90度,90度的圆周角所对的弦是直径。
5.圆的内接四边形对角之和是180度。
6.弧的度数就是圆心角的度数。
解题思路:1.已知圆周角,可以利用圆周角求出圆心角2.已知圆心角,可以利用圆心角求出圆周角3.已知直径和弧度,可以求出圆周角与圆心角1.圆周角与圆心角的定义顶点在圆上,并且两边都和圆相交的角叫做圆周角。
注意圆周角定义的两个基本特征:(1)顶点在圆上;(2)两边都和圆相交。
二、教学内容【1】圆心角:顶点在圆心的角。
利用两个错误的图形来强调圆周角定义的两个基本特征:练习:判断下列各图形中的是不是圆周角,并说明理由.【2一条弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半。
已知:⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC,求证:∠BAC= 1/2∠BOC.分析:通过图形的演示指导学生进一步去寻找圆心O与∠BAC的关系本题有三种情况:(1)圆心O在∠BAC的一边上 O(2)圆心O在∠BAC的内部(3)圆心O在∠BAC的外部 B D C●如果圆心O在∠BAC的边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明●如果圆心O在∠BAC的内部或外部,那么只要作出直径AD,将这个角转化为上述情况的两个角的和或差即可证明:圆心O在∠BAC的一条边上 AOA=OC==>∠C=∠BAC∠BOC=∠BAC+∠C O==>∠BAC=1/2∠BOC. B C【3】圆周角与圆心角的关系(1).在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。
(2).一条弧所对的圆周角等于这条弧所对的圆心角的一半。
九年级数学上册专题第14讲圆的有关性质重点、考点知识总结及练习

第14讲圆的有关性质⎧⎪⎪⎨⎪⎪⎩垂径定理弧、弦、圆心角的关系圆的有关性质圆周角定理及推论圆内接四边形的性质 知识点1垂径定理①弦和直径:(1)弦:连接圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径。
直径等于半径的两倍。
②弧:(1) 弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号⌒表示,以A,B 为端点的的弧记作AB ⌒,读作弧AB.(2)半圆、优弧、劣弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
大于半圆的弧叫做优弧,优弧大于180º用三个字母表示,如 ACB .小于半圆的弧叫做劣弧,如AB 。
(3)等弧:在同圆或者等圆中能够相互重合的弧是等弧,度数或者长度相等的弧不一定是等弧。
③弦心距:(1)圆心到弦的距离叫做弦心距。
(2)圆心角、弧、弦、弦心距之间的相等关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆心角也相等,所对弦的弦心距也相等。
四者有一个相等,则其他三个都相等。
圆心到弦的垂线段的长度称为这条弦的弦心距。
④圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,直径所在的直线是它的对称轴。
⑤垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(此弦不能是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.⑥同心圆与等圆(1)同心圆:圆心相同,半径不相等的两个圆叫做同心圆。
如图一,半径为r1与半径为r2的⊙O叫做同心圆。
(图一)(2)等圆:圆心不同,半径相等的两个圆叫做等圆。
圆心角、弧、弦、弦心距之间的关系--知识讲解(基础)

圆心角、弧、弦、弦心距之间的关系--知识讲解(基础)【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等).*如果它们中间有一组量不相等,那么其它各组量也分别不等.【典型例题】类型一、圆心角、弧、弦之间的关系及应用1.如图,在⊙O中,,求∠A的度数.【答案与解析】.【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的弦也相等.举一反三:【变式】如图所示,中弦AB=CD,求证:AD=BC.【答案】证法1:∵AB=CD,∴(在同圆中,相等的弦所对的弧(同为优弧或同为劣弧)也相等) ∴∴AD=BC(在同圆中,相等的弧所对的弦也相等)证法2:如图,连接OA,OD,OB,OC,∵AB=CD,∴(在同圆中,相等的弦所对的圆心角相等)∴∴AD=BC(在同圆中,相等的圆心角所对的弦也相等)类型二、圆周角定理及应用2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?【思路点拨】判断圆周角必须同时满足两条:①顶点在圆上;②两边都和圆相交.【答案与解析】(a)∠1顶点在⊙O内,两边与圆相交,所以∠1不是圆周角;(b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;(c)图中∠3、∠4、∠BAD的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD是圆周角.(d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角;(e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角.【总结升华】紧扣定义,抓住二要素,正确识别圆周角.3.如图所示,AB为⊙O的直径,动点P在⊙O的下半圆,定点Q在⊙O的上半圆,设∠POA=x°,∠PQB=y°,当P点在下半圆移动时,试求y与x之间的函数关系式.【答案与解析】解法1:如图所示,∵AB为⊙O的直径,∠AOP=x°∴∠POB=180°-x°=(180-x)°又解法2:如图所示,连结AQ,则又∵AB是⊙O的直径,∴∠AQB=90°【总结升华】考查圆周角定理的应用.4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【思路点拨】连结AD,易证∠ADB=90°,即AD是等腰三角形△ABC的高.再由三线合一的性质得出BD与CD的大小关系.【答案与解析】BD=CD.理由是:如图,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB,∴BD=CD.【总结升华】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD,证明AD是高或是∠BAC的平分线即可.举一反三:【变式】如图,已知⊙O的弦AB、CD相交于点E,的度数为60°,的度数为100°,则∠AEC等于()A. 60°B. 100°C. 80°D. 130°【答案】C.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
高中圆形知识点总结

高中圆形知识点总结一、圆的基本概念1. 圆的定义:平面上到定点的距离等于定长的点的全体构成的集合称为圆。
2. 圆的要素:圆心、半径、直径、弧、弦、切线、切点等。
3. 周长和面积:圆的周长公式C=2πr,面积公式S=πr^2。
4. 圆的相关概念:扇形、弓形、圆心角、外接角、内切角等。
二、圆的相关定理1. 同圆弧定理:同圆的两条弧所对圆心角相等,弧所对圆心角不相等则弧长不等。
2. 弧长和弧度:弧长公式L=αr,弧度公式α=π/180°。
3. 圆心角与弧度的关系:圆心角的度数除以360°再乘以2π即为对应的弧度。
4. 弦心角定理:弦心角等于弦所对的圆周角的一半。
5. 弦的性质:相等的弧所对的外弧相等、相等的弦所对的内切角相等。
6. 切线定理:有一个点P在圆外,点A、B在圆上,PA、PB是两个切线,则PA=PB。
7. 切线长度的求解:切线长的平方等于弦长乘以弦长所对的外切角的正切值。
三、圆在几何问题中的应用1. 圆的平移和旋转:圆的平移不改变半径和圆心角,圆的旋转角度也不改变半径和圆心角。
2. 圆的相交问题:相交弧的性质以及相交弧与弦、切线的关系。
3. 圆的相似问题:相似条件下相似圆的半径、圆周角、面积的关系。
4. 圆与多边形的结合:圆内接和外接多边形、多边形的内角和外角与圆周角的关系。
四、圆的三角函数1. 弧度制下的三角函数:弧度制下的正弦、余弦、正切、余切的概念和性质。
2. 圆周上三角函数的应用:求角度和弧度、求三角函数值、求角度与弧度的转换等。
综上所述,高中圆形知识点主要涉及圆的基本概念、相关定理、在几何问题中的应用以及圆的三角函数等内容。
掌握这些知识可以帮助学生更好地理解和应用圆的性质,解决各种与圆相关的几何问题。
同时,圆形知识也是数学学科中重要的一部分,对于学生发展数学思维和提高数学素养具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:弧、弦、圆心角
【学习目标】
1.能识别圆心角.
2.探索并掌握弧、弦、圆心角的关系,了解圆的中心对称性和旋转不变性.
3.能用弧、弦、圆心角的关系解决圆中的计算题、证明题.
【学习重点】
探索圆心角、弧、弦之间关系定理并利用其解决相关问题.
【学习难点】
圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.
情景导入生成问题
1.你能举出生活中的圆形商标的实例吗?(至少三个)
宝马车商标:星巴克标志:曼秀雷敦标志:
2.把这些圆形图案绕圆心旋转一定的角度,你有什么发现?旋转前后圆中的弧、弦会有变化吗?解:图案绕圆心旋转一定的角度后能与自身重合,旋转前后圆中的弧、弦不会有变化.
自学互研生成能力
知识模块一圆心角的定义
【自主探究】
阅读教材P83~P84思考,完成下面的内容:
举例讲解:图中的∠AOB,∠COD,∠AOD,∠BOC这几个角的顶点有什么共同特点?
顶点都在圆心上,两边都与圆相交.
归纳:圆心角是指顶点在圆心,两边都与圆相交的角.
圆心角的特征:①顶点是圆心;②角的两边与圆相交.
范例:如图,下列各角是圆心角的是(B)
A.∠ABC B.∠AOB C.∠OAB D.∠OBC
知识模块二圆心角、弧、弦之间的关系定理
【自主探究】
阅读教材P 84思考及例3内容,完成下面的内容:
如图,将圆心角∠AOB 绕圆心O 旋转到∠A′OB′的位置,你能发现哪些等量关系?为什么? 根据旋转的性质,将圆心角∠AOB 绕圆心O 旋转到∠A′OB′的位置时,∠AOB =∠A′OB′,射线OA 与OA′重合,OB 与OB′重合.而同圆的半径相等,OA =OA′,OB =OB′,∴点A 与A′重合,B 与B′重合.AB 与A′B′
重合.AB ︵与A ′B ′︵重合.∴AB ︵=A ′B ′︵.
归纳:(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;
(2)在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦相等;
(3)在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧相等.
【合作探究】
典例:判断题,下列说法正确吗?为什么?
(1)如图所示:因为∠AOB =∠A′OB′,所以AB ︵=A ′B ′︵.
(2)在⊙O 和⊙O′中,如果弦AB =A′B′,那么AB ︵=A ′B ′︵.
解:(1)、(2)都是不对的.在图中,因为不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.可让学生举反例说明.
范例:已知:如图所示,AD =BC.求证:AB =CD.
证明:∵AD =BC ,
∴AD ︵=BC ︵.
∵AC ︵=AC ︵,∴AC ︵+AD ︵=AC ︵+BC ︵.
∴DC ︵=AB ︵.∴AB =CD.。